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Abstract—Traditional wireless sensor networks are constrained
by limited battery energy. Thus, finite network lifetime is widely
regarded as a fundamental performance bottleneck. Recent
breakthrough in the area of wireless energy transfer offers the
potential of removing such performance bottleneck, i.e., allowing
a sensor network remain operational forever. In this paper, we
investigate the operation of a sensor network under this new
enabling energy transfer technology. We consider the scenario of
a mobile charging vehicle periodically traveling inside the sensor
network and charging each sensor node’s battery wirelessly. We
introduce the concept of renewable energy cycle and offer both
necessary and sufficient conditions. We study an optimization
problem, with the objective of maximizing the ratio of the wireless
charging vehicle (WCV)’s vacation time over the cycle time. For
this problem, we prove that the optimal traveling path for the
WCV is the shortest Hamiltonian cycle and provide a number of
important properties. Subsequently, we develop a near-optimal
solution and prove its performance guarantee.

I. INTRODUCTION

Wireless sensor networks (WSNs) today are mainly powered
by batteries. Due to limited energy storage capacity in a battery
at each node, a WSN can only remain operational for a limited
amount of time. To prolong its lifetime, there have been a
flourish of research efforts in the last decade (see, e.g., [1], [2],
[3], [4], [5]). Despite these intensive efforts, lifetime remains
a performance bottleneck of a WSN and is perhaps one of the
key factors that hinder its wide scale deployment.

Although energy-harvesting (or energy scavenging) tech-
niques (see, e.g., [6], [7], [8, Chapter 9], [9], [10]) have been
proposed to extract energy from the environment, their success
remains limited in practice. This is because the proper opera-
tions of any energy-harvesting technique is highly dependent
on the environment. Further, the size of an energy-harvesting
device may pose a concern in deployment, particular when
the size of such device is of much larger scale than the sensor
node it is attempting to power.

Quite unexpectedly, the recent breakthrough in the area
of wireless energy transfer technology developed by Kurs et
al. [11] has opened up a revolutionary paradigm for sensor
network lifetime. Basically, Kurs et al.’s work shows that
by exploiting a novel technique called magnetic resonance,
wireless energy transfer (i.e., the ability to transfer electric
energy from one storage device to another without any plugs
or wires) is both feasible and practical. In addition to wireless
energy transfer, they have experimentally showed that the
source energy storage device does not need to be in contact
with the energy receiving device (e.g., a distance of 2 meters)

for efficient energy transfer. Further, such wireless energy
transfer is immune to the neighboring environment and does
not require line of sight between the energy charging and
receiving nodes.

The impact of wireless energy transfer on WSNs or other
energy-constrained wireless networks is immense. Instead of
generating energy locally at a node (as in the case of energy
harvesting), one can bring clean electric energy that are
efficiently generated elsewhere to a sensor node periodically
and charge its battery without the constraint of wires and
plugs. As one can imagine, the applications of wireless energy
transfer are numerous. For example, wireless energy transfer
has already been applied to replenish battery energy in medical
sensors and implantable devices [12] in healthcare industry.

Inspired by this new breakthrough energy transfer technol-
ogy, this paper re-examines the network lifetime paradigm for
a WSN. We envision employing a mobile vehicle carrying
a battery charging station to periodically visit each sensor
node and charge it wirelessly. This mobile wireless charging
vehicle (WCV) can either be manned by human or be an
autonomous vehicle. In this paper, we investigate the funda-
mental question of whether such new technology can remove
the lifetime performance bottleneck from a battery-powered
WSN, i.e., to have the WSN remain operational forever! The
main contributions of this paper are the following.

• We introduce the concept of renewable energy cycle
where the remaining energy level in a sensor node’s bat-
tery exhibit some periodicity over a time cycle. We offer
both necessary and sufficient conditions for renewable
energy cycle and show that feasible solutions satisfying
these conditions can offer renewable energy cycles and
thus, unlimited sensor network lifetime.

• We formulate an optimization problem, with the objective
of maximizing the ratio of the WCV’s vacation time (time
spent at its home service station) over the cycle time. For
this problem, we prove that the optimal traveling path
for the WCV in each renewable cycle is the shortest
Hamiltonian cycle. We also derive several interesting
properties associated with an optimal solution, such as the
optimal objective being independent of traveling direction
on the shortest Hamiltonian cycle and the existence of a
bottleneck node in the network.

• Under the optimal traveling path, our optimization prob-
lem now only need to consider flow routing and charging
time for each sensor node. By showing that traditional
minimum energy routing is non-optimal, we formulate a
joint optimization problem for flow routing and charging
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time for each sensor node. The problem is shown to
be a nonlinear optimization problem and is NP-hard in
general.

• For our optimization problem, we develop a provable
near-optimal solution for any desired level of accuracy.

The remainder of this paper is organized as follows. In
Section II, we review recent advances in wireless energy
transfer technology. In Section III, we describe the scope
of our problem for a renewable sensor network. Section IV
introduces the concept of renewable energy cycle and presents
some interesting properties. Section V shows that an optimal
traveling path should be along the shortest Hamiltonian path.
In Section VI, we present our problem formulation and a
near-optimal solution. Section VII shows how to construct the
initial transient cycle after which a renewable cycle can start.
In Section VIII, we present numerical results to demonstrate
the properties of a renewable wireless sensor network under
our solution. Section IX concludes this paper.

II. WIRELESS ENERGY TRANSFER: A PRIMER

Efforts of transferring power wirelessly can be dated back to
the early 1900s (long before wired electric power grid) when
Nikola Tesla experimented with large scale wireless power
distribution [13]. Due to its large electric fields, which is
undesirable for efficient energy transfer, Tesla’s invention was
never put into practice use.

Since then, there was hardly any progress in wireless energy
transfer for many decades. In early 1990s, the critical need of
wireless power transfer re-emerged due to wide spread use
of portable electronic devices (see, e.g., [14]). The most well
known example is electric toothbrush. However, due to strin-
gent requirements such as close in contact, accurate alignment
in charging direction, and uninterrupted line of sight, most of
the wireless power transfer technologies (based on radiative
transfer) at the time only found limited applications.

The foundation of our work in this paper is based on a
recent breakthrough technology by Kurs et al. [11], which was
published in Science in 2007 and has since caught worldwide
attention. In [11], Kurs et al. experimentally demonstrated
efficient non-radiative energy transfer is not only possible, but
also practical. They used two magnetic resonant objects of
the same resonant frequency to exchange energy efficiently,
while dissipating relatively little energy in extraneous off-
resonant objects. They showed that efficient power transfer
implemented in this way can be nearly omnidirectional, irre-
spective of the environment and even without line of sight. A
highlight of their experiment was to fully powering a 60-W
light bulb from a distance of 2 meters away.

With the recent establishment of Wireless Power Consor-
tium [15] to set the international standard for interoperable
wireless charging, it is expected that wireless energy transfer
will revolutionize how energy is exchanged in the near future.

III. PROBLEM DESCRIPTION

We consider a set of sensor nodes N distributed over a two-
dimensional area. Each sensor node has a battery capacity
of Emax and is fully charged initially. Also, denote Emin

the minimum energy at a sensor node battery (for it to be

operational). Each sensor node i generates sensing data with
a rate of Ri (in b/s), i ∈ N . Within the sensor network, there
is a fixed base station (B), which is the sink node for all data
generated by the sensor nodes. Multi-hop data routing can be
employed for forwarding data by the sensor nodes. Denote fij
the flow rate from sensor node i to sensor node j and fiB the
flow rate from sensor node i to the base station B, respectively.
Then we have the following flow balance constraint at each
sensor node i.

∑k !=i
k∈N fki +Ri =

∑j !=i
j∈N fij + fiB (i ∈ N ). (1)

Each sensor node consumes energy for data transmission
and reception. Denote pi the energy consumption rate at sensor
node i ∈ N . In this paper, we use the following energy
consumption model [4].

pi = ρ
∑k !=i

k∈N fki +
∑j !=i

j∈N Cijfij + CiBfiB (i ∈ N ) , (2)

where ρ is the rate of energy consumption for receiving a unit
of data rate, Cij (or CiB) is the rate of energy consumption
for transmitting a unit of data rate from node i to node j
(or the base station B). Further, Cij = β1 + β2Dα

ij , where
Dij is the distance between nodes i and j, β1 is a distance-
independent constant term, β2 is a coefficient of the distance-
dependent term and α is the path loss index. In the model,
ρ
∑k !=i

k∈N fki is the energy consumption rate for reception, and
∑j !=i

j∈N Cijfij + CiBfiB is the energy consumption rate for
transmission.

To recharge the battery at each sensor node, a mobile
wireless charging vehicle (WCV) is employed in the network.
The WCV starts from a service station (S), and the traveling
speed of the WCV is V (in m/s). When it arrives at a
sensor node, say i, it will spend a time of τi to charge
the sensor node’s battery wirelessly via non-radiative energy
transfer [11]. Denote U the energy transfer rate of the WCV.
After τi, the WCV leaves node i and travels to the next node.
We assume that the WCV has enough energy to charge all
sensor nodes in the network.

After the WCV visits all the sensor nodes in the network, it
will return to its service station to be serviced (e.g., replacing
or recharging its battery) and get ready for the next trip. We
call this resting period vacation time, denoted as τvac . After
this vacation, the WCV will go out for its next trip.

Denote the time for a trip cycle of the WCV as τ . A number
of questions can be raised for such a re-chargeable sensor
network. First and foremost, one would inquire whether it is
possible to have each sensor node never run out of its energy?
If this is possible, then the sensor network will have unlimited
lifetime and will never cease to be operational. Second, if
the answer to the first question is positive, then is there any
optimal plan (including traveling path, stop schedule) such
that some useful objective can be maximized or minimized?
For example, in this paper, we would like to maximize the
percentage of time in a cycle that the WCV can take vacation
(i.e., τvac

τ ), or equivalently, to minimize the percentage of time
that the WCV is out in the field.

IV. RENEWABLE CYCLE CONSTRUCTION

In this section, we focus on the renewable cycle construc-
tion. We assume the WCV starts from the service station,
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Fig. 1. A wireless sensor network with a wireless charging vehicle (WCV).

visits each sensor node once in a cycle and ends at the service
station (see Fig. 1). Further, we assume data flow routing in
the network is invariant with time, with both routing and flow
rates being part of our optimization problem.

The middle sawtooth graph (in dashed line) in Fig. 2 shows
the energy level of a sensor node i during the first two
renewable cycles. Note that there is an initialization cycle
(marked in grey area) before the first renewable cycle. That
initialization cycle will be constructed in Section VII once we
have an optimal solution to the renewable cycles.

Denote P = (π0 ,π1 , . . . ,πN ,π0) the physical path tra-
versed by the WCV over a trip cycle, which starts from and
ends at the service station (i.e., π0 = S) and the ith node
traversed by the WCV along path P is πi , i ∈ N . Denote
Dπ0π1

the distance between the service station and the first
sensor node visited along P and Dπ

k
π
k+1

the distance between
the kth and (k+1)th sensor nodes, respectively. Denote ai the
arrival time of the WCV at sensor node i in the first renewable
energy cycle. We have

aπi = τ +
∑i−1

k=0

Dπ
k
π
k+1

V +
∑i−1

k=1 τk . (3)

Denote DP the physical distance of path P and τP = DP /V
the time used for traveling over distance DP . Recall that τvac

is the vacation time the WCV spends at its service station.
Then the cycle time τ can be written as

τ = τP + τvac +
∑

i∈N τi . (4)

We formally define a renewable energy cycle as follows.
Definition 1: The energy level of a sensor node i ∈ N

exhibits a renewable energy cycle if it meets the following
two requirements: (i) it starts and ends with the same energy
level over a period of τ ; and (ii) it never falls below Emin .

During a renewable cycle, the amount of charged energy at a
sensor node i during τi must be equal to the amount of energy
consumed in the cycle (so as to ensure the first requirement
in Definition 1). That is,

τ · pi = τi · U (i ∈ N ) . (5)

Note that when the WCV visits a node i at time ai during
a renewable energy cycle, it does not have to re-charge the
sensor node’s battery to Emax . This is illustrated in Fig. 2,

0
0

 
First renewable cycle Second renewable cycleInitial transient cycle

Not Shown Here

(To be constructed later)

Initial Transient Cycle

ai 2τ ai + τ + τi 3τ

t

Emax

Emin

ai + τi ai + τ

ei

Ei

Gi

τ

Fig. 2. The energy level of a sensor node i during the first two renewable
cycles (partially re-charged v.s. fully re-charged).

where Gi denotes the starting energy of sensor node i in a
renewable cycle and gi(t) the energy level at time t (dashed
sawtooth graph). During a cycle [τ, 2τ ], we see that the energy
level has only two slopes: (i) a slope of −pi when the WCV
is not at this node (i.e., non-charging period), and (ii) a slope
of (U − pi) when the WCV is charging this node at a rate
of U (i.e., charging period). It is clear that gi(ai) ≤ gi(t) ≤
gi(ai + τi), i.e., node i’s energy level is lowest at time ai and
is highest at time ai + τi.

Also show in Fig. 2 is another renewable energy cycle
(marked in solid sawtooth graph) where the battery energy is
charged to Emax during a WCV’s visit. For this energy curve,
denote Ei the starting energy of node i in a renewable cycle
and ei(t) as the energy level at time t, respectively. Let ϕ∗

Full

be an optimal solution with fully re-charged battery in each
cycle. Let ϕ∗ be an optimal solution that maximizes the ratio
of the WCV’s vacation time over the cycle time, where there
is no requirement on whether or not a node’s battery is fully
re-charged. Naturally, the optimal objective obtained by ϕ∗

Full

is no more than the optimal objective obtained by ϕ∗ due to
the additional requirement (battery is fully re-charged) in ϕ∗

Full
.

Surprisingly, the following lemma shows that ϕ∗
Full

is equally
good as ϕ∗ in terms of maximizing the ratio of the WCV’s
vacation time over the cycle time. Thus, for our optimization
problem, it is sufficient to consider a solution with fully re-
charged battery. We omit the proof here due to space limit and
refer readers to [16] for details.

Lemma 1: Solution ϕ∗
Full

can achieve the same maximum
ratio of vacation time to the cycle time as that by solution ϕ∗.

Based on Lemma 1, we will only consider renewable cycle
where each node is fully re-charged when it is visited by the
WCV. Since the energy level at node i is lowest at time ai, to
ensure the second requirement in Definition 1, we must have
ei(ai) = Ei− (ai−τ)pi ≥ Emin . Since for a renewable cycle,

Ei = ei(2τ) = ei(ai + τi)− (2τ − ai − τi)pi
= Emax − (2τ − ai − τi)pi . (6)

Then we have ei(ai) = Emax −(2τ −ai−τi)pi−(ai−τ)pi =
Emax − (τ − τi)pi . Therefore,

Emax − (τ − τi) · pi ≥ Emin (i ∈ N ) . (7)

For a renewable energy cycle, we have the following lemma.
Lemma 2: A cycle is a renewable energy cycle if and only

if constraints (4), (5) and (7) are met for each sensor node
i ∈ N .
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The proof of Lemma 2 is omitted to conserve space. We
refer readers to [16] for details.

The following property shows that in an optimal solution,
there exists at least one “bottleneck” node in the network,
where the energy level at this node drops exactly to Emin when
the WCV arrives and starts to charge this node’s battery.

Property 1: In an optimal solution, there exists at least one
node in the network with its battery energy dropping to Emin

when the WCV arrives at this node.
A proof of this property is given in [16].

V. OPTIMAL TRAVELING PATH

In this section, we show that the WCV must move along
the shortest Hamiltonian cycle in an optimal solution, which
is formally stated in the following theorem.

Theorem 1: In an optimal solution with the maximal τvac
τ ,

the WCV must move along the shortest Hamiltonian cycle that
crosses all the sensor nodes and the service station.

Theorem 1 can be proved by contradiction. That is, if
there is an optimal solution ϕ∗, where the WCV does not
move along the shortest Hamiltonian cycle, then we can
construct a new solution ϕ̂ with the WCV moving along the
shortest Hamiltonian cycle and with an improved objective.
This solution ϕ̂ is constructed by changing the traveling path
in ϕ∗ by the shortest Hamiltonian cycle (thus the traveling
time is decreased and the vacation time can be increased) and
keeping all other variables (for flow rates, charging time, and
cycle time) unchanged. The details of this proof are given
in [16].

Theorem 1 gives us an interesting result that the WCV
should move along the shortest Hamiltonian cycle, which can
be obtained by solving the well known Traveling Salesman
Problem (TSP) (see, e.g., [17], [18]). Denote DTSP as the
total path distance in the shortest Hamiltonian cycle and
τTSP = DTSP/V . Then with the optimal traveling path, (4)
becomes

τTSP + τvac +
∑

i∈N τi = τ . (8)

We note that the shortest Hamiltonian cycle may not be
unique. Since any shortest Hamiltonian cycle has equivalent
total path distance and traveling time τTSP , the selection of a
particular shortest Hamiltonian cycle does not affect constraint
(8), and yields the same optimal objective. This insight is
formally stated in the following corollary.

Corollary 1.1: Any shortest Hamiltonian cycle can achieve
the same optimal objective.

We also note that to travel the shortest Hamiltonian cycle,
there are two (opposite) outgoing directions for the WCV
to start from its home service station. Since the proof of
Theorem 1 is independent of the starting direction for the
WCV, either direction will yield some optimal solution with
the same objective value, although some variables in each
optimal solution will have different values. We have the
following corollary.

Corollary 1.2: To complete the shortest Hamiltonian cycle,
there are two opposite directions that the WCV can follow, both
of which can achieve the same optimal objective. In the two

optimal solutions corresponding to the two opposite directions,
the values of fij , fiB , τ, τi, τTSP , τvac , pi are identical, while
the values of ai (by (3)) and Ei (by (6)) are different due to
difference in their respective renewable cycles, where i, j ∈ N ,
i %= j.

VI. PROBLEM FORMULATION AND SOLUTION

A. Mathematical Formulation
Summarizing the objective and all the constraints in Sec-

tions III, IV and V, our problem can be formulated as follows.

OPT
max

τvac

τ
s.t. (1), (2), (5), (7), (8)

fij , fiB , τi, τ, τvac , pi ≥ 0 (i, j ∈ N , i %= j)

In this problem, flow rates fij and fiB , time intervals τ , τi,
and τvac , and power consumption pi are optimization variables;
Ri, C, Cij , CiB , U , Emax , Emin , and τTSP are constants.
This problem has both nonlinear objective ( τvacτ ) and nonlinear
terms (τpi and τipi) in constraints (5) and (7).

We note that in the above formulation, only the constant
τTSP is related to the shortest Hamiltonian cycle. Since this
value does not depend on the traveling direction along the
Hamiltonian cycle, an optimal solution of problem OPT can
work with either direction and yields one renewable cycle for
each direction.

B. Reformulation
We first use change-of-variable technique to simplify the

formulation. For the nonlinear objective τvac
τ , we define

ηvac =
τvac

τ
. (9)

For (8), we divide both sides by τ and have τTSP · 1
τ + ηvac +∑

i∈N
τi
τ = 1. To remove the nonlinear terms 1

τ and τi
τ in the

above equation, we define

ηi =
τi
τ

(i ∈ N ) , (10)

h =
1

τ
. (11)

Then (8) is reformulated as τTSP ·h+ ηvac +
∑

i∈N ηi = 1, or
equivalently,

h =
1−

∑
i∈N ηi − ηvac

τTSP

. (12)

Similarly, (5) and (7) can be reformulated (by dividing both
sides by τ ) as

pi = U · ηi (i ∈ N ) , (13)
(1− ηi) · pi ≤ (Emax − Emin) · h (i ∈ N ) . (14)

By (12) and (13), constraint (14) can be rewritten as (1−ηi) ·
Uηi ≤ (Emax − Emin)

1−
∑

k∈N ηk−ηvac

τ
TSP

, or

ηvac ≤ 1−
∑

k∈N
ηk − U · τTSP

Emax − Emin

· ηi · (1− ηi) (i ∈ N ) .
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By (13), constraint (2) can be rewritten as

C
∑k !=i

k∈N fki +
∑j !=i

j∈N Cijfij + CiBfiB − Uηi = 0 (i ∈ N ) .

Now the problem OPT is reformulated as follows.

OPT-R
max ηvac

s.t.
∑j !=i

j∈N fij+fiB−
∑k !=i

k∈N fki=Ri (i ∈ N ) (15)

C
∑k !=i

k∈N fki +
∑j !=i

j∈N Cijfij + CiBfiB − Uηi = 0

(i ∈ N ) (16)

ηvac ≤ 1−
∑

k∈N ηk − U ·τ
TSP

Emax−E
min

· ηi · (1− ηi)

(i ∈ N ) (17)
fij , fiB ≥ 0, 0 ≤ ηi, ηvac ≤ 1 (i, j ∈ N , i %= j)

In this problem, fij , fiB , ηi, and ηvac are optimization vari-
ables; Ri, C, Cij , CiB , U , Emax , Emin and τTSP are constants.
The following algorithm shows how to obtain a solution to
problem OPT once we obtain a solution to problem OPT-R.

Algorithm 1: Once we solve problem OPT-R, we can obtain
the solution to problem OPT (i.e., calculate the values for τ ,
τi, τvac , and pi) as follows: h by (12), τ by (11), τi by (10),
τvac by (9), and pi by (13).

After reformulation, the objective function and the con-
straints become linear except (17), where we have a second
order η2

i term, with 0 ≤ ηi ≤ 1. In the next section, we
present an efficient technique to approximate this second order
nonlinear terms. Subsequently, we develop an efficient near-
optimal solution to our optimization problem.

Remark 1: In our optimization problem, data routing and
charging time are closely coupled. One may want to decouple
routing from the charging problem and opt certain energy
efficient routing, e.g., the minimum energy routing.1 However,
minimum energy routing cannot guarantee optimality. This is
because, to maximize ηvac , by (17), we need to minimize
maxi∈N {

∑
k∈N ηk +

U ·τ
TSP

Emax−E
min

· ηi · (1 − ηi)}, i.e., mini-

mize {
∑

k∈N ηk +maxi∈N { U ·τ
TSP

Emax−E
min

· ηi · (1− ηi)}}. But
under minimum energy routing, we can only guarantee that∑

i∈N (C
∑k !=i

k∈N fki+
∑j !=i

j∈N Cijfij+CiBfiB) is minimized.
By the relationship in (16), minimizing

∑
i∈N (C

∑k !=i
k∈N fki+∑j !=i

j∈N Cijfij+CiBfiB) is equivalent to minimizing
∑

i∈N ηi,

which is only part of
∑

k∈N ηk+maxi∈N { U ·τ
TSP

Emax−E
min

·ηi ·(1−
ηi)}. Therefore, minimum energy routing cannot guarantee
optimality of our problem. This insight will be confirmed by
our numerical results in Section VIII. !

C. A Near-Optimal Solution
Roadmap. Our roadmap to solve problem OPT is as follows.
First, we employ a piecewise linear approximation for the
quadratic terms (η2

i ) in problem OPT-R. This approximation
relaxes the corresponding nonlinear constraints into linear

1Here, minimum energy routing is defined as using the least energy route
to transport data from its source to destination.

0 13
4

η2i

ζi

ηi

1
Y

X1
4

1
2

Fig. 3. An illustration of piecewise linear approximation (with m = 4) for
the curve (ηi, η2i ), 0 ≤ ηi ≤ 1.

constraints, which allows for the problem to be solved by
a solver such as CPLEX [19]. Based on the solution from
CPLEX, we construct a feasible solution to problem OPT. In
Section VI-D, we prove the near-optimality of this feasible
solution.
Piecewise Linear Approximation for η2

i . Note that the only
nonlinear terms in the formulation are η2

i , i ∈ N . Further, ηi
lies in the interval [0, 1], which is small. This motivates us
to employ a piecewise linear approximation for the quadratic
terms η2

i .
The key idea is to use m piecewise linear segments to

approximate the quadratic curve (see Fig. 3). That is, for
curve (ηi, η2

i ), 0 ≤ ηi ≤ 1, we construct a piecewise
linear approximation (ηi, ζi) by connecting points ( k

m , k2

m2 ),
k = 0, 1, . . . ,m. The setting of m will determine the level of
accuracy and will be studied in Section VI-D.

We now represent the piecewise linear curve (ηi, ζi) for
0 ≤ ηi ≤ 1 mathematically. For k = 0, 1, . . . ,m, any point
(ηi, ζi) on the piecewise linear curve within the kth segment
(i.e., lying within two end points (k−1

m , (k−1)2

m2 ) and ( k
m , k2

m2 ))
can be represented by

ηi = λi,k−1 · k−1
m + λi,k · k

m , (18)

ζi = λi,k−1 · (k−1)2

m2 + λi,k · k2

m2 , (19)

where λi,k−1 and λi,k are two weights and satisfy the follow-
ing constraints.

λi,k−1 + λi,k = 1 , (20)
0 ≤ λi,k−1,λi,k ≤ 1 . (21)

Since y = x2 is a convex function, the piecewise linear
approximation curve (ηi, ζi) lies above the curve (ηi, η2

i ),
0 ≤ ηi ≤ 1. Thus, we have ζi ≥ η2

i (see Fig. 3). The
following lemma characterizes the approximation error ζi−η2

i
as a function of m. Its proof can be found in [16].

Lemma 3: ζi − η2
i ≤ 1

4m2
for i ∈ N .

Note that the mathematical representation in (18) to (21)
is for a given kth segment, k = 1, 2, · · · ,m. We now give a
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mathematical formulation for the entire piecewise linear curve.
Denote zik, 1 ≤ k ≤ m, a binary variable indicating whether
ηi falls within the kth segment, i.e., if k−1

m ≤ ηi <
k
m , then

zik = 1, otherwise, zik = 0. Since ηi can only fall in one of
the m segments, we have

∑m
k=1 zik = 1 . (22)

With the definition of zik, 1 ≤ k ≤ m, we can formulate (18)
to (20) for the entire piecewise linear curve. First, we show
how λik relates to zik, 1 ≤ k ≤ m. Based on (18) to (20),
when ηi falls in the kth segment, we can only have λi,k−1 and
λi,k be positive while all other λi,j (j %= k− 1, k) be all zero.
That is, λi0 > 0 only if zi1 = 1; λik > 0 only if zik = 1 or
zi,k+1 = 1, 1 ≤ k < m; and λim > 0 only if zim = 1. These
relationships can be written as follows.

λi0 ≤ zi1 (23)
λik ≤ zik + zi,k+1 (1 ≤ k < m) (24)

λim ≤ zim (25)

The above three constraints ensure that there are at most two
adjacent positive λ’s for each ηi, (18), (19), and (20) can now
be rewritten for the entire piecewise linear curve as follows.

ηi =
∑m

k=0 λik · k
m (26)

ζi =
∑m

k=0 λik · k2

m2 (27)
∑m

k=0 λik = 1 (28)

Relaxed Linear Formulation. By replacing η2
i with ζi in

(17), we have

ηvac ≤ 1−
∑

k∈N ηk − Uτ
TSP

Emax−E
min

(ηi − ζi) (i ∈ N ). (29)

By adding new constraints (22) to (28), we have the following
linear relaxed formulation.

OPT-L
max ηvac

s.t. (15), (16), (22)− (29)
fij , fiB ≥ 0, 0 ≤ ηi, ηvac , ζi ≤ 1 (i, j ∈ N , i %= j)

zik ∈ {0, 1} (i ∈ N , 1 ≤ k ≤ m)

0 ≤ λik ≤ 1 (i ∈ N , 0 ≤ k ≤ m),

where fij , fiB , ηi, ηvac , zik, λik, and ζi are variables, Ri,
C, Cij , CiB , U , Emax , Emin , and τTSP are constants. The
new formulation can now be solved by a solver such as
CPLEX [19].
Construction of Feasible Near-Optimal Solution. The
solution to problem OPT-L is likely to be infeasible to problem
OPT-R (and problem OPT). But based on this solution, we can
construct a feasible solution to problem OPT.

Suppose ψ̂ = (f̂ij , f̂iB , η̂i, η̂vac , ẑik, λ̂ik, ζ̂i) is the solution
to problem OPT-L. Looking at (f̂ij , f̂iB , η̂i, η̂vac), we find that
it satisfies all constraints to problem OPT-R except (17). To
construct a feasible solution ψ = (fij , fiB , ηi, ηvac) to problem
OPT-R, we let fij = f̂ij , fiB = f̂iB , ηi = η̂i. For ηvac , in order
to satisfy (17), we define it as

ηvac = mini∈N

{
1−

∑
k∈N η̂k − U ·τ

TSP
Emax−E

min
η̂i(1− η̂i)

}
.

It is easy to verify that this newly constructed solution ψ
satisfies all constraints for problem OPT-R. Once we have this
solution to problem OPT-R, we can easily find a solution to
problem OPT via Algorithm 1.

D. Proof of Near-Optimality
In this section, we quantify the performance gap between

the optimal objective (unknown, denoted as η∗
vac

) and the
objective (denoted as ηvac ) obtained by the feasible solution
ψ that we obtained in the last section. Naturally, we expect
such performance gap is a function of m, i.e., the number of
segments that we use in the piecewise linear approximation.
This result will be stated in Lemma 4. Based on this result, we
can obtain an important inverse result (in Theorem 2), which
shows that for a given target performance gap ε (0 < ε & 1),
how to set m such that η∗

vac
− ηvac ≤ ε.

Lemma 4: For the feasible solution ψ with objective value
ηvac , we have η∗

vac
− ηvac ≤

U ·τ
TSP

4(Emax−E
min

) ·
1

m2 .

Proof: Denote η̂vac the objective value obtained by solu-
tion ψ̂ to the relaxed linear problem OPT-L. Since problem
OPT-L is a relaxation of problem OPT-R, η̂vac is an upper
bound of η∗

vac
, i.e., η∗

vac
≤ η̂vac . Therefore,

η∗
vac

− ηvac

≤ η̂vac − ηvac

=

[
1−

∑

k∈N
η̂k − UτTSP

Emax − Emin

· (ηmax − ζmax)

]

−
[
1−

∑

k∈N
η̂k − UτTSP

Emax − Emin

· ηmax · (1− ηmax)

]

=
UτTSP

Emax − Emin

(ζmax − η2
max

)

≤ UτTSP

4(Emax − Emin)
· 1

m2
,

where the second equality holds by Lemmas 5 and 6 in [16],
the fourth inequality holds by Lemma 3. This completes the
proof.

Based on Lemma 4, the following theorem shows that for
a given target performance gap ε (0 < ε & 1), how to set m
such that η∗

vac
− ηvac ≤ ε.

Theorem 2: For a given ε, 0 < ε & 1, if m =⌈√
Uτ

TSP
4ε(Emax−E

min
)

⌉
, then we have η∗

vac
− ηvac ≤ ε.

Proof: Lemma 4 shows that the performance gap is
η∗
vac

− ηvac ≤ Uτ
TSP

4(Emax−E
min

) · 1
m2 . Therefore, if we set

m =
⌈√

Uτ
TSP

4ε(Emax−E
min

)

⌉
≥

√
Uτ

TSP
4ε(Emax−E

min
) , then we have

η∗
vac

− ηvac ≤ UτTSP

4(Emax − Emin)
· 1

m2

≤ UτTSP

4(Emax − Emin)
· 4ε(Emax − Emin)

UτTSP

= ε .

This completes the proof.
With Theorem 2, we show the complete solution procedure

on how to obtain a near-optimal solution to OPT in Fig. 4.
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Construction of a Near-Optimal Solution
1. Given a target performance gap ε.

2. Let m =

⌈√
Uτ

TSP
4ε(Emax−E

min
)

⌉
.

3. Solve problem OPT-L with m segments by CPLEX, and obtain its
solution ψ̂ = (f̂ij , f̂iB , η̂i, η̂vac , ẑik , λ̂ik , ζ̂i).

4. Construct a feasible solution ψ = (fij , fiB , ηi, ηvac ) for problem
OPT-R by letting fij = f̂ij , fiB = f̂iB , ηi = η̂i and ηvac =

mini∈N {1−
∑

k∈N η̂k − Uτ
TSP

Emax−E
min

· η̂i · (1− η̂i)}.
5. Obtain a near-optimal solution (fij , fiB , τ, τi, τvac , pi) to problem

OPT by Algorithm 1.

Fig. 4. Summary of the construction of a near-optimal solution.

VII. CONSTRUCTION OF INITIAL TRANSIENT CYCLE

In Section IV, we skipped discussion on how to con-
struct the initial transient cycle before the first renewable
cycle. Now with the optimal traveling path P (the shortest
Hamiltonian cycle) and the feasible near-optimal solution
(fij , fiB , τ, τi, τvac , pi) obtained in Section VI, we are ready
to construct the initial transient cycle.

Unlike a renewable energy cycle at node i, which starts and
ends with the same energy level Ei, the initial transient starts
with Emax and ends with Ei. Specifically, the initial transient
cycle must meet the following criterion.

Criterion 1: At each node i ∈ N , its initial transient cycle
must meet the following criteria: (i) ei(0) = Emax and ei(τ) =
Ei; and (ii) ei(t) ≥ Emin for t ∈ [0, τ ].

We now construct an initial cycle to meet the above crite-
rion. First, we need to calculate Ei (i ∈ N ). From (6), we
have Ei = Emax − (2τ − ai − τi)pi, where ai can be obtained
by (3).

For a solution ϕ = (P, fij , fiB , τ, τi, τP , τvac , pi, U) corre-
sponding to a renewable energy cycle for t ≥ τ , we construct
ϕ̂ = (P̂ , f̂ij , f̂iB , τ̂ , τ̂i, τ̂P̂

, τ̂vac , p̂i, ui) for the initial transient
cycle for t ∈ [0, τ ] by letting P̂ = P , f̂ij = fij , f̂iB = fiB ,
τ̂ = τ , τ̂i = τi, τ̂

P̂
= τP , τ̂vac = τvac , p̂i = pi and

ui =
piâi
τi

+ pi, (30)

where ui is the charging rate at node i during the initial
transient cycle and âi is the arrival time of the WCV at node
i in the initial transient cycle (see Fig. 5).

Now we need to show ui ≤ U where U is the full charging
rate. First we have

âπi =
i−1∑

k=0

D̂π
k
π
k+1

V
+

i−1∑

k=1

τ̂k

=
i−1∑

k=0

Dπ
k
π
k+1

V
+

i−1∑

k=1

τk = aπi − τ , (31)

where the second equality holds by P̂ = P and τ̂i = τi, and
the last equality follows from (3). Further, by (5), we have
U · τi = τ · pi = (2τ − τ) · pi ≥ (ai + τi − τ) · pi. It follows
that

(ai − τ) · pi ≤ (U − pi) · τi. (32)

Then, we have

First renewable cycle

0
0

Initial transient cycle
 

ei

τ 2τai ai + τi

Emin

Ei

Emax

t

âi âi + τ̂i

Fig. 5. Illustration of energy behavior for the initial transient cycle and how
it connects the first renewable cycle.

ui =
piâi
τi

+ pi =
pi(ai − τ)

τi
+ pi

≤ (U − pi) · τi
τi

+ pi = U ,

where the first equality follows from (30), the second equality
follows from (31), and the third inequality follows from (32).

For the newly constructed ϕ̂, we have the following theo-
rem.

Theorem 3: The constructed ϕ̂ is a feasible transient cycle.
To prove ϕ̂ is a feasible initial transient cycle, we need to

show that the newly constructed ϕ̂ satisfies Criterion 1, which
can be easily proved [16].

VIII. NUMERICAL RESULTS

In this section, we present some numerical results to demon-
strate how our solution can produce a renewable WSN and
some interesting properties with such a network.

A. Simulation Settings
We consider a randomly generated WSN consisting of 50

nodes. 2 The sensor nodes are deployed over a square area of
1 km × 1 km. The data rate (i.e., Ri, i ∈ N ) from each node is
randomly generated within [1, 10] kb/s. The power consump-
tion coefficients are β1 = 50 nJ/b, β2 = 0.0013 pJ/(b ·m4),
α = 4, and ρ = 50 nJ/b [20]. The base station is assumed to
be located at (500, 500) (in m) and the home service station
for the WCV is assumed to be at the origin. The traveling
speed of the WCV is V = 5 m/s.

For the battery at a sensor node, we choose a regular
NiMH battery and its nominal cell voltage and the quantity
of electricity is 1.2 V/2.5 Ah. We have Emax = 1.2 V ×
2.5 A × 3600 sec = 10.8 KJ [21, Chapter 1]. We let Emin =
0.05 · Emax = 540 J. We assume the wireless energy transfer
rate U = 5 W, which is well within feasible range [11].

We set the target ε = 0.01 for the numerical results, i.e.,
our solution is within 1% from the optimum.

B. Results
Table I gives the location of each node and its data rate for

a 50-node network. The shortest Hamiltonian cycle is found
by using the Concorde solver [18] and is shown in Fig. 6. For

2Additional results for other network sizes can be found in [16].
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TABLE I
LOCATION AND DATA RATE Ri FOR EACH NODE IN A 50-NODE NETWORK.

Node Location Ri Node Location Ri
Index (m) (kb/s) Index (m) (kb/s)

1 (815, 276) 2 26 (758, 350) 9
2 (906, 680) 8 27 (743, 197) 1
3 (127, 655) 4 28 (392, 251) 4
4 (913, 163) 6 29 (655, 616) 3
5 (632, 119) 2 30 (171, 473) 9
6 (98, 498) 7 31 (706, 352) 5
7 (278, 960) 3 32 (32, 831) 10
8 (547, 340) 7 33 (277, 585) 2
9 (958, 585) 7 34 (46, 550) 3
10 (965, 224) 8 35 (97, 917) 2
11 (158, 751) 5 36 (823, 286) 2
12 (971, 255) 1 37 (695, 757) 9
13 (957, 506) 3 38 (317, 754) 6
14 (485, 699) 10 39 (950, 380) 6
15 (800, 891) 2 40 (34, 568) 2
16 (142, 959) 9 41 (439, 76) 9
17 (422, 547) 6 42 (382, 54) 7
18 (916, 139) 10 43 (766, 531) 4
19 (792, 149) 1 44 (795, 779) 6
20 (959, 258) 5 45 (187, 934) 5
21 (656, 841) 2 46 (490, 130) 1
22 (36, 254) 10 47 (446, 569) 3
23 (849, 814) 1 48 (646, 469) 2
24 (934, 244) 8 49 (709, 12) 2
25 (679, 929) 9 50 (755, 337) 3

X(m)

500

500

Y(m)

1000

1000
0

0 Service Station

Base Station

Mobile WCV

Sensor Node

Fig. 6. An optimal traveling path for the 50-node sensor network. Only
counter clockwise traveling direction is shown.

this optimal cycle, DTSP = 5821 m and τTSP = 1164.2 s. For
the target ε = 0.01, by Theorem 2, we have

m =
⌈√

U ·τ
TSP

4ε(Emax−E
min

)

⌉

=
⌈√

5×1164.2
4×0.01×(10800−540)

⌉
= 4 ,

which is a small number. In our solution, we have the cycle
time τ = 17.34 hours, the vacation time τvac = 13.44 hours,
and the objective ηvac = 77.51%.

In Corollary 1.2, we find that the WCV can follow either
direction of the shortest Hamiltonian cycle while achieving

0

Second renewable cycleFirst renewable cycleInitial transient cycle

0 12587 12487013170 62435 75022 75605 187305

t(s)

137457 138040

Emax =10800

Ei =8498

Emin =540

(J)
ei

(a) Traveling path is counter clockwise.

0

Second renewable cycle

0

First renewable cycleInitial transient cycle(J)

187305

Emax =10800

Emin =540

1448865 62435 63300 63883 124870 125735 126318

t(s)

ei

Ei =7951

(b) Traveling path is clockwise.

Fig. 7. The energy behavior of a sensor node (the 6th) in the 50-node network
during the initial transient cycle and the first two renewable cycles.

0
0

Initial transient cycle First renewable cycle Second renewable cycle

136054

Emax =10800

Emin =540

Ei =2081

t(s)

(J)

9060 11184 62435 71495 73619 187305

ei

124870 133930

Fig. 8. The energy behavior of the bottleneck node (38th node) in the 50-node
network. Traveling direction is counter clockwise.

the same objective value ηvac = 77.51%. Comparing the two
solutions, the values for fij , fiB , τ , τi, τTSP , τvac are identical
while the values of ai and Ei are different. This finding can be
verified by our numerical results. As an example, Figs. 7(a)
and 7(b) show the energy cycle behavior of a sensor node
(the 6th node) under the two opposite traveling directions,
respectively.

In Property 1, we find that there exists a bottleneck node
in the network with its energy dropping to Emin during a
renewable energy cycle. This property is confirmed in our
numerical results. This bottleneck node is the 38th node,
whose energy behavior is shown in Fig. 8.

In Section VI-B, we showed that minimum energy routing
may not be optimal for our problem (see Remark 1). This point
is confirmed by our numerical results. In Fig. 9, we show that
data routing in our solution differs from the minimum energy
routing.

IX. CONCLUSION

Existing WSN is constrained by limited battery energy at a
node and thus finite lifetime is regarded as a fundamental per-
formance bottleneck. This paper exploits recent breakthrough
in wireless energy transfer technology for a WSN and shows
that once properly designed, a WSN has the potential to
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500

Y(m)

1000

1000
0

0

Sensor Node

(a) Data routing in our solution.

Base Station

X(m)

500

500

Y(m)

1000

1000
0

0

Sensor Node

(b) Minimum energy routing.

Fig. 9. Comparison of data routing by our solution and that by minimum energy routing for the 50-node network.

remain operational forever. This is the first paper that offers a
systematic investigation of a sensor network operation under
this new enabling energy transfer technology.

We studied a general scenario where a mobile charging
vehicle periodically travels inside the network and charges
each sensor node wirelessly without any plugs or wires. We
introduced a new concept called renewable energy cycle and
offered both necessary and sufficient conditions. We stud-
ied a practical optimization problem, with the objective of
maximizing the ratio of the WCV’s vacation time over the
cycle time. For this problem, we proved that the optimal
traveling path for the WCV in each renewable cycle is the
shortest Hamiltonian cycle. Subsequently, we developed a
provable near-optimal solution for both flow routing, total
cycle time, and individual charging time at each node. We
also showed that traditional minimum energy routing cannot
achieve optimal solution. Using numerical results, we showed
the detailed network behavior within a renewable energy cycle
and demonstrated that a sensor network operating under our
solution can indeed remain operational with unlimited lifetime.
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