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Abstract-Network throughput and energy consumption are 
two important performance metrics for a multi-hop wireless 
network. Current state-of-the-art is limited to either maximizing 
throughput under some energy constraint or minimizing energy 
consumption while satisfying some throughput requirement. In 
this paper, we take a multicriteria optimization approach to 
offer a systematic study on the relationship between the two 
performance objectives. We show that the solution to the multi­
criteria optimization problem is equivalent to finding an optimal 
throughput-energy curve, which characterizes the envelope of the 
entire throughput-energy region. We prove some important prop­
erties of the optimal throughput-energy curve. For case study, we 
consider both linear and nonlinear throughput functions. In the 
linear case, we characterize the optimal throughput-energy curve 
precisely through parametric analysis, while in the nonlinear 
case, we use a piece-wise linear approximation to approximate 
the optimal throughput-energy curve with arbitrary accuracy. 
Our results offer important insights on exploiting the trade-off 
between the two performance metrics. 

I. INTRODUCTION 

Since the inception of multi-hop wireless networks, through­
put and energy consumption are two key performance metrics 
that bear in the minds of network designers and operators. 
Throughput is clearly the first and foremost performance 
consideration, as users of a multi-hop wireless network in­
creasingly wish such network can offer comparable experience 
as its counterpart wired networks. On the other hand, energy 
consumption is also regarded as a key performance consid­
eration, as many types of multi-hop wireless networks (e.g., 
ad hoc network, sensor network) are battery-powered and are 
constrained with energy at each node. 

To date, there is a vast amount of literature on these two 
performance metrics. For network throughput, people have 
been trying to maximize it either at different layers (e.g., 
throughput-efficient scheduling algorithms [8], [26], [36], [38], 
throughput-efficient routing algorithms [6], [13], [32]) or 
jointly across multiple layers (e.g., [1], [2], [7], [12], [24], 
[27]). For energy, people are trying to conserve/minimize its 
consumption while meeting certain service requirements (e.g., 
energy-efficient scheduling and MAC schemes [17], [21], [34], 
[35], [37], [39], energy-efficient routing protocol [15], [18], 
[23]). 

We have also witnessed quite some studies exploring the in­
teraction between network throughput and energy consumption 
in the context of either maximizing network throughput under 

energy (or power) constraints (e.g., [9], [14], [31]) or mini­
mizing energy consumption while satisfying some throughput 
constraints (e.g., [5], [10], [24], [25], [31]). Although many of 
these prior efforts were able to offer some optimal solutions, 
none of them can offer a holistic view on how the maximum 
network throughput changes as a function of network energy 
consumption, i.e., the so-called optimal throughput-energy 
curve in this paper. 

The significance of optimal throughput-energy curve is 
three-fold. First, this shows the envelop of the entire 
throughput-energy region, which offers a global perspective 
on the throughput-energy tradeoff. In contrast, a solution to 
traditional problems such as maximizing throughput under 
energy constraints or minimizing energy under throughput 
constraints only represents a single point on this curve. 
Second, each time when the requirement on either network 
throughput or energy consumption changes, one can use 
the optimal throughput-energy curve to find a new optimal 
tradeoff between throughput and energy immediately, rather 
than resorting to solving a new optimization problem. Finally, 
the optimal throughput-energy curve shows us the existence of 
a saturation point, beyond which the throughput can no longer 
be further increased, regardless of how much additional energy 
is used. 

In this paper, we conduct a systematic study on the op­
timal relationship between network throughput and energy 
consumption for a multi-hop wireless network. We tackle this 
problem through a multicriteria optimization formulation, i.e., 
maximizing network throughput while minimizing total power 
in the network. Our main contributions can be summarized as 
follows. 

• Through multicriteria optimization formulation, we find 
that the optimal solutions of this multicriteria optimiza­
tion problem can be found by obtaining the so-called 
optimal throughput-energy curve. 

• We find a number of important properties associated 
with the optimal throughput-energy curve, such as non­
decreasing, concave, the existence of a saturation point, 
and strictly increasing between zero and the saturation 
point. 

• For case study, we consider two cases where the through­
put functions are linear and nonlinear, respectively. 
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- In the linear case, we show that the optimal 
throughput-energy curve can be characterized pre­
cisely via parametric analysis. 
In the nonlinear case, we show that the optimal 
throughput-energy curve can be approximated by 
piece-wise linear segments with arbitrary desired 
accuracy. 

The remainder of this paper is organized as follows. In 
Section II, we describe our network model. In Section III, 
we present a multicriteria formulation that maximizes network 
throughout while minimizing energy consumption in a multi­
hop wireless network. We show that finding the optimal 
solution to this multicriteria optimization problem is equiv­
alent to finding the optimal throughput-energy curve. We also 
present some important properties associated with the optimal 
throughput-energy curve. Section IV and Section V present 
two case studies when the throughput functions are linear and 
nonlinear, respectively. Section VI concludes this paper. 

II. NETWORK MODEL 

We consider a general multi-hop wireless network with a set 
of N nodes. A potential directed link (i,j),i,j EN, exists 
between two nodes i and j if and only if the distance between 
i and j is smaller than a transmission range. Denote £. the 
set of potential links in the network. To focus on throughput 
and energy performance, we simplify link layer scheduling 
by employing orthogonal channels among the links, similar to 
that in [12], [22], [29]. 

Denote M a set of user (unicast) communication sessions 
in the network. Denote src(m) and dst(m) the source and 
destination nodes of session m E M, respectively. Denote 
r(m) the rate of session m E M. We consider a general 
flow routing strategy where flow splitting (i.e., multi-path) is 
allowed. On link i, denote rl(m) the data rate that is attributed 
to session m E M. Denote £.?ut and £.�n the sets of potential 
outgoing and incoming links at node i, respectively. Then 
we have the following flow balance equations for multi-hop 
routing. 

• If node i is the source node of session m, i.e., i = src(m), 
then 

L n(m) = r(m) . (1) 

IEC?ut 
• If node i is an intermediate relay node along the path of 

session m, i.e., i -I- src(m) and i -I- dst(m), then 

l;i(i,src(m)) l;i(dst(m),i) 
L n(m) = L rl(m) . (2) 

• If node i is the destination node of session m, i.e., i = 

dst(m), then 

L rl(m) = r(m) . (3) 

IECln 
It can be easily verified that once (1) and (2) are satisfied, then 
(3) is also satisfied. As a result, it is sufficient to list only (1) 
and (2) in a formulation. 

For power control at each node, we employ a simple 
"on/off" control, which has been used for energy-saving in 
wireless networks (see e.g., [28], [30]). When a link is "on", 
the transmitter of this link transmits at a fixed power level PT; 
when the link is "off" (for energy conservation), the transmitter 
of this link does not expend any power for transmission. To 
quantify the percentage of time that the link is in different 
state, denote al (0 ::; al ::; 1, i E £.) the fraction of time 
within a time frame that link i is "on". 

Based on this on/off energy conservation model, the average 
rate of link i can be computed as 

(4) 

where B is the channel bandwidth, gl is channel gain between 
the transmitter and receiver of link i and 'TJ is the ambient 
Gaussian noise density. Note the absence of interference in 
(4), due to our use of orthogonal channels in the network. 

On link i, we have the following flow rate constraint: 

L n(m) ::; Cl, for alIi E £. , (5) 
mEM 

which states that the aggregate flow rates from all sessions 
traversing link i cannot exceed the achievable rate of this link. 

III. THROUGHPUT-ENERGY CURVE AND ITS PROPERTIES 

A. Multicriteria Formulation 

In this paper, we are interested in a multicriteria optimiza­
tion problem, i.e., how to maximize network throughput while 
minimizing energy consumption at the same time. We now 
give a formulation of this problem. 

Denote h(·) as a concave and nondecreasing utility function. 
We define the network throughput utility U as follows: 

U = L h[r(m)] , 
mEM 

where r(m) is the rate of session m E M. Note that in the 
special case when h[r(m)] = r(m), then U is simply the sum 
of throughput in the network; in the case when h[r(m)] = 

In[r(m)], U is called proportional fairness [20]. 

Now we consider energy consumption. Note that when a 
link is active, the rate of energy consumption includes energy 
consumption both for transmission and reception. Then the 
network energy consumption rate P in the network can be 
defined as follows: 

P = Lal· (PT + PR) , 
IEC 

where al is the fraction of time within a time frame that link i 
is active, PT is the transmission power, and PR is the reception 
power. 
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With the above two definitions, our multicriteria optimiza­
tion problem can be formulated as follows. 

MOPT min P = Lal· (PT + PR) 
IEC 

max U = L h[r(m)] 
mEM 

s.t. Constraints (1), (2), (4) and (5) 

r(m), rl (m) � 0, ° ::; al ::; l. 
Note that the two objective functions, P and U, are coriflict­

ing objectives. For example, when P is minimized (i.e., 0), U 
is also ° and is not maximized. So there does not appear to 
exist an optimal solution in our problem that optimizes both 
objectives simultaneously. 

Given that an optimal solution does not exist, a natural 
question to ask is what kind of solutions should we pursue 
when investigating problem MOPT? Before answering this 
question, we first clarify how to compare two feasible solu­
tions. Denote (PI, UI) and (P2, U2) the objective pairs of two 
different feasible solutions Xl and X2, respectively. We say 
objective pair (PI, UI) dominates (P2, U2) if PI ::; P2 and 
UI � U2• This means that solution Xl uses no more energy 
than solution X2 to achieve the same or more throughput, i.e., 
Xl is better than X2. With this clarification, it is clear that our 
goal should be to find solutions that are not dominated by any 
other solutions. That is, we want to find solutions with their 
objective pair (pt, ut) such that there does not exist another 
solution with objective pair (P, U) such that P ::; pt and 
U � ut. Such solutions are called Pareto optimal solutions 
(also called efficient solutions in [16]) and the objective value 
pair (pt, ut) corresponding to a Pareto optimal solution is 
called a Pareto optimal point. Pareto optimal solutions are 
those for which improvement in one objective can only be 
achieved with the deterioration of the other objective. 

For our problem, we find that it is difficult to obtain 
all Pareto optimal solutions directly. Instead, we can find a 
solution X* with its objective pair (P*, U*) such that there 
does not exist another solution X with its objective pair (P, U) 
satisfying P < P* and U > U*. That is, there does not 
exist a solution X that can use less energy than solution x* 
to achieve more throughput. Such solutions are called weakly 
Pareto optimal solutions (also called weakly efficient solutions 
in [16]) and the objective value pair (P*, U*) corresponding 
to such a solution is called a weakly Pareto optimal point. 
Note that Pareto optimal points are also weakly Pareto opti­
mal, but weakly Pareto optimal points are not always Pareto 
optimal. Weakly Pareto optimal solutions are those for which 
improvement in both objectives simultaneously is impossible, 
but improvement on one objective without deteriorating the 
other is possible. Once we find all the weakly Pareto optimal 
solutions, we can identify a subset of solutions that are Pareto 
optimal based on its definition. 

B. Throughput-Energy Curve 

Instead of solving MOPT directly, let's consider a simpler 
single objective optimization problem for a given P (i.e., fixing 

one of the objective value). That is, 

OPT(P) max L h[r(m)] 
mEM 

s.t. L al(PT + PR) = P 
IEC 
All constraints in MOPT 

r(m), rl (m) � 0, ° ::; al ::; 1 . 

(6) 

We now show that the optimal solution to OPT(P) is a weakly 
Pareto optimal solution to MOPT. 

Lemma 1: Let x* = {r*(m), rZ(m), aill E C, m E M} 
be an optimal solution to OPT(P) for a given value of P* 
with a corresponding objective value U*, then x* is a weakly 
Pareto optimal solution to MOPT 

Lemma 1 can be proved by contradiction. Due to page 
limitation, we refer readers to [19]. 

Denote the range of P to be [0, Pmax] , where Pmax can be 
obtained by setting al = 1 for all l E C. That is, P max = 

LIEdPT + PR) = ICI . (PT + PR). If one can enumerate 
all possible P E [0, Pmax] and obtain their corresponding 
optimal solutions via OPT(P), then based on Lemma 1, all 
these solutions are weakly Pareto optimal solutions. 

Now we show the converse is also true, i.e., any weakly 
Pareto optimal point (P, U) of MOPT can be obtained by a 
corresponding problem of OPT(P). 

Lemma 2: Each weakly Pareto optimal point (P, U) of 
MOP T can be obtained by solving an instance of OPT(P). 

The proof of Lemma 2 is based on contradiction. Due to 
page length, we refer readers to [19]. 

Based on Lemmas 1 and 2, we conclude that each weakly 
Pareto optimal point (P, U) of MOPT uniquely corresponds 
to the same (P, U) generated by an optimal solution of 
OPT(P). Thus, by finding the optimal U for each OPT(P), 
P E [0, Pmax] , we can obtain all the weakly Pareto optimal 
points of MOPT. This gives us a mapping from P to U, 
which we denote as f : P ---+ U. Intuitively, this says that 
for any weakly Pareto optimal point (P, U), U = f(P) is the 
maximum throughput utility that the network can deliver. We 
call U = f(P) the optimal throughput-energy curve, which 
we formally define as follows. 

Definition 1: (Optimal Throughput-Energy Curve) For 
all P E [0, Pmax], the mapping f : P ---+ U via solv­
ing OP T(P) constitutes an optimal throughput-energy curve 
U = f(P). 

C. Properties 

In this section, we present several interesting properties 
for the optimal throughput-energy curve. These properties are 
important for us to understand the general behavior of this 
curve and to characterize this curve under specific throughput 
utility function. 

Property 1: U = f(P) is a nondecreasing function over 
° ::; P ::; Pmax. 
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This property is easy to understand intuitively. It says that 
the throughput will not decrease when energy is increased. 
The proof is quite straightforward and is omitted here. 

Property 2: U = f(P) is a concave function. 
Proof Based on the definition of a concave function, we 

need to prove that for any Pi, P2, and A (0 :::; Pi :::; Pmax, 
° :::; P2 :::; Pmax, and ° :::; A :::; 1), we have j[APl + (1 -
A)P2] :::: Af(Pd + (1 -A)f(P2). 

Suppose the optimal solution of OPT(Pl) is Xl = 
{rl (m) , rl (m) , alll E .c, m E M} with the optimal objective 
value f(Pd. Suppose the optimal solution of OPT(P2) is 
x2 = {r2(m) , rf(m) , arll E .c, m E M} with the optimal 
objective value f(P2). We will construct a feasible solution 
for OPT(APl + (1 - A)P2) with an objective value being 
at least Af(Pd + (1 - A)f(P2). Then, for the optimal so­
lution of OPT(APl + (1 -A)P2), its optimal objective value 
f(APl + (1 -A)P2) is at least Af(Pd + (1 -A)f(P2). 

The constructed solution is A·xl+(1-A)·X2. We now show 
that it is a feasible solution to OPT(APl + (1 -A)P2)' First, 
we verify that A' Xl + (1 -A) . X2 satisfies constraint (6). We 
have LIEdAal + (1-A)ar](PT + PR) = A LIE.£: al(PT + 
PR) + (1 -A) LIE.£: ar(PT + PR) = AH + (1 -A)P2, i.e., 
constraint (6) holds. Second, we note that the region defined 
by constraints (1), (2), (4) and (5) is a convex region. Since 
Xl and x2 are both in this region, we have that A . xl + (1 -
A) . x2 is also in this region, i.e., A' Xl + (1 -A) . x2 satisfies 
constraints (I), (2), (4) and (5). Therefore, the constructed 
solution satisfies all constraints in OPT(APl + (1-A)P2) and 
thus is feasible. 

Now we calculate the objective value achieved by solution 
A' Xl + (1 -A) . x2, which is 

2: h [Arl(m) + (1 -A)r2(m)] 
mEM 

mEM 

mEM mEM 

where the first inequality holds since he) is a concave 
function. Therefore, we have constructed a feasible solution 
to OPT(APl + (1-A)P2) with its objective value greater than 
or equal to Af(Pd + (1-A)f(P2). This completes the proof. 

• 
The next two properties further spell out the particular shape 

of the concave throughput-energy curve. 

Property 3: There exists a saturation point (Ps, Us) on the 
optimal throughput-energy curve f(P) such that f(P) = Us, 
for P E [Ps, Pmax] and f(P) < Us for P < Ps. 

The above property says that the last segment of the optimal 
throughput-energy curve is .flat after the saturation point (see 
Fig. I). Now, we show how to compute the saturation point 
(Ps, Us) as follows. We first compute the maximum achievable 
network throughput Us under OPT(Pmax). Once we have Us, 
we can find the minimum network energy consumption rate Ps 

U 

- - - - - - - - - - - - -:,;oor-------, Us 

p 

Fig. I. The shape of an optimal throughput-energy curve. 

that can achieve this Us by solving the following optimization 
problem: 

Ps = min 2:al' (PT + PR) 
IE.£: 

s.t. 2: h[r(m)] :::: Us 
mEM 
Constraints(1), (2), (4) and (5). 

Since the throughput-energy curve is a non-decreasing func­
tion (Property 1) and that we have f(Ps) = f(Pmax) = Us, 
the throughput-energy curve must be flat between [Ps, Pmax]. 
Since Ps is the minimum energy that achieves Us, based on 
Property 1, we have f(P) < Us for P < Ps. 

The following property says that the segment of the optimal 
throughput-energy curve is strictly increasing for P E [0, Ps] 
(see Fig. 1). 

Property 4: f (P) is a strictly increasing function for P E 
[O, Ps]' 

Proof Our proof is based on contradiction. Suppose 
f(P) is not strictly increasing within [0, Ps]. Since f(P) 
is nondecreasing (Property 1), there must exist ° < Pi < 
P2 < Ps such that f(Pd = f(P2) < f(Ps). We can 
express P2 as a linear combination of Pi and Ps as follows: 
P2 = APi + (1 -A)Ps, where ° < A < 1. Then, we have 

Af(Pd + (1 -A)f(Ps) > Af(P2) + (1 -A)f(P2) 
f(P2) 
f[APl + (1 -A)Ps] , 

where the first inequality holds since f(Pd = f(P2) < f(Ps) 
and the third inequality holds since P2 = APi + (1-A)Ps. But 
this contradicts to the fact that f(P) is a concave function . •  

Recall that all the weakly Pareto optimal points of MOPT 
coincide with the optimal throughput-energy curve f(P) over 
P E [0, Pmax]. It is easy to see that the points on f(P) over 
P E [0, Ps] are Pareto optimal points (while those on f(P) 
over P E (Ps, Pmax] are only weakly Pareto optimal points). 

Although we have successfully analyzed some properties 
of the optimal throughput-energy curve, it remains difficult 
to characterize the entire curve for a given throughput utility 
function. A naive approach to approximate the curve is as 
follows. We can discretize the energy interval [0, Ps] into a 
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large number of equally spaced intervals. For each energy 
consumption value, Pi, we can compute its corresponding 
throughput value f(Pi) by solving OPT(Pi). So we obtain 
a point (Pi, f(Pi)) on the throughput-energy curve. Once we 
find all these points on the curve, we can connect them via 
linear segments. This will give us an approximate throughput­
energy curve. Although this approach is simple and straight­
forward, it does not offer any performance guarantee of the 
curve. 

In contrast, the goal of this paper is to characterize the curve 
with performance guarantee. In the following two sections, we 
consider two classes of throughput utility functions: the linear 
case and the non-linear case. In the linear case, we are able 
to characterize the optimal curve exactly by exploiting some 
special structures of linear program; for the nonlinear case, 
we develop a novel technique to approximate the curve with 
(I-c:)-optimal performance guarantee, where c: is an arbitrary 
small error reflecting our desired accuracy. 

IV. CASE 1: LINEAR THROUGHPUT FUNCTION 

In this section, we consider the case where the throughput 
utility function is linear with respect to r(m), m E M. That 
is, U = LmEM w(m)r(m), where w(m) is a constant and 
can be considered as the weight for session m E M. In this 
case, our OPT(P) becomes the following LP. 

LP(P) max U = L w(m)r(m) 
mEM 

S.t. All constraints in OPT(P) 

r(m), rl(m) � 0, 0::::: al ::::: I. 

Instead of obtaining the f(P) curve by solving LP(P) for 
all possible P E [0, Pmax], which is unpractical, we will 
exploit the special structure of LP and obtain the f (P) curve 
by solving a finite number of LPs. In particular, since LP( P) 
is parametric linear program with respect to P, we propose to 
employ the so-called parametric analysis (PA) technique [3, 
Chapter 6.8] to obtain f(P) curve efficiently. 

A. Finding f(P) Curve via Parametric Analysis 

The main idea of PA is to investigate how a perturbation on 
parameter P will affect the optimality of LP(P). For a given 
value of P, the current optimal basis of LP(P) could still be 
optimal when there is a perturbation on P. Thus, the interval 
[0, Ps] can be partitioned into consecutive small intervals, each 
corresponding to a different optimal basis. Within each small 
interval, the optimal basis to LP(P) is the same even P varies. 
Further, we will show that f(P) is linear within each small 
interval. 

Partition [0, Ps] into Smaller Intervals. We now show 
how to partition interval [0, Ps] into small intervals. Rewrite 
LP(P) in the standard form Max CX, S.t. Ax = b and x � O. 
Here we use boldface to denote vectors and matrices. For a 
fixed value of P, this LP can be solved via standard technique 
in polynomial time [3, Chapter 8.4]. Corresponding to this 
P, suppose that we have an optimal basic matrix B and the 

Basis Updating Algorithm 

1. Input: An optimal basis B for a given P. 
2. Compute A = B-1 A, b = B-1b, and b' = B-1I. 
3. If S = {i : b: < O} = 0, terminates. 
4. J . { Ii } 
5. r : :;::i {l}. 
6. s = arg minj {i;-;, Ajr < O} . 
7. Let B = (B\{r}) U {s} and b = b + JI. 
8. Update B based on B (B consists of A's columns 

whose indices are in B ). 
9. Compute P = P + J and U = C�B-1b. 
10. Output: The new basis B, J and (P, U) pair. 

Fig. 2. The basis updating algorithm. 

nonbasic matrix is Q. Assume that the optimal solution to 
LP(P) is (X8, xQ), where X8 and XQ denote the values of 
basic and non-basic variables, respectively; B and Q denote the 
sets of basic and non-basic variables, respectively. Denote C8 
and cQ the objective function coefficient vectors of throughput 
utility U for the basic and non-basic variables, respectively. 
Then we can write the corresponding canonical equations as 
follows: 

U + (c�B-1Q -cQ)xQ = C�B-1b 
X8 + B-1QxQ = B-1b . 

Suppose we do a perturbation on parameter P, i.e., we 
change P to P + 8, then vector b becomes b + (8, 0, ... , Of. 
Then, the only change due to this perturbation is that B-1b 
will be replaced by B-1(b + 81), where vector 1 has a single 
I on the first element and zero on all the others. Note that 
B-1(b + 81) is a basic feasible solution (BFS). As long 
as B-1 (b + 81) is nonnegative, the current basis remains 
optimal. The optimal basis will change only when one of the 
elements in B-1 (b + 81) becomes negative. The value of 8 at 
which this change occurs can be determined as follows. Denote 
b = B-1b and b' = B-11, and let S = {i : b� < a}, where 
b� is the i-th element in vector b'. If S = 0, then the current 
basis is optimal for all values of 8 � a since all elements in 
vector B-1(b + 81) are nonnegative. Otherwise, let 

8 = min --!- . A { b· } 
iES -b� 

(7) 

For 8 E [0, J], the current basis B remains optimal and its 
corresponding BFS is X8 = B-1(b + 81). When 8 > 8', 
the basis B is no longer optimal. Thus, we need to choose 
the variable Xr to leave the basis, where the minimum in 
(7) is attained for i = r. The entering variable Xs is chosen 
by the dual simplex method rule [3, Chapter 6.8]. Based on 
the new optimal basis obtained after the pivot, we can update 
the corresponding canonical equations and get a (P, U) pair, 
which is an endpoint of the linear segment of f (P). 

Figure 2 lists the steps to obtain a new optimal basis for a 
given optimal basis B. Thus, starting from P = 0, we can use 
this algorithm iteratively to find different bases until we reach 
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TABLE I 
SOURCE AND DESTINATION NODES OF EACH SESSION. 

Session m Source Node Destination Node 
I NI9 NI5 
2 N2 NIO 
3 N8 NI2 
4 N9 N3 
5 N5 NI 
6 NI NI2 
7 N4 Nil 
8 N6 NIO 
9 NI6 N6 

10 N3 N5 

Ps. The series of J for these bases will partition [0, Psl into 
small intervals. 

The complexity of the basis updating algorithm can be 
analyzed as follows. The dominant computational complex­
ity occurs in step 2: A = B-1 A. Note that our linear 
programming LP(P) has Z = (1 + 21£1 + INI - IMI) 
constraints and V = (1£1 . IMI + 21£1 + IMI) variables. 
Since A = B-1 A involves matrix multiplication of a Z x Z 
matrix and a Z x V matrix, its complexity is O(Z2V) = 

O(I£13IMI + INI21£IIMI + INII£12IMI). 
Linearity of Each Small Interval. For each small interval 
with an optimal basis, we now show that f (P) is linear. 
Suppose interval [0, Psl is divided into K small intervals 
[Pi, PHI], i = 1, ... , K, where PI = 0, PK+I = Ps, and 
the optimal basis for small [Pi, PHIl is Bi. Then, for an 
optimal basis Bi within a particular small interval [Pi, PHd, 
the objective value of throughput f(P), Pi :::; P :::; PHI can 
be computed as follows. 

(8) 

where 0 = P -Pi. Substituting 0 = P -Pi into (8), we have 

(9) 

In (9), since C�i' B; I, b, I and Pi are constants, and P is the 
only variable, we conclude that f(P) is a linear function of 
P for Pi :::; P :::; PHI, i = 1, ... , K. We formally state this 
result in the following lemma. 

Lemma 3: For the linear case, the optimal throughput­
energy curve f(P) is piece-wise linear within [0, Psl. 

Recall that by executing the basis updating algorithm se­
quentially, we also obtain a series of (P, U) pair, each corre­
sponding to an optimal basis. Since f(P) is a piece-wise linear 
line with each linear segment determined by an optimal basis, 
the series of (P, U) pairs are the endpoints of these linear 
segments. Then, by connecting these endpoints consecutively, 
we are able to obtain the entire optimal throughput-energy 
curve f(P). 

B. A Numerical Example 

In the following, we present some pertinent numerical re­
sults to demonstrate our theoretical findings. We first describe 
our simulation settings. As shown in Fig. 3, we consider a 
randomly generated multi-hop wireless network with 20 nodes, 
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Fig. 3. Topology for a 20-node network. 

which are distributed in a square region of 1 OOOm x 1000m. 
The transmission power and reception power for each node 
are set to PT = 1 W and PR = 0.2W. The channel bandwidth 
on each link is B = 1 MHz. We use a simplified channel 
gain model gl = d1'l, where d1 is the distance between the 
transmitter and receiver of link land '"Y is the path loss index. 
We set '"Y = 3. There are ten user sessions in the network 
and Table I specifies the source and destination nodes of each 
session. For the weight w(m) of each session m E M, we 
consider two scenarios: (i) equal weight, e.g., w(m) = 1 for 
all m E M; and (ii) random weight for each session. 

The top curve in Fig. 4(a) shows the throughput-energy 
curve when each session has an equal weight of 1. At the 
saturation point, we have Ps = 50.12 and Us = 120.02. 
This curve is obtained by using PA method, which gives 
us 33 endpoints that interconnect the piece-wise linear seg­
ments of f(P). Note that for each endpoint, our algorithm 
also provides its corresponding optimal solution of multi-hop 
routing variables r(m),rl(m) and each link's active time al. 
For comparison, the bottom curve in Fig. 4(a) shows the 
throughput-energy curve under the popular minimum energy 
routing scheme [33], where each session chooses the path 
consuming the minimum energy. The minimum energy path 
for a session can be computed by using the well-know shortest 
path algorithms, (e.g., Dijkstra's algorithm or Bellman-Ford 
algorithm [11]), where the link cost on link l is set to the 
total energy consumed to send one bit from the transmitter 
to the receiver, i.e., CL/(PT + PR)' The large gap between 
throughput utility of the two curves shows that minimum­
energy routing is far from optimal in terms of throughput­
energy curve. This result affirms the importance of employing 
multicriteria formulation as we have done in this paper. 

Figure 4(b) shows the results for the case when the weight 
of each session is randomly chosen. The randomly generated 
weights for the ten sessions are 0.8147, 0.9058, 0.1270, 
0.9134, 0.6324, 0.0975, 0.2785, 0.5469, 0.1270 and 0.9134, 
respectively. Again, the throughput-energy curve is of the same 
form as that in Fig. 4(a), as expected. At the saturation point, 
we have Ps = 60.43 and Us = 72.11. The bottom curve in 
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Fig. 4. The throughput-energy curves for a 20-node example. 

Fig. 4(b) shows the throughput-energy curve under minimum 
energy routing, which is far from optimal. 

v. CASE 2: NONLINEAR THROUGHPUT FUNCTION 

In this section, we consider the case where the throughput 
utility function h(·) is a concave, but nonlinear function 
of r(m), m E M. In particular, we consider h[r(m)] = 

In[r(m)], m E M, which is called proportional fairness in 
[20]. In this case, for a given P, OPT(P) is a convex, 
nonlinear program. Although convex program OPT(P) can 
be solved efficiently for one given P, it is impractical to 
solve infinite number of such convex problems when P varies 
from 0 to Pmax. Further, due to nonlinearity, we cannot take 
advantage of such technique as PA to compute the exact 
optimal throughput-energy curve efficiently. 

Instead of finding the exact optimal throughput-energy 
curve, we propose a piece-wise linear approximation for this 
curve, where the approximation is guaranteed to be within 
(1 -c: )-optimal, with c: being an arbitrary small number. Note 
that for a given P, we can always find a corresponding U 
on the optimal throughput-energy curve by solving a convex 
program (see Lemma 1). So the question becomes how to 
choose a set of such points and connect them with piece-wise 
linear segments such that this piece-wise linear approximation 
is no more than c: (in percentile) from the unknown optimal 
throughput-energy curve. 

u 

P 

Fig. 5. An illustration of our piece-wise linear approximation method. 

First, we identify the two endpoints on the optimal 
throughput-energy curve that we want to approximate. On the 
left side, since the throughput utility is a In(·) function, it is 
negative when P is small. Assuming we are only interested in 
the optimal throughput-energy curve when f(P) � 0, we will 
pick a P, denoted as Po, such that Uo = f(Po) is just above 
zero.! On the right side, recall that the optimal throughput­
energy curve f(P) is flat from P = Ps to P = Pmax So we 
can choose the saturation point (Ps, Us) (see Section III on 
how to obtain it) as our right endpoint. 

With our two endpoints on the optimal throughput-energy 
curve being (Po, Uo) and (Ps, Us), our approximation method 
works as follows (see Fig. 5). We connect points (Po, Uo) 
and (Ps, Us) with a linear segment a and consider it as our 
first approximation of the optimal throughput-energy curve. To 
examine if linear segment a is accurate enough, we compute an 
error upper bound (J of this approximation (in percentile). This 
is not trivial and will be shown in Lemma 4. If (J :::; c:, then 
our linear approximation is considered accurate enough and 
we are done. Otherwise, we will find a point (P*, U*) on the 
optimal throughput-energy curve and use two linear segments 
band c as a better approximation. Again, finding this point 
(P*, U*) is not trivial (as the complete optimal throughput­
energy curve is unknown) and will be explained shortly. Now 
the same process continues on linear segments band c. The 
process continues until (J :::; c: for every linear segment of the 
piece-wise linear approximation curve. 

We first show how to compute (P*, U*), since we need 
(p* , U*) when computing (J. 

Finding (P*, U*). Point (P*, U*) has the maximum ap­
proximation error when we use a line segment to approximate 
a segment of the optimal throughput-energy curve (see Fig. 6). 

Suppose that (Pi, Ul) and (P2, U2) are
_ 

two endpoints 
of a line segment, which we denote as f(P). Then this 
line segment f(P) can be characterized as f(P) = Ul + 
U2-U, (P - Pd. Although the optimal throughput-energy 
���' f(P) is unknown, we imagine that we move line 
f(P) upward until it is tangential to the curve. Denote 
this tangential point as (P*, U*), which is the point having 
the maximum absolute (rather than percentile) approxima-

1 Note that f(Po) = 0 cannot be our left endpoint due to the singularity it 
presents when we compute the approximation error (in percentile). 
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p 

Fig. 6. An illustration showing how to obtain the tangential point and 
maximum approximation error on one linear segment. 

tion error if we were to use f(P) to approximate f(P). 
Then, we have f(P*) - f(p*) = max{J (P) - f(P)} = 

max{LmEM h[r(m)] -[UI + ��=�1 (P - Hm. Therefore, 
the tangential point (P*, U*) can be found by solving the 
following optimization problem. 

max L h[r(m)]- [UI+ ��=�� (P-PI)] 
mEM 

S.t. LO!l(PT + PR) -P = 0 
lE£. 
All constraints in MOPT , 

where P is also a variable. Note that the above optimization 
problem is a convex problem, which can be solved efficiently 
by using subgradient method [4, Chapter 8.9]. 

Finding a. After obtaining the tangential point (P*, U*), 
we can calculate an upper bound a of the approximation error 
(in percentile) with the following lemma. 

Lemma 4: An error upper bound of using f(P) as the ap­
proximation off(P),PI � P � P2, isa = 1/[1 + v*-�\P*)]' 

Proof Referring to Fig. 6, for any point (P, f(P)) within 
[PI, P2], the approximation error (in percentile) is 

f(P) -f(P) 
f(P) 

f(P) -f(P) 
f(P) -f(P) + f(P) 

1 

1 + f(P)-J(P) 
Since f(P) � f(H) = UI and f(P) -f(P) � U* -f(p*), 
we have 

f(P) -f(P) 
f(P) 

1 1 ------=-- < -----;,-;--- = a . J(P) 1 + VI 
1 + f(P)-f(P) V*-f(P*) 

• 
Now given that we can compute a at each iteration and our 

process stops when a � c for each segment, it is not hard 
to see that our piece-wise linear approximation can guarantee 
(1 -c)-optimal. We state this result in the following theorem. 

Theorem J: For any small c > 0, the proposed piece-wise 
linear approximation method can approximate the optimal 
throughput-energy curve f(P) with (1 - c)-optimal. 

A Numerical Example. We now use a numerical example 
to illustrate the optimal throughput-energy curve when the 
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Fig. 7. A (1 - c)-optimal throughput-energy curve for the nonlinear case. 
c = 1%. 

throughput utility function h[r(m)] = In[r(m)]. We use the 
same setting as that of the numerical example shown in 
Section IV. The network topology is shown in Fig. 3. We first 
determine the suturation point (Ps, Us) based on the approach 
presented in Section III. On the left, we find P(3.86) = O. 
So we choose Po = 4 > 3.86 and find its corresponding 
throughput utility f(Po) = 0.35. On the right, we find the 
saturation point (Ps, Us) = (51.83,23.54). Now we will 
approximate the optimal throughput-energy curve f(P) for 
P E [4.00,51.83]. Suppose we set the target approximation 
error c = 1 %, i.e., we are pursuing a 99%-optimal piece­
wise linear approximation. Using the method described in this 
section, we obtain 18 piece-wise linear segments shown in 
Fig. 7, corresponding to linear connection of 19 points on the 
optimal throughput-energy curve. 

V I. CONCLUSION 

In this paper, we explored the relationship between two key 
performance metrics of a multi-hop wireless network: network 
throughput and energy consumption. By casting the problem 
into a multicriteria optimization, we showed that the solution 
to this problem is equivalent to finding the so-called optimal 
throughput-energy curve of the network. Subsequently, we 
presented a number of important properties associated with 
the optimal throughput-energy curve. As for case study, we 
considered both the linear and nonlinear throughput functions. 
For the linear case, we were able to characterize the optimal 
throughput-energy curve precisely via parametric analysis. For 
the nonlinear case, we proposed a piece-wise linear approxi­
mation that can guarantee (1 - c)-optimal. 

In theory, the characterization of optimal throughput-energy 
curve is a significant advance over the state-of-the-art, which 
is limited to either maximizing throughput under some energy 
constraint or minimizing energy consumption while satisfying 
some throughput requirement, with either being able to offer 
only a single point on the optimal throughput-energy curve. 
In practice, the optimal throughput-energy curve is very useful 
for a network designer or operator, as it offers a holistic view 
on the two performance metrics. A network designer/operator 
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can achieve a desired trade-off between the two metrics 
depending on the specific network application scenarios. 
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