
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 1, JANUARY 2011 223

CodeOn: Cooperative Popular Content
Distribution for Vehicular Networks using Symbol

Level Network Coding
Ming Li, Student Member, IEEE, Zhenyu Yang, Student Member, IEEE, and Wenjing Lou, Senior member, IEEE

Abstract—Driven by both safety concerns and commercial
interests, one of the key services offered by vehicular networks is
popular content distribution (PCD). The fundamental challenges
to achieve high speed content downloading come from the highly
dynamic topology of vehicular ad hoc network (VANET) and
the lossy nature of the vehicular wireless communications. In
this paper, we introduce CodeOn, a novel push-based PCD
scheme where contents are actively broadcasted to vehicles from
road side access points and further distributed among vehicles
using a cooperative VANET. In CodeOn, we employ a recent
technique, symbol level network coding (SLNC) to combat the
lossy wireless transmissions. Through exploiting symbol level
diversity, SLNC is robust to transmission errors and encourages
more aggressive concurrent transmissions. In order to fully
enjoy the benefits of SLNC, we propose a suite of techniques
to maximize the downloading rate, including a prioritized and
localized relay selection mechanism where the selection criteria
is based on the usefulness of vehicles’ possessed contents, and
a lightweight medium access protocol that naturally exploits
the abundant concurrent transmission opportunities. We also
propose additional mechanisms to reduce the protocol overhead
without sacrificing the performance. Extensive simulation results
show that, under a wide range of scenarios, CodeOn significantly
outperforms a state-of-the-art PCD scheme based on network
coding.

Index Terms—Vechicular Networks, Content Distribution,
Data Dissemination, Broadcast, Symbol Level Network Coding.

I. INTRODUCTION

VEHICULAR communications have attracted lots of at-
tentions recently. Since the advent of dedicated short

range communications (DSRC) [1], [2], and IEEE 802.11p and
IEEE 1609 standards [3], people have envisioned and designed
numerous tempting applications of vehicular networks, rang-
ing from safety warning [4], intelligent navigation to mobile
infotainment [5]. A particularly promising type of application
is related to both safety-related and commercial services.
That is, the distribution of “popular” multimedia contents
to vehicles inside a geographical area of interest (AoI) by
road side infrastructure (e.g. access points (APs)), which is
referred to as popular content distribution (PCD) in this paper.
Examples of PCD may include: an ads company periodically
broadcasts multimedia advertisements of local businesses in
a city to vehicles driving through a segment of suburban
highway passing by that city (like a digital billboard); a traffic

Manuscript received 5 January 2010; revised 7 May 2010 and 12 July 2010.
The authors are with the Department of Electrical and Computer Engi-

neering, Worcester Polytechnic Institute (e-mail: {mingli,zyyang,wjlou}@
ece.wpi.edu).
Digital Object Identifier 10.1109/JSAC.2011.110121

authority delivers real-time traffic and accident information
about the roads in an urban area for intelligent navigation
or emergency warning purposes, or disseminates an accurate
update of the GPS map about a city or a scenic area.

Different from the usual “content downloading” services
where various vehicles are interested in downloading different
files from the Internet [6], [7], the popular contents in PCD are
often commonly “interested” by most of the vehicles driving
through an AoI, and sometimes may even be disseminated
mandatorily such as emergency videos [8]. An important
aspect in common about popular contents is their potentially
large file sizes, because multimedia files including video and
audio are more vivid and effective, thus are always preferred
over text-only files. For example, an advertisement video may
be as large as 100 MB. Indeed, disseminating such large
contents is possible in vehicular networks, given that four sub-
channels in DSRC are allocated as service channels, while the
IEEE 802.11p supports data rates up to 27 Mbps.

The primary requirement of PCD in vehicular networks
is to achieve short downloading delay, or equivalently, high
downloading rate. The former is the average time required for
end-vehicles to receive a file completely. From a driver’s point
of view, fast reception of a video about an accident or traffic
condition may help the driver to plan his/her route in advance
to avoid possible traffic jams or accidents. From the content
provider’s viewpoint, shorter downloading delay improves the
ratio of vehicles that can receive the content. Thus, a short
delay is essential for both commercial and non-commercial
contents. In addition, it is also critical for PCD to maintain
a high degree of efficiency, i.e., to introduce low protocol
overhead and reasonable amount of data traffic, so that PCD is
readily compatible with other potential services running under
the same channel.

Due to the relatively high cost of deploying APs, the access
to wireless Internet is quite limited in vehicular networks.
In the initial deployment phase APs may be rare, which
could be placed in highway service areas, gas stations or
road intersections. Since it takes usually less than 1 minute
for moving vehicles to drive through the coverage of an AP,
vehicles may not finish downloading a large file within such
a short time period. When vehicles are out of the coverage
of the APs, they form a vehicular ad hoc network (VANET)
and cooperative distribution of the popular content is thus
necessary.

However, it is non-trivial to design a high-rate and efficient
cooperative PCD scheme. The main challenges come from

0733-8716/11/$25.00 c© 2011 IEEE

224 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 1, JANUARY 2011

the lossy wireless medium under vehicular environments,
and the highly mobile and dynamical nature of VANETs.
First, the lossy wireless links cause frequent packet losses
and collisions, leading to prolonged downloading delay and
decreased efficiency, and negatively affects the protocol per-
formance. In addition, the ever-changing VANET topology
prevents real-time acquisition of precise neighbor information
(such as reception status) which forms the basis of optimized,
distributed transmission decision making. If there lacks a well-
devised coordination mechanism among the transmitting vehi-
cles, duplicate transmissions may fill up the channel and waste
the precious VANET bandwidth. Also, a PCD scheme could
potentially incur large protocol overhead spent in collecting
those information needed to achieve high performance.
Towards solving these problems, many existing works [5],

[8]–[11] have adopted network coding (NC) [12] for con-
tent downloading in VANETs, because NC effectively re-
duces duplicate transmissions and simplifies the transmission
scheduling. Most of these protocols employ a pull-based
cooperative content downloading approach [5], [10], where
vehicles transmit passively upon others’ downloading requests,
which suffers from low efficiency. When downloading popular
files, many vehicles make requests for the same content and
many vehicles respond to their requests. Due to the lack of
coordination, these protocols cannot avoid severe packet losses
and collisions, especially under a dense VANET. This could
lead to extremely low efficiency and large downloading delay.
Thus the performance gain obtained from network coding is
under-exploited and even offset by unrefined protocol design.
In this paper, we put forward CodeOn, a high-rate coopera-

tive PCD scheme for vehicular networks. We explore symbol
level network coding (SLNC) [13] for cooperative PCD. In
contrast with traditional packet level network coding, SLNC
performs network coding on finer granularity of physical layer
symbols. Since the error rate of a symbol is smaller than
that of a packet’s, SLNC has better error tolerance, enhances
reception reliability and thus the downloading rate. Fully
exploiting the advantage of SLNC for PCD necessitates non-
trivial protocol design, whereas we make the following main
contributions.
(1) CodeOn provides a whole new set of push-based con-

tent distribution protocol design for VANETs. The popular
contents are actively broadcasted from a few APs to all
vehicles within an AoI, through the cooperation of a set of
dynamically selected relay nodes. In order to maximize the
usefulness of every piece of content broadcasted by those
relays, we propose a prioritized relay selection mechanism
to coordinate the transmissions of vehicles, in which every
vehicle’s transmission priority is proportional to how much
additional useful content it can provide to its neighbors. In
addition, we use a simple medium access control (MAC)
mechanism based on carrier sensing, which fully exploits the
increased transmission concurrency enabled by SLNC so as
to maximize the downloading rate.
(2) To reduce the protocol overhead without degrading the

performance, we propose a scalable and efficient average-
rank method for vehicles to represent and exchange their
content reception status under SLNC. By taking advantage
of the multi-channel property of VANET, vehicles piggyback

this tiny information in their safety messages sent in control
channel, which incurs zero overhead for content downloading.
(3) We implement CodeOn in NS-2 and evaluate its per-

formance by extensive simulations. We compare CodeOn
with an enhanced version of CodeTorrent, which is a pull-
based, network coding based content distribution protocol and
represents the current state-of-the-art. Simulation results show
that CodeOn performs significantly better than CodeTorrent,
in terms of average downloading delay, protocol efficiency and
fairness. Significant improvements in average downloading
rate are obtained for both highway and urban scenarios. To the
best of our knowledge, this is the first time that cooperative
PCD has been studied under lossy VANET environments.
The rest of the paper is organized as follows. Sec. II for-

mulates the PCD problem in vehicular networks and discusses
related works, Sec. III introduces symbol level network coding
and its benefits for content downloading. The main design
of CodeOn is presented in Sec. IV. Sec. V contains the
performance evaluation and results. Finally, Sec. VI concludes
the paper.

II. PROBLEM FORMULATION AND RELATED WORK

A. Problem Formulation

1) Model and assumptions: In this paper, we consider the
following PCD service architecture for vehicular networks.
The content provider (e.g. a city wide traffic administration
bureau) wants to distribute some popular files to all vehicles
inside an area of interest (AoI), which can be either a highway
segment or an urban area. There are multiple APs (or road side
units) deployed in an AoI, and APs are connected together
through a wired backhaul. APs are controlled by the service
provider to actively disseminate popular contents to the vehi-
cles within the AoI. APs can be placed either deterministically
or randomly and optimal placement is outside the scope of this
paper. The service architecture is illustrated in Fig. 1.
Each vehicle is equipped with an on board unit including

a wireless transceiver (single radio). The wireless interface
operates on multiple channels [1], [2]. To model the coex-
istence of safety and commercial applications, we consider
two representative channels. The control channel is used to
broadcast safety messages, which may contain vehicles’ loca-
tions, speeds etc.; one service channel is dedicated for PCD.
In order to guarantee the quality of service of safety messages
(the interval between two consecutive safety messages should
be smaller than 100ms [14]), time is divided into periodical,
100ms slots and all vehicles and APs are synchronized to
switch simultaneously between the control channel and service
channel. The utilization of time and channels is depicted in
Fig. 2. Although there are advanced MAC protocols that
dynamically adjust the time shares of control channel and
service channel for better service [14], we fix it to 1/2 : 1/2
for simplicity.
In the control channel, each AP and each vehicle broadcasts

one beacon message in each slot. When a vehicle is in
the range of an AP, it merely listens to the AP’s content
broadcast in the service channel; otherwise, it may share
its received content with neighboring vehicles cooperatively.
Vehicles outside the AoI do not involve in content distribution.

LI et al.: CODEON: COOPERATIVE POPULAR CONTENT DISTRIBUTION FOR VEHICULAR NETWORKS USING SYMBOL LEVEL NETWORK CODING 225

Fig. 1. The architecture for PCD. Inside the AP coverage, AP broadcasts and vehicles receive; outside the AP coverage, vehicles distribute their received
contents cooperatively.

Fig. 2. The time and channel utilization of each vehicle and each AP.

In addition, we assume all vehicles are equipped with
Global Positioning System (GPS) devices, from which ve-
hicles obtain their real-time locations and synchronize their
clocks (error smaller than 100ns). GPS devices are low-cost
and are available to most of the drivers nowadays. When
vehicles are temporarily out of satellite coverage, they can use
auxiliary techniques to determine their location, and rely on
their own hardware clocks. Note that, GPS time synchroniza-
tion is required by the IEEE 1609.4 standard for multi-channel
operations [3].
2) Objectives: For any content distributed by the PCD

service, the primary objective is to achieve low average
downloading delay, which is equivalent to high average down-
loading rate. For each vehicle in an AoI, its downloading delay
is defined as the elapsed time from downloading start to 100%
completion. Meanwhile, it is desirable to achieve a high degree
of fairness, i.e., the variation of downloading delays among
different vehicles should be small. Finally, high-rate content
distribution cannot come at the cost of incurring too much
protocol overhead and data traffic, otherwise the PCD service
would be less compatible with other possible services in the
service channel. Thus it is also important to maintain high
protocol efficiency.

B. Related work and our contributions

In [6], Nandan et.al. first studied cooperative downloading
in VANETs. They proposed SPAWN, a pull-based, peer-to-
peer content downloading protocol for VANETs that extends
BitTorrent. Later, they proposed “AdTorrent” [15], which is a
semi push-based peer-to-peer protocol for vehicles to down-
load advertisements they are interested in. In both SPAWN and
AdTorrent, the peer and content selection mechanisms have
high overhead and are not scalable, especially when most of
the vehicles are interested in downloading popular contents.
Also, they suffer from the “coupon collector problem” which
enlarges downloading delay. Moreover, they use TCP for

content delivery, which performs poorly over multi-hop lossy
wireless links in highly mobile VANETs.

1) Network coding for content downloading: To avoid such
problems, many researchers resort to network coding (NC)
[12], [16]. NC mixes the packets by coding them together at
every intermediate node and exploits the broadcast nature of
wireless medium, so that the usefulness of each coded packet
is increased. Lee et.al. proposed CodeTorrent [5], a pull-based
content distribution scheme using NC, where vehicles need
to explicitly initiate requests to download a piece of content.
CodeTorrent restricts the peer selection and content delivery
to the one-hop neighborhood of a vehicle, thus eliminating the
need of multi-hop routing. Also, the use of NC mitigates the
peer and content selection problems.
Later, Lee et.al. further studied the practical effects of

content distribution in VANETs using NC [10] based on a vari-
ation of CodeTorrent. It is shown that the resource constraints
such as disk access, computation and buffer have significant
impacts on the performance. They discussed approaches to
reduce the communication and computation overhead of NC
while maintaining the gain of it. Since our paper focuses on
dealing with the lossy wireless links in content downloading
for VANETs, our work is orthogonal to [10].
The above schemes are all pull-based in essence. They could

suffer from large downloading delay, since nodes passively
respond to their neighbors’ requests and the bandwidth is
wasted (i.e., being idle much of the time). For example, in
CodeTorrent it takes 200 seconds to download a 1 MB file
in an urban scenario [5]. If a node wants to receive new
information continuously, it must send out requests frequently.
The transmissions from multiple responders tend to collide
with each other, leading to low-efficiency in turn. Park et. al.
proposed a push-based content delivery scheme for emergency
related video streaming using NC [8]. However their “push”
protocol design essentially reduces to controlled flooding,
which tends to be inefficient.
In fact, with packet level network coding (PLNC), it is

difficult to achieve high downloading performance especially
under lossy wireless links in VANETs, whether or not push
based protocol design is adopted. The wireless medium in
VANET has been shown to be lossy by empirical analysis
[17]–[19]. In practice, network coding for a large file is usually
done within each block of the file, namely a generation [5],
[9], [10]. In order to maintain reasonable coding/decoding
complexity while reducing the protocol overhead, the basic

226 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 1, JANUARY 2011

coding unit (coded piece) shall be larger than a usual packet.
During the transmission of such a coded piece, any error to
the coding vector or message body will render the whole piece
useless, leading to degraded downloading performance.
In this paper, we put forward CodeOn, a whole new set of

push-based protocol design that can well solve those problems.
Instead of using PLNC, we take advantage of symbol level
network coding (SLNC) [13] which has much better resiliency
to transmission errors due to symbol-level diversity.
2) Transmission coordination in content downloading:

Transmission coordination is an important issue for content
distribution in VANETs. Bad coordination could result in
severe packet collisions that affects the downloading perfor-
mance. However, this issue has not been well addressed in
previous works. In [8], a simple time out mechanism is used
for each vehicle to decide when to transmit a coded packet.
However, this mechanism does not take into account vehicles’
content reception status, which leads to a non-negligible
chance of duplicate information. Also, packet collisions are
severe when the network is dense.
In [20], Zhang et. al. studied this problem from link

layer, and proposed VC-MAC, a cooperative medium access
control (MAC) protocol for gateway downloading scenarios
in vehicular networks. In order to avoid possible interference
among multiple transmissions, and to maximize the “broad-
cast throughput”, a heuristic relay selection algorithm with
a backoff mechanism is proposed. However, the “broadcast
throughput” is purely based on link quality, which is not
content-aware. The relay chosen by VC-MAC may have
nothing innovative to transmit to its neighbors.
In CodeOn of this paper, we explicitly consider the content

usefulness of nodes for higher rate content downloading. A
dynamic set of relay nodes, which are selected based on their
content availability and usefulness, actively broadcast (push)
useful contents to neighboring nodes, and make medium
access decisions based on both their content usefulness and
local channel status.
3) Multi-channel compatibility: Few existing work con-

sidered the compatibility of content downloading with other
channels. In [14], the authors propose mechanisms to adjust
the time share of the service channel to enhance the perfor-
mance of content downloading while guaranteeing the QoS
of safety messages. Our paper considers the coexistence of a
service channel with the control channel, with the difference
that we design a better PCD protocol given a fixed time share
of service channel. Also we novelly utilize the control channel
for better content downloading.
4) Other related works: In [21], Zhao et. al. proposed

data pouring, a push-based data dissemination protocol for
VANETs. They focus on broadcasting small data items to all
vehicles inside an area, while we aim at disseminating large
popular files. In [22], Zhao et. al. also studied the problem of
drive-thru access to roadside APs, and proposed a vehicle-to-
vehicle relay strategy to extend the coverage of APs. In [23],
Yang et. al. proposed a push-based, reliable broadcast protocol
for wireless mesh networks using network coding.
In addition, Fiore et. al. focused on cooperative download-

ing in urban VANETs [7]. The Roadcast [24] is a popularity-
aware content sharing protocol in VANETs. These protocols

are mainly suitable for applications where each vehicle may
be interested in downloading different files, while we consider
the popular content distribution.

III. SYMBOL-LEVEL NETWORK CODING

In this section, we first describe the symbol-level network
coding technique. Then, we give a motivating example to show
the potential advantage of exploiting symbol-level diversity in
content distribution in VANETs.

A. A Brief Review of Symbol-level Network Coding

SLNC was recently introduced by Katti et. al. [13] to
improve the unicast throughput in wireless mesh networks.
SLNC arises from the observation that in wireless networks,
even if a packet is received erroneously, some small groups of
bits (“symbols”) within that packet are likely to be received
correctly. SLNC gathers these correctly received (i.e., “clean”)
symbols aggressively, and performs network coding on the
granularity of symbols. In contrast to PLNC, SLNC gains from
both symbol-level diversity and network coding. In addition,
since more bit errors are tolerated than PLNC, SLNC can
also gain higher throughput by encouraging more aggressive
concurrent transmissions.
In general, SLNC works as follows. A symbol is defined as

a group of consecutive bits in a packet, which may correspond
to multiple PHY symbols of a modulation scheme. Assume
the source has K packets to send, each of them expressed
as a vector with elements from a Galois field F2q . The jth
symbol �′j in a coded packet at the source is a random linear
combination of the jth symbol in all K source packets:

�
′
j =

K∑
i=1

vi�ji. (1)

where �ji is the jth symbol (at jth position) in the ith
original packet, coefficient vi is randomly chosen from F2q ,
and � = (v1, ..., vK) is the coding vector of the coded
packet, which is also the coding vector for each symbol. Each
receiver node v maintains a decoding matrix for every symbol
position. A newly received coded symbol for position j is
called innovative to v, if that symbol increases the rank of
the decoding matrix of the jth symbol position, referred to as
symbol rank. Only innovative clean symbols are buffered.
Each coded packet transmitted by a relay node consists of

random linear combinations of buffered clean symbols. For a
source, every symbol in a packet is clean and shares the same
coding vector. However, at a relay node, coding vectors may
be different across symbols. For a coded packet to be sent by
relay u, the jth coded symbol is expressed as

�
′′
j =

R∑
i=1

v′i�
′
ji =

R∑
i=1

(v′i
K∑

l=1

vli�jl) =
K∑

l=1

(
R∑

i=1

v′ivli)�jl, (2)

where R is the number of buffered clean symbols at position
j, �′ji is the ith buffered clean symbol (row) at position
j (column), and �i = {v1i, ..., vKi} is the coding vector
for that symbol. �jl is the jth symbol of the lth source
packet. From Eq. (2), �′′j is still a random linear combi-
nation of source symbols, and its new coding vectors are
�
′ = (

∑R
i=1 v′iv1i, ...,

∑R
i=1 v′ivKi).

LI et al.: CODEON: COOPERATIVE POPULAR CONTENT DISTRIBUTION FOR VEHICULAR NETWORKS USING SYMBOL LEVEL NETWORK CODING 227

Fig. 3. The topology for the example in Fig. 4. Left: numbers on the edges
(links) show the symbol error probabilities; right: corresponding packet error
probabilities.

In the extreme case, every symbol’s coding vector is differ-
ent and needs to be sent along with a packet, which incurs high
overhead. To minimize this overhead, optimized run-length
coding method can be adopted [13], where consecutive clean
symbols are combined into a “run”.

B. How VANET content distribution benefits from SLNC

To illustrate how SLNC works and see the potential perfor-
mance gain of SLNC over PLNC, we give a 3-node simple
example for content distribution in VANET (Fig. 3 and Fig. 4).
The corresponding topology is shown in Fig. 3. Assume source
S has two original packets X and Y to broadcast. Assume a
simple scheduling: S broadcasts coded packets until V1 can
decode the original packets, and then V1 broadcasts until V2

decodes all original packets.
Suppose S generates and broadcasts three coded packets

A, B and C, each of them divided into 4 symbols. Let the
symbol error probability from S to V1 be Pse(S, V1) = 1

4 ,
and it happens that each packet received by V1 contains an
erroneous symbol (Fig. 4). Luckily, for each symbol position
at least two clean symbols are received. Since any two coding
vectors among �,�′,�′′ of A, B and C are independent1, V1

can decode X and Y by solving 4 linear equations. When
V1 broadcasts two packets (say, D and E), it generates two
new coded symbols at each position, and packs the 8 coded
symbols into D and E. Each new coded symbol is also a
random linear combination of original symbols. Thus, V2 can
recover all original symbols after collecting 2 innovative coded
symbols at each position, which may come from both S and
V1.
The key insight of SLNC is that, for each symbol position,

every correctly received coded symbol is equally useful for
decoding, or it does not matter which symbol is received.
While for PLNC, the reception granularity is a whole packet.
Since the symbol error rate will be much less than the packet
error rate, it is not hard to imagine SLNC will take less
transmissions to collect the information needed for decoding
the same amount of content.
To confirm the above intuition, we compute the expected

number of packets (E[Z]) transmitted by S for node V1 to
decode using the simple example. After some calculation
(refer to [25]), we obtain

E[Z] =
∞∑

k=0

P (Z > k) =
∞∑

k=0

[1 − P (Z ≤ k)]. (3)

1This happens with high probability when the size of F2q is large.

Fig. 4. Symbol level network coding in VANET content distribution. S:
source node; V1 and V2: downloading vehicles & relays.

TABLE I
FREQUENTLY USED NOTATIONS

Notation Definition
F The file to be distributed
N Data packet size (bytes)
L File length (number of generations)
K Generation size (number of pieces)
J Piece size (bytes)
M Number of symbols in a packet
Gi Generation i
F2q The Galois field used in network coding
U(v) The utility of a node v
N (u) The neighbor set of node u
r̄v,i Average symbol rank of Gi in vehicle v
γ Average received SNR or SINR for a symbol

Plugging in the parameters in the example, we obtain
E[Z] = 3.67. That is, 3.67 coded packets should be sent by
S on average for V1 to decode X and Y .
Next we compare SLNC to using PLNC for the same case.

We compute the expected number of packets E[Z ′] sent by
S for V1 to receive 2 source packets. Assuming independent
packet reception, we obtain that S must transmit 6.26 packets
on average for V1 to decode [25]. Thus, the number of
transmissions (proportional to downloading delay) of V1 has
been reduced by 6.26−3.67

6.26 = 41% due to the use of SLNC.
Similar conclusions can be drawn for node V2. From the
above, the advantage of using SLNC than PLNC is evident
for content distribution in VANET, i.e., it leads to higher
downloading rate and incurs fewer transmissions.

IV. THE DESIGN OF CODEON

We first give the main notations used in this paper in
Table. I.

A. Overview

CodeOn is a push-based cooperative content distribution
protocol, where a large file F is actively distributed from
the APs to the vehicles inside the AoI through the help of
a dynamic set of relay nodes. Each AP is a source for F ,
and F is divided into equal-sized generations (chunks), and
the SLNC is performed within each generation. In Fig. 5,
we illustrate the general process of content distribution in
CodeOn, assuming F has only one generation consisting of 3
pieces.
Each AP/source broadcasts the source file to vehicles in its

range based on vehicles’ reception status, which is not shown

228 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 1, JANUARY 2011

(a) Exchange of neighbor information and utility calculation based on
nodes’ reception status. All nodes’ reception status are depicted. Black
parts in a piece indicate corrupted symbols in a node’s buffer.

(b) Transmission coordination among potential relays, based on both node
priority and carrier sense. Backoff delays are inversely related to nodes’
utilities (nodes A-F have the least delays, but only A, B, D become relays).

Fig. 5. Overview of cooperative content distribution in CodeOn.

in Fig. 5. Outside the ranges of APs, vehicles distribute the
file cooperatively by agreeing on a set of relay nodes. This is
the core to CodeOn, which consists of three steps.
(1) Exchange of neighbor information. This is done in each

control time slot, where every vehicle broadcasts a safety
message that piggybacks a sketch of its content reception
status, which will be used as an implicit content request for
step (2). In this way, zero overhead is incurred in the service
time slots. To limit the impact of piggyback overhead on
control time slots, we will introduce a fuzzy representation
of nodes’ reception status later.
(2) Node utility calculation. This is the first step of dis-

tributed relay selection. In the beginning of each service time
slot, every node computes its own utility based on neighbors’
reception status information collected from step (1). The utility
reflects each node’s priority in relay selection, i.e., the total
amount of useful content that this node can provide to all of its
neighbors. Under such a priority assignment, the usefulness of
each relay’s transmission will be maximized, which enhances
both the downloading rate and protocol efficiency. The utility
of every node is shown in Fig. 5 (a).
(3) Transmission coordination among potential relays. As

the last step of relay selection, we need to determine which
nodes should actually access the channel, based on both node
priority and the channel status. Each node computes a backoff
delay that is inversely related to its utility, and upon the
expiration of the delay it will sense the channel. If it cannot
detect signal energy, it will broadcast coded contents without
delay. Otherwise, it remains silent throughout the time slot.
This process is captured by Fig. 5 (b). Thanks to SLNC’s
better error tolerance, this aggressive way of channel access,
although simple, will be shown to achieve close to maximum
overall downloading rate in the following.

B. Network Coding Method

Symbol level network coding (SLNC) is used throughout
the design of CodeOn. We describe the way that SLNC
actually operates in CodeOn. Assume F with size |F | is
divided into L generations G1, G2, ..., GL, where each gen-
eration contains K pieces. A piece has size J and contains
�J/N� packets. Then, |F | = L ·K · J . In order to reduce the
overhead brought by SLNC, we adopt “piece-division, run-
length SLNC”.
The reasons are two fold. On the one hand, if a generation

is divided into packets (packet-division), in order to keep

Fig. 6. Comparison between the overhead of piece division and packet
division, when both uses run-length SLNC.

small computational overhead we must use relatively small K
(the computation complexity of decoding is usually O(K3)),
thus a large number of generations is required for large F .
This reduces the gain of NC due to the “coupon collector’s
problem” [10], and increases the communication overhead for
exchanging the content availability. On the other hand, using
multi-packet pieces (piece-division), K can be maintained at
a reasonable value by scaling the piece length linearly with
file size. However, the number of symbols in a piece (J·M

N)
increases with the piece length. In the extreme case if every
symbol in a piece has a different coding vector, the communi-
cation overhead is at least J·M·K·q

N bits, which equals to 10KB
if J = 20KB, N = 1KB, K = 32, M = 32, q = 8. This is
clearly unacceptable. Fortunately, run-length coding method
[13] can be used to reduce the communication overhead of
SLNC, in which one coding vector is used for each sequence
of consecutive clean symbols (run). Dynamic programming is
used to choose appropriate combination of runs to minimize
the overhead [13]. Therefore, in CodeOn, we combine run-
length SLNC with the piece division to achieve higher network
coding gain and reduce the communication overhead, which
we call piece-division run-length SLNC. When a coded piece
is transmitted, it is separated into several packets; only the
header of the first packet contains the coding vectors of runs
that composing the piece, while subsequent packets only have
normal small headers. Thus, a piece can be regarded as a “big
packet”.
Compared with PLNC, the gain from symbol-level diversity

can be easily seen from the analysis in Sec. III. Meanwhile,
the overhead of our method is always smaller than run-length
SLNC combined with packet division. Generally, the number
of coding vectors in a piece equals to the number of runs.
However, using packet division a run may be fragmented into
more than one runs, which needs more coding vectors in total.
In the worst case, each symbol is a run and the overheads are

LI et al.: CODEON: COOPERATIVE POPULAR CONTENT DISTRIBUTION FOR VEHICULAR NETWORKS USING SYMBOL LEVEL NETWORK CODING 229

Fig. 7. The average rank representation of a file’s reception status at node
u.

equal. This is illustrated in Fig. 6. In reality, since the symbols
errors are often bursty (due to packet collisions), the number
of runs is usually much smaller compared with the number of
symbols. For example, if there are 20 runs in a 20KB piece
the overhead is about 640B, which is 3.2% of piece size.
In order to balance the gain and overhead of SLNC in

CodeOn, we fix the number of pieces in a generation (K) and
the number of generations (L) (e.g. 32 and 50, respectively).
Although the piece size J scales linearly with the file size,
since SLNC tolerates symbol errors, the size of a piece has
small impact on the protocol performance.

C. Efficient Exchange of Content Reception Status

An important piece of information exchanged in CodeOn
is every node’s content reception status (i.e., how much
content is downloaded for each generation), which is essential
to enabling optimized, distributed transmission decisions. It
could be obtained by sending gossip messages in each service
time slot, but this consumes a large portion of a service time
slot. In CodeOn, we choose to piggyback the reception status
in safety messages, thus adding zero overhead in the service
channel.
However, for SLNC, it will incur large overhead to represent

the exact reception status of each generation. The decoding
matrix can be represented by a single null-space vector [5].
However, the size of the reception status information adds up
to L·J·M·K·q

N bits, whereKq is the maximum size of one null-
space vector. For L = 50, J/N = 20, M = 32, K = 32, q =
8, this amounts to 1MB which is too large.
Therefore, in CodeOn we propose a fuzzy average rank

method to represent the reception status in an efficient way.
An important property of network coding is that the rank
of the decoding matrix determines the amount of received
information. For two nodes u and v with symbol ranks ru,i,j

and rv,i,j for position j in Gi, respectively, if ru,i,j > rv,i,j ,
then a recoded symbol �′j sent from u is innovative to v
with high probability [12]. Otherwise, this does not hold2.
Therefore, we can substitute each null-space vector with a
rank, which has log2K bits. For a generation Gi received by
node u, there are many symbol positions with different rank
values. But since the size of a piece is relatively small (e.g.,
J = 20KB) compared to what can be transmitted in a 50ms
slot using DSRC (55KB when data rate is 11MBps), the ranks
of various symbol positions are expected to increase at similar
rates thus are similar to each other.
Therefore, we use the average rank �r̄i� across all symbol

positions in Gi to represent how much information is received

2The property was original proved under random linear packet level NC,
assuming |F2q | is large. The same applies to SLNC, which is also based on
random linear coding.

for Gi. It is rounded to an integer, because it is more
meaningful to interpret the average rank as how many “pieces”
are received. It does not make much difference when the
variation of r̄i is smaller than 1. The range of the rank is in
[0, K]; if �r̄u,i� < K , this means “some information in Gi is
received”; and �r̄u,i� = K means “Gi is received completely”.
Therefore, the total overhead becomes L · (log2K) bits, which
equals 31B when L = 50, K = 32. Note that, this is
independent of the piece size and also the file size. Now,
the overhead takes an acceptable percentage (≈ 10%) of
the typical size of a safety message (300B) and is small
enough to be piggybacked without affecting the QoS of safety
applications [26]. The average rank representation is illustrated
in Fig. 7.

D. Distributed Relay Selection in Cooperative PCD

Once vehicles are out of the range of an AP, they begin
distributing the content cooperatively through the VANET.
Due to the mobile nature of the VANET, the very notion of
“cooperative” is captured in that vehicles distributively agree
on a set of relay nodes, based only on local information.
1) Node utility calculation: In order to determine a set of

relay nodes that can bring the largest useful amount of content
to the others, each node needs to calculate its own “utility”
based on neighbors’ content reception status collected from
the safety messages in the control channel. The utility of a
generation at node u is defined as:

U(Gi, u) =
∑

v∈N (u)

Step(�r̄u,i� − �r̄v,i�), (4)

where Step(x) = x, if x > 0, otherwise, Step(x) = 0. This
quantity measures how much innovative information Gi of
node u can provide to its neighbors in total.
The utility U(v) of node v is defined as the maximum

value among all generations’ utilities of v. This estimates the
maximum additional amount of innovative information v can
provide to all neighbors, and reflects v’s priority in accessing
the wireless medium. We do not look at the aggregate utility
of multiple generations, because to transmit many generations
takes a long time while the VANET topology could change
dramatically.
2) Transmission coordination: After nodes’ priorities are

determined, only a subset of the high-priority nodes (relays)
will become the ones who actually broadcast their contents,
in order to achieve high downloading rate and prevent from
severe interference. Those relays are decided via a contention
process, in a local and opportunistic way. In particular, the
vehicles with the highest priorities in their locality should
access the channel first, and suppress the others to avoid
unnecessary packet collisions.
To this end, at the beginning of each service time slot,

each vehicle v sets a backoff delay Δt which is inversely
proportional to its utility before it makes channel access
decision. When the timer expires, v senses the channel; if
it is clear v will broadcast a short control message which is
sent immediately by the MAC layer, even without additional
random backoff in 802.11. Note that, an AP always has the
highest utility, so it will be a relay every time if there are
vehicles still in need of the file in its local range.

230 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 1, JANUARY 2011

Backoff delay function. A straightforward one is as fol-
lows:

Δt(v) =
(
1 − U(v)

K · |N (v)|
)
· Δtmax, (5)

where parameter Δtmax is the maximum allowable backoff
delay (e.g., 2ms). However, Eq. (5) suffers from a major
problem. That is, each node v has different neighborhood
and N (v). If v merely has one neighbor but its generation
utility for Gi is K , it will have the highest priority and
Δt(v) = 0. However, compared with another node w who has
10 neighbors and utility 5K , v is obviously not as beneficial
to the whole network as w. Ideally, the |N (v)| should be a
maximum possible neighborhood size (|N |max) and be the
same for all vehicles, so that they have a common basis of
priority comparison. However, setting it to be a fixed value is
undesirable since the vehicle density will change.
Therefore, we estimate the maximum local neighborhood

size. To do so, each node broadcasts its neighborhood size to
others, and propagates its own estimation about the maximum
neighborhood size. After several rounds, all nodes can obtain
the same |N |max. Although the VANET topology may change
every tens of time slots so that |N |max varies over that time,
we actually need not to maintain the same |N |max for all
nodes in the network. Rather, it is sufficient for vehicles in
a local 1-hop range to agree on the same estimated ̂|N |max,
while the local propagation requires only very few rounds to
converge. To achieve this, each vehicle will attach its local
estimate of ̂|N |max in the safety message, and update it in a
way similar to distance updates in distance vector routing.
In addition, to resolve ties, a random jitter is added to the

backoff delay of each vehicle. Thus, in CodeOn, each vehicle
sets its backoff delay according to the following:

Δt(v) =
(
1 − U(v)

K · ̂|N |max

)
· Δtmax + Rand(0, TJ). (6)

where TJ is the maximum jitter.
Discussion of parameter selection. First, Δtmax must be

large enough to distinguish two vehicles with adjacent utility
rankings. For a common neighbor vc of two vehicles v1 and
v2, the minimum difference between U(v1) and U(v2) is
1. Therefore, the minimum difference between v1 and v2’s
backoff delays is min{|Δt(v1)−Δt(v2)|} = 1

K ̂|N |max

·Δtmax,

which should be larger than the signal propagation delay.
When their distance d(v1, v2) = 300m the propagation delay
is 300

3×108 = 1µs. Therefore, we can choose Δtmax > 2ms,

i.e., when ̂|N |max = 50, K = 32, min{|Δt(v1)−Δt(v2)|} >
1.2µs. On the other hand, Δtmax shall not be too large since
it will waste bandwidth. For Δtmax = 2ms, if transmission
of one generation spans 10 service time slots (500ms), the
percentage of wasted time can be as low as 2/500 = 0.4%.
Second, TJ should be both large enough to distinguish

two contending nodes v1 and v2 with the same utility, and
small enough to preserve the priorities between nodes with
different utilities. Assume all the contending nodes have the
same neighbor set. Since node utility is an integer, for node
v1, the utility of the node v3 with priority next to v1 is at
most U(v1) − |N (v1)| (since �r̄(v3, i)� = �r̄(v1, j)� − 1
for some Gi, Gj and every neighbor is counted once). Thus,

the utility difference is at least |N (v1)|. Therefore, we have
TJ ≈ Δtmax

K (e.g. 0.1ms). Note that, we do not consider
U(v1) − U(v3) � |N (v1)| since this is rare in reality, i.e.,
contending nodes always share a large portion of neighbors.
3) The merit of carrier sense under SLNC: We have

used carrier sense in the contention process for transmission
opportunities by potential relay nodes. That is, a node quits the
contention for channel access whenever it detects the energy
of an ongoing transmission, otherwise it is allowed to transmit
concurrently with others. Traditionally for packet-level broad-
cast (with/without NC), this leads to the well-known “hidden
terminal” problem, since such concurrent transmissions may
cause interference at their neighbors3. Various mechanisms
have been proposed to solve this problem, such as clearing the
channel within a range larger than carrier sensing range [4].
However, due to SLNC’s better tolerance in transmission er-
rors and interference, more aggressive concurrent transmission
is possible. In [25], we show that the simple carrier sensing
rule actually provides near-optimal performance in terms of
average downloading rate, as the impact of hidden terminals
is greatly alleviated by SLNC. Due to lack of space, the results
are not presented in this paper.

E. Broadcast Content Scheduling

Finally, we briefly highlight the way that broadcast content
scheduling is dealt with in CodeOn.
1) Content scheduling at APs: In CodeOn, the APs broad-

cast the contents in a round-robin way to maintain the “in-
formation difference” between vehicles moving out of the AP
range at different times. In order to make more efficient use of
the VANET bandwidth, the content scheduling should also be
aware of local vehicles’ reception status. Therefore an AP will
sort its file generations according to their utilities; in addition
to round-robin, it transmits the one with both larger ID and the
highest utility that hasn’t been transmitted in the last “batch”.
2) Content scheduling at vehicles: After a vehicle becomes

a relay node, it broadcasts the generation with the maximum
utility. To avoid from transmitting duplicate information, it is
important for vehicles to decide when to stop the transmission.
To this end, we estimate the number of pieces that each relay

should send in one batch. The intended number of (innovative)
pieces that v sends to a neighbor w for Gi is estimated as
Kv,w = Step(�r̄v,i� − �r̄w,i�). Then, the number of pieces
that v should send to all neighbors for Gi is computed as

Zv(Gi) = � 1
|N (v)|

∑
w∈N (v)

Kv,w�, (7)

which is also the size of a batch. When the average rank r̄v,i

and those of all of its neighbors are equal to K (full rank),
we set Zv(Gi) = 0. Note that, the above is a conservative
estimation, which treats the link qualities as perfect.
In addition, we need to deal with two situations. (1) If a

batch spans multiple service time slots, relay v accesses the
channel deterministically by setting its Δt(v) = 0 during the
following time slots in order to finish transmitting its batch.

3With packet-level broadcast, carrier sense is shown to work well under a
two transmitter setting in [27]. Here we focus on a multi-transmitter setting
instead, using SLNC.

LI et al.: CODEON: COOPERATIVE POPULAR CONTENT DISTRIBUTION FOR VEHICULAR NETWORKS USING SYMBOL LEVEL NETWORK CODING 231

Fig. 8. (a) Highway scenario. (b) Urban scenario.

(2) If the transmission of a batch terminates before the end of
some service time slot k, to avoid waste of VANET bandwidth,
v will fill the rest of the channel by transmitting additional
coded pieces from the same Gi until time slot k is used up.

V. PERFORMANCE EVALUATION

A. Methodology

In this section, we evaluate the performance of CodeOn by
simulations. We compare CodeOn with an enhanced version of
CodeTorrent [10], which is pull-based and uses PLNC. The AP
is treated as a normal node. Each node periodically broadcasts
a gossip message to tell others about its content availability.
Based on this, a node v periodically broadcasts a downloading
request, asking for the index of the rarest generationGi among
its neighbors, and attaches a null-space vector of Gi computed
from v’s corresponding decoding matrix. Each neighbor w,
upon receiving the request, checks if it has Gi. If yes, and if
the null-space vector is not orthogonal to the subspace spanned
by w’s coding vectors of Gi, w responds v with one coded
piece from Gi via unicast, after waiting for a random backoff
delay to reduce collisions. Only the first packet in a piece
contains the coding vector; if that packet is lost then the whole
piece is lost. Upon successful reception of a piece, node v
continues sending another downloading request. Otherwise, v
waits till the next period to broadcast its request. Nodes other
than v exploit opportunistic overhearing, i.e., buffer a piece
sent to v if that piece is useful and received correctly.
We made the following additional modifications to

CodeTorrent. We equip it with multi-channel capability as
in CodeOn. To ensure a fair comparison, we apply the same
channel switching mechanism in CodeTorrent, which results
in a 1/2 reduction in the downloading rate. Also, in order to
increase the success probability of overhearing, each node is
allowed to overhear multiple different pieces during the same
period, and there are no reserved time for receiving one piece.
Moreover, the packets in a piece do not have to arrive in order;
a node flushes an incomplete piece after a certain time from
its first reception, say 0.5s.
In addition, we introduce a variation of CodeOn, CodeOn-

Basic, which is also push-based, piece-division but based on
PLNC. A piece is used as a whole for encoding and decoding.
A node buffers any overheard piece as long as it receives
the coding vector in the first packet of that piece, and the
same buffer flushing mechanism as in CodeTorrent is adopted.

TABLE II
SIMULATION PARAMETER SETTINGS

CodeOn/CodeOnBasic CodeTorrent
Δtmax 2ms Maximum random backoff delay 5ms
TJ 100μs Gossip interval 0.5s

Periodic Request interval 0.5s
Unicast retry limit 7

Common parameters
|F | 16MB
L 50
K 32
M 16
q 8

J/N 10 (J = 10KB)
CR, ER 250m, 700m

Data rate/base rate 12Mbps (16QAM)/3Mbps (BPSK)
SNR thresholds 15dB, 4dB

Data capture threshold 20dB
Data/safety message sizes 1KB, 256B (without header)

Propagation model Nakagami m = 3

Moreover, in content scheduling a relay node pads a service
slot with whole pieces. If the remaining service slot time is
not enough for sending a whole piece, it terminates the current
batch, rather than filling with individual packets. Other than
that, CodeOnBasic is the same with CodeOn.
We implemented CodeOn, CodeOnBasic and CodeTorrent

in NS-2.34 [28]. For CodeOn, we implemented the run-length
coding with dynamic programming algorithm to minimize the
communication overhead in sending each coded piece [13].
We simulate independent symbol errors in a packet, and in
simulation the number of runs seldom exceeds 20 for 10KB
pieces. Packet capture effect is enabled; and when two packets
collide, if no packet can be captured, the symbols from the
point of collision are all discarded. Otherwise, the captured
packet is received as usual. We do not consider vehicular
buffer constraints.
We have a few notes on broadcast data rate selection. First,

the safety message’s communication range shall be larger than
that of PCD data packets, so that the neighbor set used in
relay selection can cover the set of nodes that can receive
a data packet. Otherwise, the utility cannot truthfully reflect
a node’s total content usefulness. Considering the reliability
of safety messages, we chose the base rate (3Mbps) for
broadcasting safety messages. Second, we want to achieve
high downloading rate for PCD. For SLNC, choosing a higher
data rate is beneficial because it has better error-tolerance.
Since a too high rate is also undesirable due to very small
communication range, the data rate of PCD packets is set to
be 12Mbps throughout the paper. The determining of optimal
data rates is out of the scope of this paper.

B. Simulation Settings

We consider both highway and urban scenarios (Fig. 8). We
use a VANET mobility generator [29] to generate the move-
ment patterns. Vehicles are placed uniformly at random in the
road area; when a vehicle hits the boundary it randomly selects
another entry point of the map. This removes the boundary
effect; equivalently, the AoI is infinitely large. Table. II is a
list of parameters.
The highway scenario consists of a bi-direction, four lane

highway with length 6km. Vehicles’ speeds are randomly

232 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 1, JANUARY 2011

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1
Average downloading progress

Time(s)

A
ve

ra
ge

 d
ow

nl
oa

de
d

pe
rc

en
ta

ge

codeOn−Highway−Sparse
codeOnBasic−Highway−Sparse
codeTorrent−Highway−Sparse

(a) Sparse highway.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1
Average downloading progress

Time(s)

A
ve

ra
ge

 d
ow

nl
oa

de
d

pe
rc

en
ta

ge

codeOn−Highway−Dense
codeOnBasic−Highway−Dense
codeTorrent−Highway−Dense

(b) Dense highway.

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1
Average downloading progress

Time(s)

A
ve

ra
ge

 d
ow

nl
oa

de
d

pe
rc

en
ta

ge

codeOn−Urban−Sparse
codeOnBasic−Urban−Sparse
codeTorrent−Urban−Sparse

(c) Sparse urban.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1
Average downloading progress

Time(s)

A
ve

ra
ge

 d
ow

nl
oa

de
d

pe
rc

en
ta

ge

codeOn−Urban−Dense
codeOnBasic−Urban−Dense
codeTorrent−Urban−Dense

(d) Dense urban.

Fig. 9. Downloading progresses.

drawn from [20, 30]m/s with a maximum acceleration of
0.5m/s2. The urban scenario is 4km×4km as shown in Fig. 8.
In order to evaluate the impact of topology and traffic density,
we simulate sparse and dense traffic for both scenarios. The
sparse settings simulate delay-tolerant network (DTN), where
the total number of vehicles is 100 for highway and 160 for
urban. The dense highway setting has 300 vehicles while the
dense urban has 400 vehicles.

C. Results

1) Downloading performance: We evaluate the download-
ing performance from three aspects: (1) downloading progress,
which is the change of average downloaded percentage of
the file with the elapsed time (averaged upon each vehicle);
(2) average downloading delay: the average elapsed time
from downloading start to 100% completion; (3) average
downloading rate, where the downloading rate for each vehicle
is the file size divided by its downloading delay.
We present the downloading progresses in Fig. 9 for all four

scenarios. It can be seen that CodeOn significantly outper-
forms both CodeOnBasic and CodeTorrent. The downloading
progress of CodeOn is the fastest (Figs. 9 (a)–(d)), especially
when the average downloaded file percentage is below 90%.
The comparison between CodeOnBasic over CodeTorrent
demonstrates the effectiveness of our new set of push-based
protocol design, while the comparison between CodeOn and
CodeOnBasic shows the advantage of the use of SLNC, which
we will discuss later.
Next, we evaluate the average downloading delays and rates

in Fig. 10. Some of the average delays are not shown since
their downloading progresses cannot reach 100% within the
given simulation period. There are two key observations. First,
the average downloading rates of CodeOn are much higher
than both CodeOnBasic and CodeTorrent, for both highway
and urban scenarios and both sparse and dense traffic. Second,
CodeOn maintains high downloading rate in all cases shown,
especially for the two extremes, i.e., sparse urban scenario and
dense highway cases which represent the lowest and highest
traffic density, respectively. This means CodeOn is the most
robust to variations in topology and vehicle density.
The first phenomenon above is attributed to the push-based

protocol design combined with SLNC. In CodeOn, using a
prioritized relay selection mechanism with the transmission
coordination that avoids heavy packet collisions, the contents
can be distributed proactively to the vehicles in the AoI so
that the VANET bandwidth is fully utilized. Moreover, each
piece of transmitted content brings the maximum usefulness
to a relay’s whole neighborhood. In addition, with SLNC, the
symbols in content pieces are received with higher rate from
APs and relays, which results in higher downloading rate.
The robustness of CodeOn under low traffic density is

mainly attributed to the enhanced reception reliability brought
by SLNC. Compared with PLNC, SLNC actually enables
vehicles in a larger range to receive some useful information
in a piece. In the sparse urban setting, although the vehicular
contact opportunities are much less, CodeOn is able to mitigate
the impact of low traffic density.
On the other hand, CodeOn is less affected under dense

VANET. For the dense scenarios, the differences between
CodeOn’s downloading rates and those of CodeOnBasic and
CodeTorrent are both larger than the sparse scenarios (Fig. 10
(b)). For CodeTorrent, the performance degradation is due to
lack of coordination and using of PLNC for a large file. (1)
Under dense VANET, the number of requesting vehicles in a
node’s neighborhood increases. Since there may be more than
one responder for each requester, the chance of packet colli-
sions also increases. The unicast-with-overhearing mechanism

LI et al.: CODEON: COOPERATIVE POPULAR CONTENT DISTRIBUTION FOR VEHICULAR NETWORKS USING SYMBOL LEVEL NETWORK CODING 233

1 2 3 4
0

500

1000

1500

2000

2500
Average downloading delay

Sparse hw. Dense hw. Sparse urban Dense urban

A
ve

ra
ge

 d
ow

nl
oa

di
ng

 d
el

ay
(s

)

codeOn
codeOnBasic
codeTorrent

149

424

2011

173

1349

259

844

740

(a) Average downloading delay.

1 2 3 4
0

100

200

300

400

500

600

700

800

900
Average downloading rate

Sparse hw. Dense hw. Sparse urban Dense urban

A
ve

ra
ge

 d
ow

nl
oa

di
ng

 r
at

e(
kb

ps
)

codeOn
codeOnBasic
codeTorrent

873

304

66

659

64

6

379

115

26

132

(b) Average downloading rate.

Fig. 10. Downloading delays and rates.

retransmits packets after they are collided, which aggravates
the problem. (2) For both CodeTorrent and CodeOnBasic, the
use of PLNC prevents a requester from receiving a whole piece
under frequent packet collisions. However, through prioritized
relay selection and the use of SLNC, CodeOn alleviates the
above problems dramatically.
2) Fairness: The fairness is embodied in the distribution

of downloading delays of all vehicles, shown in Fig. 11.
We show the distributions for all three cases. The most fair
situation has zero variance, i.e, all the delays are equal. From
Figs. 11 (a)-(c), one can see that the distributions of CodeOn
are more concentrated (more fair) than those of CodeOnBasic
and CodeTorrent. Few vehicles need very long time to receive
the whole file. Again, the same robustness of CodeOn to
variations in traffic density can be observed.
The superiority of CodeOn in fairness is still attributed to

the use of SLNC. SLNC enables more reliable reception of
the coded symbols, since an overhearing node will buffer any
innovative clean symbol it received. In CodeOn, since the
granularity of information reception is smaller, and vehicles
have similar opportunities to contact with APs and other
vehicles within a time period of order 1000s, their reception
progresses have small variance. However in CodeOnBasic and
CodeTorrent, a vehicle either receives a whole piece or receive
nothing, so the variance among reception progresses is larger.
Again, the results on fairness demonstrate the benefit of using
SLNC and the effectiveness of CodeOn’s protocol design.
3) Protocol efficiency: One may wonder if CodeOn

achieves fast push-based downloading by sacrificing protocol
efficiency. To further investigate this issue, we present the
results on protocol efficiency in Table. III.
As we have shown in Sec. IV-C, the protocol overhead of

CodeOn is small. To evaluate the amount of incurred data
traffic, we show the average number of pieces sent by a
vehicle and an AP during the whole simulation time (a node
will not transmit when all of its neighbors receive 100% of
the file). CodeOn has the fewest number among the three
protocols. Its high protocol efficiency comes from both the
high symbol reception probability due to SLNC, and the high

usefulness of the transmitted symbols due to relay selection.
As CodeOnBasic adopts the same relay selection mechanism,
it enjoys similar high protocol efficiency to CodeOn. However,
CodeTorrent sends many pieces due to a large number of failed
overhears explained in the following. Note that, the APs are
always the most advantageous nodes so they transmit a lot in
all three protocols.
To further study the role of relay selection, we compute the

percentage of total number of non-innovative pieces out of the
total number of received pieces, which reflects the usefulness
of the received content. Also, we calculate the average number
of failed overheard pieces (in which the coding vectors are
received but not all the subsequent packets) per received
piece. For the former, CodeOnBasic is slightly higher than
CodeTorrent; but for the latter, CodeOnBasic is much lower
than CodeTorrent. This is because in CodeTorrent a responder
uses the requester’s null-space vector to decide whether to
transmit a coded piece, which is definitely innovative to the
requester. However, in CodeTorrent a responder’s transmission
mainly benefits the requester itself but few others due to unco-
ordinated transmissions. On the other hand, in CodeOnBasic
the selected relays can benefit their whole neighborhood, while
the broadcasted contents are still highly useful. As a result,
both the downloading rate and efficiency are high.

4) Discussion: Finally, we give some insights that can be
obtained from our results.
Push v.s. pull. First we compare the push versus pull

based content distribution in VANETs. CodeOnBasic and
CodeTorrent are both based on PLNC, but the former performs
much better than the latter for all scenarios in Figs. 9 and
10. An obvious reason is the difference on the bandwidth
utilization. CodeOnBasic let the APs and relays broadcast
proactively (push), so that the service time slots are almost
fully utilized. However, in CodeTorrent each node make
requests (pull) periodically and responders transmit passively.
Whenever received a piece in error, a requester will wait until
the next period to make subsequent requests. Due to the lossy
property of the wireless channel in VANETs, this happens
frequently so that the service channel is under-utilized.

234 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 1, JANUARY 2011

TABLE III
PROTOCOL EFFICIENCY (TOTAL NUMBER OF PIECES IN THE FILE: 1600).

Protocols Percentage of non- Average # of failed overheard Average # of pieces Average # of pieces
innovative received pieces pieces per received piece sent by a vehicle sent by an AP

Sparse highway scenario
CodeOn N/A N/A 2202.12 26023.00
CodeOnBasic 0.476 4.26 4054.87 51578.00
CodeTorrent 0.325 27.27 32889.87 53665.00

Sparse urban scenario
CodeOn N/A N/A 1031.14 43445.25
CodeOnBasic 0.228 3.47 3525.31 143905.00
CodeTorrent 0.167 80.74 52465.69 222287.50

However, a more fundamental reason that the push method
in CodeOn and CodeOnBasic is better, goes to the relay se-
lection mechanism. If there was no transmission coordination
between vehicles, the push-based content distribution could
easily lead to frequent packet collisions. For CodeTorrent
which is pull-based, its high chance of packet collisions is
already evident from the large number of failed overheard
pieces of CodeTorrent in Table III. One can imagine that this
situation will be aggravated if CodeTorrent is changed to push-
based where nodes transmit more aggressively.
Apart from transmission coordination, in designing a push-

based protocol, it is always critical to maximize the usefulness
of the broadcasted content from each relay nodes. Since
nodes do not make explicit downloading requests, and since
“push” uses broadcast transmission in nature, it is basically
impossible to ensure the usefulness of broadcast content of
a relay for all its neighbors. In CodeOn and CodeOnBasic,
our approach is to select a relay to be the one that can bring
maximum amount of useful contents to all its neighbors, by
implicitly calculating node utilities based on fuzzy average
rank differences. In contrast, in CodeTorrent each responder
will only ensure the content to be 100% innovative for one
requestor, using accurate null-space indicators. Interestingly,
as one can see from the number of non-innovative pieces in
Table III, the number of CodeOnBasic is quite close to that of
CodeTorrent, which can be regarded as a lower-bound. This
proves the effectiveness of our relay selection approach.
SLNC v.s. PLNC. The advantage of using SLNC is evident

by comparing CodeOn with CodeOnBasic in Fig. 9, which
are only different in the network coding method. With PLNC,
in CodeOnBasic a coded packet is discarded whenever it is
received in error, which leads to unsuccessful reception of the
whole piece. However, with SLNC, CodeOn records every
innovative received symbol in a piece, and then combines
innovative symbols to decode the piece.
As previously mentioned, SLNC is superior in tolerating

transmission error. This is a direct reason of why CodeOn
has the best robustness under dense traffic scenarios. By
both coding and receiving according to a small granularity
of symbols (yielding higher content diversity), vehicles have
higher chances of receiving some useful information, even
when packet collisions are frequent due to dense traffic, or
when there are few vehicles or APs around. However, with
PLNC, the content diversity is lower. Although our push-based
protocol design is able to choose the best relay nodes and
alleviate collision, without SLNC, small downloading delays
and a high level of fairness are very hard to achieve for all
topologies and traffic densities.

VI. CONCLUDING REMARKS

In this paper, we have presented CodeOn, a novel push-
based popular content distribution scheme for vehicular net-
works, where large files are broadcasted proactively from a
few APs to vehicles inside an interested area. CodeOn is
designed to primarily achieve high downloading rate and high
protocol efficiency. To combat the lossy wireless transmis-
sions in VANETs, we leverage symbol level network coding
(SLNC), which enjoys the benefits of both network coding
and symbol-level diversity. The use of SLNC contributes as
a key factor for the superior and robust performance of PCD
across VANETs with different traffic densities and topologies.
In addition, to allow “push” efficiently with maximized in-
formation usefulness, and to avoid from incurring frequent
packet collisions, we designed a prioritized relay selection
algorithm along with a lightweight transmission coordination
mechanism, which are shown to improve greatly upon a
previous pull-based protocol, CodeTorrent. Compared with
CodeTorrent, CodeOn achieves a significant gain in terms
of average downloading rate, where one important part of it
comes from the use of SLNC, and the other is attributed to
the new push-based protocol design. Our work demonstrates
the strong potential to achieve fast PCD in realistic vehicular
networks.

ACKNOWLEDGEMENTS

This work was supported in part by the US National Science
Foundation under grants CNS-0746977, CNS-0716306, and
CNS-0831628. We thank Uichin Lee for providing codes of
network coding in CodeTorrent and his useful discussions.
We also thank the anonymous reviewers for their helpful
comments.

REFERENCES

[1] “Dedicated Short Range Communications.” [Online]. Available: http:
//www.standards.its.dot.gov/Documents/advisories/dsrc advisory.htm

[2] D. Jiang, V. Taliwal, A. Meier, W. Holfelder, and R. Herrtwich, “Design
of 5.9 ghz dsrc-based vehicular safety communication,” IEEE Wireless
Commun., vol. 13, no. 5, pp. 36–43, October 2006.

[3] “Ieee trial-use standard for wireless access in vehicular environments
(wave) - multi-channel operation,” IEEE Std 1609.4-2006, pp. c1–74,
2006.

[4] M. Li, K. Zeng, and W. Lou, “Oppcast: Opportunistic broadcast of
warning messages in vanets with unreliable links,” in IEEE MASS ’09,
Oct. 2009.

[5] U. Lee, J.-S. Park, J. Yeh, G. Pau, and M. Gerla, “Code torrent: content
distribution using network coding in vanet,” in MobiShare ’06, 2006,
pp. 1–5.

[6] A. Nandan, S. Das, G. Pau, M. Gerla, and M. Y. Sanadidi, “Co-operative
downloading in vehicular ad-hoc wireless networks,” in WONS ’05,
2005, pp. 32–41.

LI et al.: CODEON: COOPERATIVE POPULAR CONTENT DISTRIBUTION FOR VEHICULAR NETWORKS USING SYMBOL LEVEL NETWORK CODING 235

0 500 1000 1500 2000 2500 3000 3500
0

5

10

15
Histogram of downloading delay

codeOn

0 500 1000 1500 2000 2500 3000 3500
0

5

10

15

N
um

be
r

of
 c

om
pl

et
ed

 v
eh

ic
le

s

codeOnBasic

0 500 1000 1500 2000 2500 3000 3500
0

5

10

Time(s)

codeTorrent

(a) Sparse highway.

0 500 1000 1500 2000 2500 3000 3500
0

10

20

30
Histogram of downloading delay

codeOn

0 500 1000 1500 2000 2500 3000 3500
0

2

4

6

8

Time(s)

N
um

be
r

of
 c

om
pl

et
ed

 v
eh

ic
le

s

codeOnBasic

(b) Dense highway.

0 500 1000 1500 2000 2500
0

5

10

15

20
Histogram of downloading delay

codeOn

0 500 1000 1500 2000 2500
0

2

4

6

8

10

Time(s)

N
um

be
r

of
 c

om
pl

et
ed

 v
eh

ic
le

s

codeOnBasic

(c) Sparse urban.

Fig. 11. The distributions of downloading delays.

[7] M. Fiore and J. M. Barcelo-Ordinas, “Cooperative download in urban
vehicular networks,” in IEEE MASS ’09, Oct. 2009.

[8] J.-S. Park, U. Lee, S. Y. Oh, M. Gerla, and D. S. Lun, “Emergency
related video streaming in vanet using network coding,” in ACM VANET
’06, 2006, pp. 102–103.

[9] S. Ahmed and S. S. Kanhere, “Vanetcode: network coding to enhance
cooperative downloading in vehicular ad-hoc networks,” in IWCMC ’06,
2006, pp. 527–532.

[10] S.-H. Lee, U. Lee, K.-W. Lee, and M. Gerla, “Content distribution in
vanets using network coding: The effect of disk i/o and processing o/h,”
in IEEE SECON ’08, June 2008, pp. 117–125.

[11] M. Johnson, L. D. Nardis, and K. Ramchandran, “Collaborative content
distribution for vehicular ad hoc networks,” in Proc. 44th Allerton
Conference on Communication, Control, and Computing, 2006.

[12] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information
flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul 2000.

[13] S. Katti, D. Katabi, H. Balakrishnan, and M. Medard, “Symbol-level
network coding for wireless mesh networks,” ACM SIGCOMM Comput.
Commun. Rev., vol. 38, no. 4, pp. 401–412, 2008.

[14] T. Mak, K. Laberteaux, R. Sengupta, and M. Ergen, “Multichannel
medium access control for dedicated short-range communications,”
IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 349–366, Jan. 2009.

[15] A. Nandan, S. Tewari, S. Das, M. Gerla, and L. Kleinrock, “AdTorrent:
Delivering Location Cognizant Advertisements to Car Networks,” in
WONS ’06, 2006, pp. 203–212.

[16] T. Ho, M. Medard, R. Koetter, D. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[17] K. Ramachandran, M. Gruteser, R. Onishi, and T. Hikita, “Experimental
analysis of broadcast reliability in dense vehicular networks,” IEEE Veh.
Technol. Mag., vol. 2, no. 4, pp. 26–32, Dec. 2007.

[18] M. Torrent-Moreno, F. Schmidt-Eisenlohr, H. Fussler, and H. Harten-
stein, “Effects of a realistic channel model on packet forwarding in
vehicular ad hoc networks,” in IEEE WCNC, 2006, pp. 385–391.

[19] V. Taliwal, D. Jiang, H. Mangold, C. Chen, and R. Sengupta, “Empir-
ical determination of channel characteristics for dsrc vehicle-to-vehicle
communication,” in ACM VANET ’04. ACM, 2004.

[20] J. Zhang, Q. Zhang, and W. Jia, “Vc-mac: A cooperative mac protocol
in vehicular networks,” IEEE Transactions on Vehicular Technology,
vol. 58, no. 3, pp. 1561–1571, March 2009.

[21] J. Zhao, Y. Zhang, and G. Cao, “Data pouring and buffering on the road:
A new data dissemination paradigm for vehicular ad hoc networks,”
IEEE Trans. Veh. Technol., vol. 56, no. 6, pp. 3266 –3277, Nov. 2007.

[22] J. Zhao, T. Arnold, Y. Zhang, and G. Cao, “Extending drive-thru data
access by vehicle-to-vehicle relay,” in ACM VANET ’08, 2008, pp. 66–
75.

[23] Z. Yang, M. Li, and W. Lou, “R-code: network coding based reliable
broadcast in wireless mesh networks with unreliable links,” in IEEE
GLOBECOM’09, 2009, pp. 2168–2173.

[24] Y. Zhang, J. Zhao, and G. Cao, “Roadcast: A popularity aware content
sharing scheme in vanets,” IEEE ICDCS ’09, pp. 223–230, 2009.

[25] M. Li, Z. Yang, and W. Lou, “Codeon: Cooperative popular content
distribution for vehicular networks using symbol level network coding,”
Technical Report, 2010.

[26] Q. Xu, T. Mak, J. Ko, and R. Sengupta, “Vehicle-to-vehicle safety
messaging in dsrc,” in ACM VANET ’04, 2004, pp. 19–28.

[27] M. Z. Brodsky and R. T. Morris, “In defense of wireless carrier sense,”
in ACM SIGCOMM ’09, 2009, pp. 147–158.

[28] “Ns2,” http://www.isi.edu/nsnam/ns.
[29] “The usc mobility generator tool.” [Online]. Available: http://nile.cise.

ufl.edu/important/software.htm

Ming Li (S’08) received his B.E and M.E degrees in Electronic and
Information Engineering both from Beihang University, China, in 2005 and
2008, respectively. He is currently a Ph.D. student in the Electrical and
Computer Engineering department at Worcester Polytechnic Institute. His
current research interests include: wireless ad hoc and sensor networks, with
emphases on protocol design and network security; and security & privacy in
E-healthcare systems.

Zhenyu Yang (S’08) received his B.E and M.E degrees in Computer Science
both from Xi’an Jiaotong University, China, in 2004 and 2007, respectively.
He is currently a Ph.D. student in the Electrical and Computer Engineering
department at Worcester Polytechnic Institute. His current research interests
are in the area of wireless networks and network security, with emphases on
network coding and protocol design.

Wenjing Lou (S’01 - M’03 - SM’08) earned a BE and an ME in Computer
Science and Engineering at Xi’an Jiaotong University in China, an MASc
in Computer Communications at the Nanyang Technological University
in Singapore, and a PhD in Electrical and Computer Engineering at the
University of Florida. She joined the Electrical and Computer Engineering
department at Worcester Polytechnic Institute as an assistant professor in
2003, where she is now an associate professor. Her current research interests
are in the areas of ad hoc, sensor, and mesh networks, with emphases on
network security and routing issues. She was a recipient of the U.S. National
Science Foundation Faculty Early Career Development (CAREER) award in
2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

