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Abstract—Lacking trusted central authority, distributed sys-
tems have received serious security threats from Sybil attack,
where an adversary forges identities of more than one node
and attempts to control the system. By utilizing the real-world
trust relationships between users, social network-based defense
schemes have been proposed to mitigate the impact of Sybil
attacks. These solutions are mostly built on the assumption that
the social network graph can be partitioned into two loosely
linked regions – a tightly connected non-Sybil region and a Sybil
region. Although such an assumption may hold in certain settings,
studies have shown that the real-world social connections tend to
divide users into multiple inter-connected small worlds instead
of a single uniformly connected large region. Given this fact, the
applicability of existing schemes would be greatly undermined
for inability to distinguish Sybil users from valid ones in the
small non-Sybil regions.

This paper addresses this problem and presents SybilShield,
the first protocol that defends against Sybil attack utilizing multi-
community social network structure in real world. Our scheme
leverages the sociological property that the number of cutting
edges between a non-Sybil community and a Sybil community,
which represent human-established trust relationships, is much
smaller than that among non-Sybil communities. With the help
of agent nodes, SybilShield greatly reduces false positive rate
of non-Sybils among multiple communities, while effectively
identifying Sybil nodes. Analytical results prove the superiority
of SybilShield. Our experiments on a real-world social network
graph with 100,000 nodes also validate the effectiveness of
SybilShield.

I. INTRODUCTION

Sybil attack [1] is a well-know attack in distributed systems,
where a malicious user creates as many bogus identities (or
Sybil nodes) as it wants, masquerades as different entities, and
then launches attacks through these fake identities, making
itself untraceable. With Sybil nodes compromising a large
fraction of remaining nodes in the system, the adversary is able
to take control of the system. Examples of Sybil attack have
been observed in real world, including collusion behaviors
in the Maze incentive-based peer-to-peer file-sharing network
[2], manipulating polls by voting repeatedly with multiple
identities [3], [4], promoting the rank of content or pages on
YouTube [5] and Google [6], and others.

Existing solutions to Sybil attack can be generally cate-
gorized into centralized defenses and decentralized defenses.
With a trusted authority, centralized defense system certifies

identities by unique credentials issued to them. While previous
work [1], [3], [7]–[9] has shown that it is costly and unrealistic
to deploy centralized solutions in distributed systems, re-
searchers turn to exploring the more challenging decentralized
defense approaches. However, there is still no universally
applicable distributed solution that completely eliminates the
threats of Sybil attack. All of the current schemes focus on
reducing the negative impacts of Sybil attack.

Recently, there has been an increasing interest in taking
advantage of common characteristics of social networks to
thwart Sybil attack [7], [9]–[12]. At the heart of these social
network-based schemes lies the basic idea of partitioning
nodes in the network into two regions – a non-Sybil region and
a Sybil region – by weighing the trust exhibited in the social
graph with the help of underlying topological properties [8].
However, [13], [14] stated that a real social network graph
can actually be divided into multiple communities of different
types. Therefore, it is inappropriate for prior work to build
their schemes on the basis of the assumption that except the
Sybil region there is only one tight-knit large community for
all the honest users.

Moreover, in these social network-based Sybil defenses,
Sybils are detected under the algorithmic assumption that the
number of attack edges between Sybil and non-Sybil nodes
is limited [15]. However, Viswanath et al. in [8] showed
that it is also possible for non-Sybil sub-graphs to have such
a sparse cut between each other, regardless of the indirect
multi-hop edges between them, which further confirms the
multi-community structure of social networks. In such a social
network, it is challenging to distinguish between non-Sybil and
Sybil users since each user in the distributed system has no
knowledge of the topology of the entire network. As a result,
the information for a user to decide the identity of another
user in the network is limited. Consequently, nodes within
one community may mistake non-Sybil nodes in another
community for Sybils with high probability due to limited
direct connectivity between the two communities, which also
creates difficulty of discriminating Sybils from non-Sybils
successfully. Sybil nodes can easily disguise themselves as
a non-Sybil community by establishing a small number of
carefully targeted links to the community containing the trust

978-1-4673-5946-7/13/$31.00 ©2013 IEEE

2013 Proceedings IEEE INFOCOM

1058



node, thereby confusing the Sybil detection.
Motivated by above issues, we introduce SybilShield, a

new Sybil defense protocol that detects Sybils and limits
the damaging effects of Sybil attack in the context of multi-
community social graphs. Our design leverages the following
structural properties of social network graph: nodes within
the Sybil community are sparsely connected to all the non-
Sybil communities due to lack of trust; honest communities
are tightly inter-connected in general since honest users are
the majority in the system, but their inter-connections can
be multi-hop. During verification, SybilShield first performs
modified random walk in the graph and utilizes intersections
between such walks to limit the number of Sybil identities
being accepted. If the prover is not accepted in this step,
SybilShiled takes advantage of multi-hop edges by adopting
agents, i.e., nodes selected from communities excluding those
comprising the verifier and the prover, to confirm whether the
rejected identity of the prover, who claims to be legitimate, is
non-Sybil or not. The main contributions of our work include:
(1) We present the first solution to Sybil attack in multi-
community social networks, while other social network-based
Sybil defense schemes assume improperly that the underlying
social network graph is only composed of one non-Sybil
region and one Sybil region; (2) We evaluate SybilShield
by analysis and experiments on social network samples from
MySpace, showing that our scheme is able to detect Sybils
effectively. Besides, in SybilShield the false positive rate,
which represents the percentage of honest nodes mislabeled
as Sybils, is greatly reduced compared to applying previous
solutions to multi-community social networks, which improves
the validation accuracy.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III presents the model and
assumptions. An overview of preliminary work is given in
Section IV. We describe the design of SybilShield in detail in
Section V. Section VI shows the effectiveness of SybilShield
by theoretical analysis and experiments, which is followed by
concluding remarks in Section VII.

II. RELATED WORK

Defending against Sybil attack has drawn continuous in-
terest since Sybil attack was first identified by Douceur [1].
Existing Sybil defense schemes can be classified into the
following categories [3]: trusted central authority certification,
resource testing, and capitalizing on trust networks. According
to [1], trusted certification by central authority is the most
common solution to Sybil attack, and also the only approach
to radically wipe out its negative influences. However, in
large-scale distributed systems, it is impractical for the central
authority to assign one-to-one identities to all the entities.
In addition, if the central authority becomes the target for
attackers and fails as a result, the whole system would suffer.

Resource testing based solutions [16], [17] address Sybil
attack by assuming that an attacker can only possess finite
resources and is able to create few Sybil nodes with appropri-
ately designed systems. But [18] shows that in some systems,

Sybil attack can be accomplished even with few Sybil nodes.
Recently, there has been a substantial amount of work uti-

lizing the underlying trust in the social network graphs to im-
prove the resistance against Sybil attack. Proposals on the basis
of social networks include SybilGuard [12], SybilLimit [7],
SybilInfer [10], SumUp [11], Whānau [9], SybilDefender [19],
etc. They explore the fast mixing property of social graphs,
which indicates that a random walk on a graph approaches
the stationary distribution quickly. The validation procedure
of SybilGuard, SybilLimit and SybilDefender basically relies
on random walks and their collisions between honest nodes.
While SybilLimit optimizes the limits for accepting Sybil
nodes in SybilGuard from O(

√
n) to O(log n), SybilDefender

claimes its Sybil identification rate approaches the theoretical
bound. However, SybilDefender assumes the administrator
knows the social network topology, which indicates it is a cen-
tralized mechanism and does not apply to distributed systems.
SybilInfer labels nodes in a social network as honest users or
Sybils according to probabilities determined by the Bayesian
inference. SumUp is a content voting system treating nodes
whose votes are accepted as non-Sybils, by the technique of
adaptive vote flow aggregation. Whānau, a Sybil-proof DHT
routing protocol, combines random walk with the idea of
layered identifiers.

In [8], Viswanath et al. found that these social network-
based Sybil defense schemes are essentially graph partitioning
algorithms, treating the underlying social network as a graph.
This study also shows that these Sybil defenses are sensitive to
community structure regarding mixing time in social networks.
However, their ability of detecting Sybils would be under-
mined if multiple inter-connected communities constitute the
non-Sybil region in real social network graphs. Mohaisen et al.
in [15] models trust as a parameter in several different forms
of modified random walk, and checks corresponding impact
on the performance of Sybil defenses. But how to define the
trust and trust level is not specified.

III. MODEL AND ASSUMPTIONS

A. System Model

We assume that in the system there are n honest users
representing real human beings, and each of them has exactly
one honest identity, which is denoted as an honest node in the
social network graph. Different from previous social network-
based Sybil defenses, we assume that a social network graph
comprises multiple communities of different sizes. To verify
our assumption, we conducted experiments on a 100,000-
node sample graph from MySpace [20] by applying Louvain
Method [21] for community detection. Our experimental result
shows that these 100,000 nodes can be divided into 19
communities, with smallest size of 12 and largest size of
33,877, inter-connected by ten to hundreds of edges. This
result validates our assumption and is also consistent with the
observation made in previous work [21], [22].

Fig. 1 depicts the social network topology wherein honest
nodes compose multiple groups of different sizes, which are
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Fig. 1. The Social Network Graph

inter-connected with each other and termed honest commu-
nities/regions. Correspondingly, community formed by Sybil
nodes is termed Sybil community/region. While honest nodes
always comply with protocol rules, Sybil nodes may behave
randomly or even in the opposite way. Additionally, we assume
all the Sybil nodes can collude, which is called under the
control of an adversary. Consequently, we assume all the Sybil
nodes are within a single Sybil community/region. To simplify
the discussion, we roughly categorize honest communities
into three types according to their sizes: small community,
medium community, and large community. If there exists an
edge between two nodes located in different communities, we
call it a foreign edge. Moreover, if one of the nodes connected
by a foreign edge is a Sybil, we say this edge is an attack edge,
through which the adversary may deceive other honest nodes.

As peers in the system, connected nodes provide and receive
service from each other. Except Sybils, every node can be a
verifier V or a suspect S. Since Sybil nodes mingle with honest
nodes, V shall be able to determine whether or not a given S
is a Sybil node. If S is a non-Sybil node, V accepts S, i.e., V
is willing to establish a trust relationship with S for providing
and receiving service between them; otherwise, V rejects S.

B. Design Goal

In an ideal scenario, it should be guaranteed that V accepts
all the honest nodes and rejects all the Sybil nodes. But as
studied in [1], only by trusted central authorization can the
damaging effects of Sybils be eliminated completely. It is
known to be difficult to implement a trusted central authoriza-
tion in large-scale distributed systems, posing a formidable
challenge of providing such a perfect guarantee. Thus, pre-
vious distributed Sybil defenses aim to reduce the negative
influence of Sybil attack. Furthermore, in a social network
with multiple inter-connected communities, it is hard for V to
determine S’s identity if S is from another community instead
of where V is in. This is because a honest community with
a small number of foreign edges to V resemble the Sybil
community if the verification only utilizes the direct foreign
edges between V and S as in previous schemes. In such a case,
the false positive rate of honest nodes will be high due to the
lack of ability to discriminate honest communities from Sybil

ones. Therefore the main goal of SybilShield is to lower the
false positive rate of honest nodes to a feasible extent, while
keeping the false negative rate of Sybil nodes comparable to
prior work [12].

C. Assumptions

Like previous related work [7], [9]–[12], SybilShield utilizes
some properties of social networks as assumptions and intu-
ition, which can be categorized into sociological assumption
and algorithmic assumption [15].

1) Sociological Assumption: In social network-based Sybil
defense schemes, trust is used to rationalize assumptions about
the nature of social graphs and attackers’ capabilities. Since
an edge reflects real human being trust relationship, it is
difficult for every Sybil node to convince many honest people.
This means although an attacker can create unlimited Sybil
identities, he/she is not able to arbitrarily establish links to
honest nodes, which sets up a barrier to penetrate the whole
social graph. Therefore, compared to the honest nodes, Sybils
have a tendency to be poorly connected to the rest of the
network. According to this observation, similar to [12] we
assume that the total number of attack edges between the
Sybil region and all the honest communities is small. On the
contrary, for any given honest community, its total number of
foreign edges to the rest of the honest communities is relatively
large even if it has a limited number of foreign edges to each
individual community. This follows the idea that it is easier
for honest nodes, as compared to Sbyils, to establish trust
relationships with other honest nodes.

2) Algorithmic Assumption: Algorithmic properties exhib-
ited in social networks are always used to argue for the
effectiveness of applications built on top of the social network.
For Sybil defense schemes, the fast-mixing property is used to
support the claimed effectiveness of Sybil identities detection
and yield a feasible solution. The fast-mixing property means
that a random walk on the social graph converges quickly
to a node following the stationary distribution of the graph
[23]. With this property, the ending node of the random walk
probably stays in the same community as the starting node
by a certain length of walking. However, Mohaisen et al. in
[24] stated that these prior Sybil defense schemes performed
experiments to show their applicability to real-world social
graphs, without validating the fast-mixing assumption. Thus,
[24] measured the mixing time in several social graphs. They
noticed that mixing patterns in social graphs are associated
with the underlying social model, i.e. social networks with
confined social models. Social networks with strict trust prop-
erties are slow mixing whereas those with less strict trust
properties are fast mixing. Furthermore, Mohaisen et al. in
[25] experimentally show that fast-mixing graphs tend to have
few large cores whereas slow mixing graphs tend to have
multiple smaller cores. Following [7], [10]–[12], since most
of the social network do not exhibit strict trust properties, the
fast-mixing property is sufficient to support our SybilShield
mechanism.
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IV. PRELIMINARIES

SybilGuard [12] is the first formal attempt to use social net-
works for defending Sybil attack in distributed systems, which
took the lead in exploiting fast-mixing properties for Sybil
detection. SybilGuard provides two guarantees: the number of
Sybil groups to g is limited, where g represents the number of
attack edges between the non-Sybil region and Sybil region;
the effective size of Sybil groups are bounded below w, i.e. a
node will accept at most g · w Sybil nodes.

Based on the same assumptions and similar intuition
described above, SybilGuard uses verifiable random walks
(called random routes) and intersections to distinguish non-
Sybil nodes and Sybil nodes. It labels a suspect as non-Sybil
if the random walk from the trusted node intersects with that
from the suspect; otherwise the suspect is labeled as a Sybil.
Notice that each node creates a persistent routing table that
maps each incoming edge to an outgoing edge in a unique
one-to-one mapping.

Specifically, to determine whether to accept a suspect node
S as an honest user, the verifier node V creates w-hop random
route, which is deterministic formed according to the stored
routing table entries at w consecutive nodes. Meanwhile, S
starts a similar w-hop random route. V accepts S if the two
random routes intersect. Note that the number of Sybil nodes
accepted under the SybilGuard protocol will rise with the
increase of w. Thus, w must be small enough to keep random
routes within the honest region with high probability. From
another point of view, w must be adequately large to ensure
that intersections are made with high probability by random
routes initiated from V and S separately. That is to say, it is
beneficial for w to be in some reasonable range, neither too
large nor too small. As Yu et al. in [12] analyzed, for a social
network with O(log n) mixing time, based on the generalized
birthday paradox, two non-Sybil nodes with

√
n samples

from the non-Sybil region will have an intersection with high
probability. To design the appropriate length of random routes,
SybilGuard makes an estimation by taking samples from the
non-Sybil region of n nodes using O(

√
n log n) random walks.

While providing a promising direction for Sybil defenses,
SybilGuard suffers from some limitations. As mentioned
above, the underlying social network structure of SybilGuard
is problematic. In real social networks comprised of few giant
components and numerous medium and small communities,
the ability of SybilGuard is weakened. The reason is that, a
verifier node V might easily mark an honest suspect node S
as Sybil mistakenly due to disability to tell apart the Sybil
community and non-Sybil communities, which increases the
false positive rate. Viswanath et al. also stated this issue in [8]
by examine existing Sybil defense schemes [7], [10]–[12] over
different community structures. However, [8] did not propose
any solution to this problem. By referring to SybilGuard,
our protocol of SybilShield achieves higher accuracy with a
relatively low false positive rate among multiple communities
in the real social networks.

Symbol Definition
n the total number of nodes in the social network
na the number of agents found by the verifier
nw system constant for bounding extended random

routes
di the degree of node i
wi the length of random route for node i
ti the threshold of acceptance ratio for node i
t the threshold of ratio for agent voting
n1, n2, n3, n4 node number of large, medium, small and Sybil

communities respectively
N1, N2, N3, N4 the number of communities of large, medium,

small and Sybil communities respectively
Eij the number of foreign edge between community i

and community j

TABLE I
NOTATION

V. THE SYBILSHIELD PROTOCOL

A. Overview

SybilShield defends against Sybil attack for real-world
social network with multi-community structure. For a verifier
node V to determine the identity of a suspect node S, both V
and S first perform a modified form of random walk – random
route. V accepts S if their random routes have intersections.
Otherwise V refuses to admit S. Even though S is rejected
by random route verification, it could not guarantee that S
must be a Sybil node. To avoid mislabeling honest suspects
as Sybils, SybilShield utilizes agents of V to reinspect the
identity of S in the second step, which is called agent walk.
In agent walk, agents are searched along all the edges of V,
and carefully selected to be outside the community of V. Valid
agents perform random routes to see if intersections exist with
S’s random routes. S gets votes from agents with intersections.
A threshold t is set for V to make the decision of accepting
S if the proportion of agents voting for S is no less than t.
Notation of this paper is partially defined in Table I.

B. Random Route

Random route was first proposed in [12]. We refer to it and
build the first step of our protocol, as shown in Algorithm
1. For random routes in honest communities, V accepts S if
their random routes have at least one intersection. For each
hop along a random route, its next hop is chosen strictly
according to a pre-computed randomized routing table of the
current hop, rather than uniformly randomly selecting one
of its neighbors. Routing tables are calculated by random
permutation, indicating a one-to-one mapping from incoming
edges to outgoing edges. As the social network is assumed to
be static, there are no nodes and edges added or deleted from
the graph. Therefore, routing table of each node will keep the
same and does not need to be updated.

We note that routing table is known to have the following
properties: (1) Convergence property: if different random
routes pass a certain node through the same incoming edge,
they will share the same outgoing edges directed to the next
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Algorithm 1: Initial Verification
for i = 1 to dV do /* dV : V’s degree */

V performs random route along its ith edge;
for j = 1 to dS do /* dS: S’s degree */

S performs random route along its jth edge;
Check whether an intersection exits by V’s ith random route
and S’s jth random route and record the result;

end
if Intersection percentage is no less than tS then

V accepts S along its ith edge;
else

V rejects S along its ith edge;
end

end
if Along all V’s edges, the accepting ratio is no less than tV then

V accepts S;
else

V finds agents for further authentication;
end

hop. (2) Back-traceable property: if two random routes have
the same outgoing edges at some node, they must come to
that node along the same incoming edge. But these properties
will no longer be valid if entering Sybil communities. Instead,
the adversary might manipulate the incoming random routes
from the verifier and confine those random routes to the Sybil
region. In this case, it is easier for a Sybil node to intersect with
random routes initiated by the verifier and get accepted. To
reduce the negative impact brought by routes extended to the
Sybil region, V would not accept S unless tV of V’s random
routes accept S, where tV is a threshold shown to be dV /2 to
provide a good tradeoff in [12].

Lacking knowledge of the whole network, each node needs
to locally decide the length of its random route w. We adopt
3-hop sampling [12] to estimate w. Specifically, a node A first
performs a standard random walk with three hops, ending at a
certain node B, which assures high probability that B is honest
and stays in the community of A. Both A and B perform
random routes along all directions to decide the lengths of
the routes to reach their intersections, which are collected as
samples. Finally, w is set as 2.1m [12], where m is the median
of the samples. In the rest of the paper, we use wi to represent
the length of random route for any given node i.

Between any two communities in the social graph, inter-
community connections are generally much sparser than in-
ternal connection within their own communities. Random
routes with an appropriate length w initiated by nodes in
one community has higher probability of staying inside their
community, instead of entering another community through
foreign/attack edges. As a result, verification of a suspect
S from another region by V is restricted to the number of
foreign/attack edges between V’s and S’s communities. In
other words, honest nodes in one community are probably
rejected and marked as Sybil by honest nodes in another
community, increasing false positive rate in the system.

C. Agent Walk

Due to the limitation above, we utilize agents to make
our protocol more complete and accurate. In SybilShield,

Algorithm 2: Agents Discovering
for i = 1 to dV do /* dV : V’s degree */

repeat
V performs random route along its ith edge with length wV ;
V picks the last hop of the random route as an agent A;
V verifies A by Algorithm 1;
if V accepts A then

V increases its random route length by wV ;
else

V accepts A as a valid agent; break;
end

until random route length > nwwV ;
end
na valid agents are found, where na ≤ dV .

to confirm the decision, V attempts to find some agents
for help to check S again once S is rejected. Although
inter-community connections are fewer than intra-community
connections, attack edges are more sparely linked compared
to foreign edges, based on the limited ability of constructing
real trust relationship with honest nodes. Since the majority
of communities in the system are honest, searching for agents
by extending random routes to other communities has higher
probability of entering honest communities than Sybil commu-
nities. Otherwise the system is compromised and controlled by
the adversary. If at least a certain proportion of agents in other
honest communities accept S, V treats S as an honest node.

A valid agent should be in another community other than
where V is located. As Algorithm 2 shows, along each one of
its edges, V starts a random route with a length of w used in
Initial Verification. At the end of the route, V picks the last hop
as an agent A temporarily. And then V and A initiate random
routes simultaneously to see if there are intersections. If V
and A are in different communities, with only a few foreign
edges, their random routes are not very likely to traverse the
foreign edges and enter one another’s community. Thus, the
probability of intersections by such routes is small. If no
intersections are found, V views A as outside its community,
i.e. A is a qualified agent. Otherwise, V continues the random
route for wV more hops from the last ending point in the
direction that it was originally traveling, and validates the node
on the tail of the extended random route. This process will
be repeated until the valid agent is found in the direction of
that edge. The length of extended random routes are set to be
(nw ·wV ), where nw is a constant. Also we suppose the node
degree of V is dV , and the number of effective agents na is
no more than dV (1 ≤ na ≤ dV ).

After determining all the valid agents, every agent verifies S
by random routes following Algorithm 3. Similarly, assuming
the node degree of the agent A is dA, for each of its random
routes, if the route has at least one intersection with the random
route from S, then that route accepts S. The agent A would
not accepts S unless at ta of A’s random routes accepts S.
There are na agents like A in total for V. Therefore, if more
than t · na(0 ≤ t ≤ 1) agents accepts S, V accepts S finally.
Otherwise, V treats S as a Sybil node and refuses to establish
any trust relationship with S.

As we state above, honest communities are in the majority
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Algorithm 3: Agent-Aid Verification
for i = 1 to na do

for j = 1 to dA do /* dA: current agent’s degree
*/

ith agent performs random route along its jth edge;
ith agent verifies S by Algorithm 1 and records its
accept/reject decision;

end
end
if Among na agents, the accepting ratio is no less than t then

V accepts S;
else

V rejects S;
end

in the system, and foreign edges between any two honest
communities are denser than attack edges. Therefore, it can
be guaranteed that the ratio of foreign edges to all the foreign
edges and attack edges in the system is at least 1

2 or the system
has been taken control by the adversary. In our protocol, we
set both thresholds ta and t as 1

2 .
Note that a Sybil agent might be selected during the search.

In this case, the adversary would control the random route
of the Sybil agent depending on the identity of the suspect
since the adversary has the knowledge of the entire network
and it only does things in its favor. Therefore, if the suspect
is an honest node, in order to put the suspect at risk of
being rejected, the adversary will let the Sybil agent report
a rejection; if the suspect is also a Sybil node, the Sybil agent
reports an acceptance immediately.

VI. EVALUATION

This section presents numerical analysis and experiment
results on MySpace social network.

A. Numerical Analysis

1. Performance Comparison: For analysis, we set the total
number of honest nodes in the social network as n. To
simplify the analysis, communities are categorized into four
types according to their sizes and properties, i.e., type 1, 2,
3, 4 corresponding to large, medium, small and Sybil. Their
node number is averaged and denoted by n1, n2, n3,and n4,
respectively. Correspondingly, the number of communities of
each type of community is N1, N2, N3, and N4. The number
of edges between every two communities is set to be Eij ,
where both i and j are an integer, representing types of
communities in which end point of the edge is located. Note
that Eij = Eji because of the reciprocity property. These
edges include foreign edges, and attack edges as well. We
assume the number of attack edges between a Sybil region and
any honest community must be less than the number of foreign
edges between any two of the honest regions. Due to the
structure of the social network graph, following different cases
are considered separately in the verification process regarding
the identities of V and S.

(1) V and S are from different communities of distinct size;
(2) V and S are from different communities of same size;
(3) V is from honest communities while S is a Sybil.

Note that V must be an honest user. If V and S are from the
same community, we assume V accepts S with the probability
close to 1 according to previous work [12] and do not discuss
this scenario in detail in this paper. Besides, since the links
between nodes are assumed to be reciprocal, S verifying V is
identical but reversed validation process of V verifying S.

For SybilGuard, based on the expected suspect acceptance
rates in the above cases, if we randomly select a pair of V and
S, the expected acceptance rate of a honest S PHonest is:

PHonest =
1

n(n− 1)

( 3∑
i=1

Nini(ni − 1) + 2

3∑
i=1

(
Ni

2

)
n2
i · Pii

+

3∑
i 6=j

Nini ·Njnj · Pij

)
(1)

If V and S belong to the same region, the acceptance rate
is set to be 1. Pij is the probability that an honest V accepts
S corresponding to the Scenario (1). And Pii represents the
probability that V accepts S which belongs to a different
community of the same size, as Scenario (2) shown above.

The expected acceptance rate of a Sybil S PSybil in
SybilGuard is:

PSybil =
1

n

3∑
i=1

Nini · Pi4 (2)

Pi4 is the probability that an honest V accepts a Sybil S
corresponding to the Scenario (3).

For SybilShield, agents are introduced to recheck the iden-
tity of S if S is refused by V during the Initial Verification.
A valid agent must be located in a different community other
than the one V is in. The probability of randomly picking a
valid agent depends on the total number and distribution of
foreign edges connected to V’s community. Note that Sybil
agents might also be included through attack edges between
V’s community and Sybil region. Therefore, the probability
of choosing an agent from different communities of same
size can be calculated as:

Paik =
(Ni − 1)Eik

(Ni − 1)Eik +
∑

l 6=i,1≤l≤4 NlEil
, i = k (3)

Similarly, an agent from different communities of distinct
size can be obtained with the following probability:

Paik =
NkEik

(Ni − 1)Eii +
∑

l 6=i,1≤l≤4 NlEil
, i 6= k (4)

where i and k represent the community type of V and
the agent. Honest agents will authenticate suspects rejected
by the verifier as shown in Algorithm 3, regardless of the
real identities of these suspects. But for Sybil agents, they
will definitely deviate from the normal verification protocol,
refusing honest suspects and only accepting Sybil suspects.
Statistically speaking, the probability of selecting an agent
of a certain type is highly related to the number of foreign
edges and/or attack edges of the community in which V is
located. Since the adversary has limited resources to establish
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real human trust relationship with honest nodes, its attack
edges would be much less than the normal foreign edges
between honest users. Therefore, with higher probabilities of
selecting honest agents, the expected suspect acceptance rate is
increased by admitting mislabeled honest nodes. Given eq.(3)
and eq.(4), we can draw the acceptance probability of S by
a single agent Pasij in accordance with the three scenarios
enumerated earlier. For V of type i, S of type j, and selected
agent of type k, 1 ≤ i, j ≤ 4, if S is an honest suspect:

Pasij =
∑

k 6=j,1≤k≤3

PaikPkj + Paij(Pjj
Nj − 1

Nj
+

1

Nj
)(5)

If S is a Sybil:

Pasij =
∑

k 6=j,1≤k≤3

PaikPkj + Paij (6)

Distinct verifier nodes may have different numbers of valid
agents, which are no greater than the degrees of the verifier
nodes. We set a threshold t (0 ≤ t ≤ 1) on the percentage of
agents approving the suspect for the verifier to accept that
suspect on second thoughts. Taking the combinations into
account, the expected acceptance rate of S by all the agents
P ′ij can be obtained based on eq.(5) and eq.(6), where na is
a variable representing the number of valid agents.

P ′ij =

na∑
i=t·na

Cna
i · (Pasij)

i · (1− Pasij)
na−i (7)

Therefore, for SybilShield, the expected acceptance rate
of a honest S P ′Honest is equal to the sum of direct acceptance
rate without agents’ help and indirect acceptance rate provided
by agents:

P ′Honest = PHonest +
1

n(n− 1)

(
2

3∑
i=1

(
Ni

2

)
n2
i (1− Pii)P

′
ii

+

3∑
i 6=j

Nini ·Njnj(1− Pij)P
′
ij

)
(8)

Similarly, the expected acceptance rate of a Sybil S P ′Sybil

in SybilShield is:

P ′Sybil = PSybil +
1

n

3∑
i=1

Nini(1− Pi4)P ′i4 (9)

Compare eq.(1) and eq.(2) for SybilGuard with eq.(8) and
eq.(9) for SybilShield, we find that the difference lies in the
indirect acceptance supported by agents. It is obvious that
with agents, the expected suspect acceptance rate by agents
P ′ij decides to what extent the original expected honest/Sybil
nodes acceptance PHonest and PSybil may increase. According
to eq.(6), the value of P ′ij is dependent on both the number of
agents na and the expected suspect acceptance possibility by
a single agent Pasij . And we can see that the calculation
of Paij is affected by the number of foreign/attack edges
(Eij) and the probability that an honest verifier from a certain
community accepts a suspect from another community (Pij).

Since values of Pij remain the same in both SybilGuard and
SybilShield, the ratio of foreign edges to attack edges becomes
the dominant factor in determining the degree of improvement
of honest suspect acceptance in SybilShield.

On the other hand, as the expected honest suspect ac-
ceptance rises, the expected Sybil suspect acceptance also
increase. However, previous works have shown that the re-
sources of the adversary are too limited to build a great
amount of trust relationship with honest nodes. And P ′i4
for Sybil nodes is quite small since the attack edges are
much fewer and the number of foreign edges among honest
communities is greater than that of attack edges between Sybil
and Honest communities. Therefore, by introducing agents, the
growth of expected Sybil suspect acceptance is comparatively
less significant. This property of social network assures the
correctness and effectiveness of SybilShield.

Effect of System Parameters: (a) The threshold t. t
represents the proportion of agents which vote S for V to
accept S. If at least t percent (0 ≤ t ≤ 1) of all the agents
believe S is honest, V admits S’s identity. Among na agents,
we assume there are nh honest agents and ns Sybil agents.
For simplicity, the probability of S getting approved by an
agent is Pasij . For Sybil agents, they will only refuse honest
suspect and accept Sybil suspect. Then t can be estimated by:

ns

nh + ns
≤ t ≤ nh

nh + ns
(10)

Since the probability of selecting Sybil agent is small due
to limited attack edges, nh would be much greater than ns.
There would not be worse scenario than that of nh = ns with
t = 1/2, because the adversary would take control if most
agents are Sybil. Therefore, t should be no less than 1/2.

(b) The length of extended random route. During searching
for agents in SybilShield, for efficiency the cumulative length
of the extend random route shall be bounded – if no valid agent
is found in the end after repeating random routes of length w
by nw times, V abandons the search on this route, turns to
another edge and start the process above again. nw can be
empirically determined, e.g., the minimum number assuring
90%× dV agents can be identified using Algorithm 2.

B. Experiments

We evaluate the effectiveness of SybilShield by experiments
in terms of false positive rate of honest nodes and false
negative rate of Sybil nodes. Although SybilLimit further
reduced the number of accepted Sybil nodes per attack edge
from O(

√
n) in SybilGuard to O(log n), both SybilGuard and

SybilShield did not consider the issue of false positive rate of
honest nodes if applied to multi-community social networks.
To simplify our evaluation, the performance of SybilShield is
provided and compared with SybilGuard based on the same
real-world social network – MySpace. The effect of system
parameters on the performance is also studied.

1) Data Sets and Experiment Setup: Our experiments are
implemented on a data set from one of the most popular social
networks – MySpace [20], which was also used to validate
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Fig. 2. Honest and Sybil suspects acceptance ratio for v and s from
same/different communities

our assumptions on social network structure in Section III.
This data set consists of 100,000 nodes and 6,854,231 edges,
with an average degree of 68. Given the multi-community
property of social networks, Louvain Method [21] was applied
to extract the underlying community structure. These 100,000
nodes were partitioned into 19 communities of different size.
We put these 19 communities into three categories in terms
of sizes – large, medium and small. Thus, in the system,
there are 4 large communities with over 10,000 nodes, 3
medium communities of sizes between 1000 and 10,000 nodes,
and 12 communities with no more than 1000 nodes. All the
communities are connected with one another by a number of
links. For large communities, the average number of foreign
edges is 1,402,561, while for medium and small communities
it is 404,379 and 818 respectively. Note that we do not make
any modification on the MySpace data set used in this paper.

For evaluation purpose, previous work either selected ran-
dom nodes from data sets as attacker nodes [7], [10], [12]
or add adversarial nodes [11], [19]. Referring to the method
and ratio of Sybil nodes in [11], [19], we construct a Sybil
region by creating 500 Sybil nodes and randomly selecting
nodes from the data set to be linked with Sybil nodes, until
the number of attack edges is 50. The average node degree of
Sybil region is set to be the same as in small communities in
the system. In addition, we obtain the length of random route
for each community by running 3-hop sampling.

2) Experiment Results: To compare the performance of
SybilGuard and SybilShield, we randomly select 100,000 pairs
of verifier and suspect to run the verification protocol.

First we look into the percentage of mistakenly rejected
honest suspects and the percentage of accepted Sybil suspects.
As shown in the first half of Fig. 2, the acceptance rate of
honest suspects for SybilShield and SybilGuard is 70.81% and
37.94%. In other words, the false positive rate for SybilShield
is 29.19%, while 62.06% for SybilGuard. Therefore, the false
positive rate is effectively reduced by 32.87%. Obviously,
the accuracy of identifying honest suspects in SybilShield
is improved twice as much in SybilGuard because of the
introduction of agents. However, the Sybil acceptance rates for
Sybil are 8.35% and 5.29% correspondingly, with a difference
of only 3.06%. Although the Sybil acceptance rate rises a
little, the tradeoff between greatly reduced false positive rate
and Sybil acceptance rate is acceptable.

To further study the experiment results, we divide all the
test pairs into two categories according to whether both of V
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Fig. 3. Honest and Sybil suspects acceptance ratio for each type of
community

and S are in the same communities. Results are demonstrated
in terms of honest suspects acceptance rate in the other half of
Fig. 2. Whether in SybilShield or SybilGuard, the accuracy of
identifying honest suspects is reduced by 1.54% and 7.64%.
Since foreign edges of a community are comparatively sparser
than its internal edges, it is more difficult for a verifier to
reach a suspect located in another community through foreign
edges by random routes. And it is clear that regardless of the
relationship of V and S, with the help of agents, the honest
suspects acceptance rate is enhanced from 43.8% and 36.16%
in SybilGuard to 72.00% and 70.46% in SybilShiled. Further-
more, it is interesting to note that V and S belonging to the
same community does not guarantee ideal 100% acceptance
rate because of different underlying social network structure.

Fig.3 reveals the effect of community type on the honest
suspects acceptance rate in both SybilGuard and SybilShield.
We can easily see that compared to SybilGuard, the overall
acceptance rate in SybilShield nearly doubles, especially for
honest suspects in medium and small communities. According
to our SybilShield protocol, if the communities of V and S
are not only comparatively tightly inter-connected but also
linked with other communities with more foreign edges, the
probability of S getting accepted will be increased. And based
on our observations of social networks structure, the larger the
community’s size is, more foreign edges the community has
between itself and others. These explain why the honest nodes
in small communities are harder to be accepted by a verifier.
Besides, the nodes in small communities have much a lower
probability to be chose due to their non-dominant percentage
in the system. Because of the limited sample of test pairs
from small communities, the corresponding honest suspects
acceptance rate 100% in Fig. 3 does not represent the typical
result of that scenario.

3) Discussion: The Number of Agents. As an important
system parameter, the number of agents na of a verifier node
V affects the suspect acceptance rate in our protocol. Results
shows that the probability of an agent being a Sybil node is
small. Compared to the average agent number of a verifier
in a community of any of the three types – 113, 116, and
12, corresponding average Sybil agent number is 5, 6, and
1. Note that due to the property of this data sample, nodes
in medium communities have a higher average degree than
large community-nodes, so V in a medium community has
the chance to obtain more agents than V in large communities.
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However, there are more foreign edges in large communities
rather than in medium communities. Therefore, the final num-
ber of the agents by a verifier from either of these two types of
community is almost the same with very small differences. To
sum up, even if Sybil agents do not obey the rule and refuse to
accept honest suspects, these Sybil agents are in the minority
and not able to affect the verifier node’s decision.

Compared to Other Related Work. Besides SybilGuard
[12], other related social network-based Sybil defense schemes
also suffer from the limitation of basing their solution on non-
real social networks. They all assumed the social network is
comprised of two different parts, a non-Sybil region and a
Sybil region. Revised from SybilGuard, SybilLimit [7] relies
on tail intersections of random routes to decide whether or not
the suspect should be accepted, and uses balance condition to
deal with tails of the verifier entering Sybil region. Therefore,
agents can be applied to SybilGuard and SybilLimit after
the basic random routes. For SybilInfer [10], random walks
are performed to sample nodes from non-Sybil region and
determine the acceptance probability by Bayesian inference.
In this case, besides sampling nodes from the region where
the verifier is located, the probability of a node being non-
Sybil would be more accurate if employing different agents
from other regions for sampling and calculation. Our work
can be easily extended to these schemes, and the performance
is believed to be improved.

VII. CONCLUSION

This paper presents SybilShield, a novel decentralized de-
fense protocol against Sybil attacks in multi-community social
networks, which limits the negative influences of accepting
Sybils mistakenly and mislabeling honest nodes. SybilShield
is based on underlying properties of real-world social networks
that the non-Sybil regions are fast mixing and the number of
attack edges created by an adversary is relatively less than that
of foreign edges among honest communities, which are vali-
dated on the given MySpace topology data sample. Inspired by
these social network properties, we introduce agents for help
if the initial validation by performing random routes denies to
accept the suspect node. Through the theoretical probability
analysis and experiments on the MySpace data set, SybilShield
is shown to greatly outperform SybilGuard, reducing the false
positive rate while keeping the effectiveness of identifying
Sybil nodes with an acceptable tradeoff.

For future work, we will run SybilShield on more real social
network data with different structures and further improve the
efficiency of our SybilShield algorithm.
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