
CROSS-LAYER OPTIMIZATION FOR UWB-BASED AD HOC NETWORKS

Y. Thomas Hou* Hanif D. Sheralit Sastry Kompella'
* The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA

t The Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA
+ Information Technology Division, Naval Research Laboratory, Washington, DC

Abstract In this paper, we consider a UWB-based ad
hoc network and study how to maximize data rate utility
for a group of communication sessions. We formulate the
data rate utility problem into a nonlinear programming
(NLP) problem through a cross-layer approach by taking
into consideration scheduling, power control, routing.

I. INTRODUCTION
In this paper, we consider a group of source-

destination communication pairs, which we call sessions,
in UWB-based ad hoc networks. The objective is to
maximize the total utility, where a session's utility is
defined as the log function of its data rate [11]. Clearly,
this optimization problem involves issues from different
layers, i.e., link layer scheduling, power control, and
network layer routing. The link layer scheduling com-

ponent deals with how to use time slots for transmission
and reception. The power control component considers
how much transmission power a node should use in a

particular time slot. Finally, the routing problem at the
network level considers what set of paths the data from
a source node should take to its destination node.
We aim to investigate the problem through formal

nonlinear optimization technique. The outcome of this
effort will fill in a critical theoretical gap on this problem.
It will also contribute some important understanding,
some of which were overlooked by prior research efforts.
The main contribution of this paper based on relaxation error.

In our numerical results, we further explore the prop-

erties of this cross-layer optimization problem. First
and foremost, we show that performance gap between
a cross-layer formulation and a decoupled-design is
huge, thereby underlining the importance of cross-layer
optimization. In addition, we observe that the number
of time slots does not need to be large to have near-

optimal performance. This result is important in practice
as fewer number of slots will lead to less computation
time in solving the optimization problem.

II. NETWORK MODEL AND OPTIMIZATION SPACE

We consider an ad hoc network consisting ofN nodes
and L uni-directional source-destination communication
sessions over a two-dimensional area. We now take
a closer look at each components of this cross-layer
optimization problem.
Scheduling. At the link level, the scheduling problem
deals with how to coordinate transmission among the
nodes in each "time slot." An important constraint that
must be met is that a node cannot send and receive data
within the same time slot. Given the number of time
slots K, denote tk the normalized length

within the same time slot. The total power that a node
i can expend at time slot k must satisfy the following
power limit [16],

I Pij < Pmax,
jCT

where T1 is the set of one-hop neighbors of node i. This
requirement comes from the power density limitation of
UWB, i.e., YnomZj pk$IW < Qmax, where Pmax
QmaxW- Qmax is the maximum allowed transmissiongnom
power spectral density, gnom is the gain at some fixed
nominal distance [12], and W = 7.5 GHz is the spectrum
for the UWB network.
A widely-used model for power gain is

gij = di7a, (1)
where dij is the distance between nodes i and j and oc
is the path loss index. Denote 1i as the set of nodes that
can make interference at node i and rT as the ambient
Gaussian noise density. Then the achievable rate from
node i to node j within time slot k is

ck =tkW lg2 ± + mP+'idq (2)

Routing. The routing problem at the network level
considers, for a session 1, 1 < 1 < L, how to relay a rate
of r(l) from source node s(l) to the destination node
d(l). To take advantage of the multi-path availability
within an ad hoc network (i.e., network diversity), we
allow a source node to split its data into sub-flows and
take different paths to the destination node. Denote fij (1)
the data rate that is attributed to the l-th session on link
(i,j). If node i is the source node s(l), then

fij () = (l) (3)
jCT

If node i is an intermediate relay node, i.e., i 74 s(l) and
i 74 d(l), then we have the following flow balance:

j7&s(l) m7&d(l)
E fij (1) 1:fTn(l) = O (4)
jC7; mCT;

If node i is the destination node d(l), then

1 fmTni)r(l) (5)
mCT

It can be easily verified that if (3) and (4) are satisfied,
(5) must be satisfied. As a result, there is no need to list
(5) in the formulation once we have (3) and (4).

Since the sum of data rates on link (i, J) cannot be
greater than the link capacity, we have

s(l)#j,d(1)#i K

III. MAXIMIZING DATA RATE UTILITY PROBLEM
In this section, we formulate the maximizing data

rate utility problem as an optimization problem. We
use El=, Inr(l) as a utility metric in the network
optimization problem, although our proposed solution
procedure is general and can be applied to other utility
functions. The motivation for this choice is that such
log-based utility function can make a good compromise
between fairness and efficiency [10].

To ensure that a node cannot send and receive within
the same time slot, we introduce the notion of self-
interference parameter gjj [7] with the property of
gjj > max{gij : i E 7j} and incorporate this into the
bit rate calculation in (2)

ck =C.. tkW
k

,mC 3j,qCT4jgImjPmq LqGCTj9iiPj~q
(6)

Thus, when any pk > 0, i.e., node j is transmitting tojq
a node q, we have c&- 0 even if ptj > 0. In other
words, when node j is transmitting to any node q, the
link capacity on link (i, J) is effectively shut down to 0.
To write (6) in a more compact form, we re-define 1i to
include node i. Thus, (6) is now in the same form as in
(2). Denote yk kki mc=,qT9miPmnq, We have

4k tkW 1og2 1 +
k

giipii
%/ mcI3,qcT. YmPm/

tkW k~~~loW10g2 1 + r,W + ykk
The maximum utility problem (MUP) can now be

formulated as follows.
Maximum Utility Problem (MUP):

Max

s.t.

L

Zlnr(l)
1=1
K

E tk =
k=l

S Pj<Pmax (1<i<N1<k<K)
jeT

yf 5 9Ymipmq (1<i<N1<k<K)
mCli,qETm

ck =tkW lg2 (1+ Wi+ ijPj)

(1< i < Nj ET,1 < k < K) (7)

E f -i(l)<5c$j.
1<l<L k=l

K
k-

k=l

s(l)#j,d(l)#i
5 fW>ij(l)>O (1<i<N jET)

1<I<L

13 fij(l)) =(l) 0 (1 < I < L,i s(l))
jCT

j# s(l) m#id(l)

S fij(l)- E fmi(l) 0 (l1<l<L,1l<i<N,
jCTf mCTf

i 7 (1)) d(l))
r(1), fij(1) >O (l <l<L, l<i<N)iz1d(1))

j ETi, j74s(1))
scik = O or 1, tkc: Pkcj k/ > O (I < i < N, j E Ti) I < kc < K)
To remove the non-polynomial term in (7), we use

the linear rate-SINR property that is unique to UWB.
That is, we have a linear approximation for log function,
i.e., ln(1 + x) x when 0 < x << 1. We have ck.

k
ii

In 2 IW+ gjk.jpik ,which is equivalent to

kWc +Ykk
-

kP k gij kT1 i i c- g'jP'c'i In2 kP

Finally, without loss of generality, we let tk have the
following property: t <_ t2 <_ . <K tk. This ordering
will help speed up the computation.

With the above re-formulations, we now have a revised
MUP (or R-MUP) formulation, which is a nonlinear
programming (NLP) problem and is NP-hard in general
[3]. In the next section, we develop a solution pro-
cedure based on branch-and-bound [8] and the novel
Reformulation-Linearization Technique (RLT) [13] to
solve this NLP problem.

IV. A SOLUTION PROCEDURE TO R-MUP

We find that branch-and-bound approach is most
effective in solving our problem. Under the so-called
branch-and-bound approach, we aim to provide a (1 -)
optimal solution, where E is a small positive constant
reflecting our desired accuracy in the final solution.
Initially, branch-and-bound analyzes all variables in non-
linear terms (denote these variables as partition variables)
and determines the value intervals for these variables.
By using some relaxation technique, branch-and-bound
obtains a linear programming (LP) relaxation for the
original NLP problem; its solution provides an upper
bound (UB) to the objective function. With the re-
laxation solution as a starting point, branch-and-bound
uses a local search algorithm to find a feasible solution
to the original NLP problem, which provides a lower
bound (LB) for the objective function. If the obtained
lower and upper bounds are close to each other, i.e.,
LB > (1 -)UB, we are done.

If the relaxation errors for non-linear terms are not
small, then the lower bound LB could be far away
from the upper bound UB. To close this gap, we must
have a tighter LP relaxation, i.e., with smaller relaxation

errors. This could be achieved by further narrowing down
the value intervals of partition variables. Specifically,
branch-and-bound selects a partition variable and divides
its value interval into two intervals by its value in the
relaxation solution. Then the original problem (denoted
as problem 1) is divided into two new problems (denoted
as problem 2 and problem 3). Again, branch-and-bound
performs relaxation and local search on these two new
problems. Now we have LB2 and UB2 for problem 2
and LB3 and UB3 for problem 3. Since the relaxations
in problems 2 and 3 are both tighter than that in problem
1, we have UB2,UB3 < UB1 and LB2,LB3 > LB1.
The upper bound of the original problem is updated
from UB = UB1 to UB = max{UB2, UB3} and the
lower bound of the original problem is updated from
LB = LB1 to LB = max{LB2, LB3}. As a result,
we now have smaller gap between UB and LB. If
LB > (1 -)UB, we are done. Otherwise, we choose
a problem with the maximum upper bound and perform
partition for this problem.

Note that during the iteration process for branch-and-
bound, if we find a problem z with (1 -)UBz < LB,
then we can conclude that this problem cannot provide
much improvement on LB. That is, further branch on
this problem will not yield much improvement and we
can thus remove this problem from further considera-
tion. Eventually, once we find LB > (1 -)UB or
the problem list is empty, branch-and-bound procedure
terminates. It has been proved that under very general
conditions, a branch-and-bound solution procedure al-
ways converges [13].

In the rest of this section, we develop important
components in the branch-and-bound solution procedure.
Initial Value Intervals for Partition Variables. For
R-MUP, tk, pj, cj, r(l), and Yk are the variables that are
in nonlinear terms whose value intervals are candidates
to be partitioned. It is easy to obtain the following
bounds: 0< tk < K+1'k < PK,< PmaX, 0 < Ck- <

W1gijPmax y<W 1092 ',q and 0 <Y PmaxE I gm,.
We now develop an upper bound for r(l). Since r(l)

should be no more than the maximum transmission rate
from source node s(l) and the maximum receiving rate
to destination node d(l), we analyze these two end
rates individually. At source node s(l), its transmission
upper bound Cs(l) can be calculated by having node
s(l) transmit to its nearest neighbor with peak power
on all time slots. Assuming the nearest neighbor of
s(l) is j, we have Cs(l) 9Wlog2 (i+ s9),jjmax). At
destination node d(l), it turns out that an upper bound
for receiving rate Cd(l) is achieved when each node
m E fd(l) transmits to d(l) with peak power in all time

slots [14] and we have

Cd(l) w log, (1 ± gm,d(l)Pmax
mTE d (l) TjW + Pmax Z1eiTd(l) gi,d(l))

Based on the rate analysis at source node s(l) and
destination node d(l) for the l-th session, we have 0 <
r(l) <_ MintC,(1), Cd(l) }
Linear Relaxation. During each iteration of the
branch-and-bound procedure, we need a linear relax-
ation to obtain an upper bound of the objective func-
tion. For the polynomial term, we propose to employ
Reformulation-Linearization Technique (RLT) [13]. For
the non-polynomial term (i.e., log term), we propose
to employ three tangential supports, which is a convex
envelope linear relaxation.
We first show how RLT can obtain a linear relaxation

for a polynomial term. Specifically, Yjkcj, pijckij and
tkpk in (8) are polynomial terms. RET enables to use
new variables to replace those polynomial terms and add
linear constraints for these new variables, thus relaxing
nonlinear constraint into linear constraints.
As an example, we introduce a new variable uk for

Ykck. i.e., = Ykck. Assume (Yj)L < Yjk < (Yk)ujj,ii i.e.
J <tJ* i i

and (Ckj)L < CKj < (ckj)u, we have [y1k (Yk)LI
[Ckj- (Ck)L] >_ O, [Yj Y)L * i(Cj)]>O
[(Yk)U -yk] [Ckj-((Ckj)L] > 0, and [(Yk)uu-Yk]
[(Cij)U -cj] > 0. From the above relationships, we
obtain the following linear constraints (also called RLT
constraints [13]) for uk'.ii

(yk)L ck + (Ck)Lyk

(Yjk)U ckj + (Ckj)L . yjk

(yk)L c + (Ckj)U .yk

(yk)u Ck + (ck)U. yk

:jk< (Yk)L * (Ck§)L

uk > (Yjk)U (Ck)L
uk >(yk)(c)kK

j(YL)- (Cj)U

Wk < (Yk)U* (Ck)U

Through this relaxation, we can replace Ykck. with ujj3
in (8) and adding RLT constraints for uij into the R-
MUP formulation. Following the same token, we can

have linear relaxation for all polynomial terms.
Now we show how to obtain a linear relaxation for

a non-polynomial term. We can denote hl =n r(l) for
ln r(l). Note that the function y = Inx, over suitable
bounds of x, can be bounded by four segments (or a

convex envelope), where segments I, II, and III are tan-
gential supports and segment IV is the chord (see Fig. 1).
In particular, three tangent segments are at (XL, In XL),
(/In/3), and (xu,Inxu), where x

xL xu(lnxulnxL)
XU -XL

is the horizontal location for the point intersects extended
tangent segments I and III; segment IV is the segment
that joins points (XL, InXL) and (xu, In xu). The convex

xL D x

Fig. 1. A convex envelope for y = In x.

xu

region defined by the four segments can be described by
the following four linear constraints.

XL Y-X <XL(InXL- 1)
/ _y <K (inf- 1)

xu *y - <xu(lnxu -1)
(XU-XL)Y+(ilnXL-inxu)X>Xu InX L-XL * InXU

As a result, the non-polynomial (log) term can also be
relaxed into linear objective and constraints.
Local Search Algorithm. For a problem z, the local
search algorithm determines a feasible solution tz based
on the relaxation solution 4z. Denote t, p, and f as the
vectors for variables tk,pkj. and ft(l), respectively. In
our local search, we set t t.
Note that in R-MUP, we introduced the notion of self-

interference parameter to remove the binary variables in
MUP. Then in p, it is possible that Pk > 0 and pk>O
for certain node i within a time slot k. Therefore, it is
necessary to find a new p from p by changing some k

Pkor pmi to 0 such that no node can transmit and receive

within the same time slot. We follow the following two
guidelines when we set such transmission power to 0.
First, we try to maintain the same connectivity in /z as
that in fz wherever possible. Second, we try to split the
total time slots used at a node i into two groups of equal
length wherever possible, one group for transmission and
the other group for receiving. More details can be found
in [14].

After we obtain t and p for oz, we can compute ck§
from (7). Then an optimal routing solution f (under t and
p) can be obtained by solving a concave optimization
problem through standard approach [14].
Additional Details. Note that branch-and-bound
chooses a partition variable in the nonlinear term with the
maximum relaxation error, where the relaxation error for
a nonlinear term is the difference between the value of
this term and the value of its corresponding new variable

TABLE I
DESCRIPTION OF 5 UNI-DIRECTIONAL SESSIONS IN A 15-NODE

NETWORK.

Session Index s(l) m d(l) Session Index s(l) m d(l)
1 9=15 4 2 =*12
2 4 =* 5 1 =*
3 10=2

13

10
15

10

0

H-- 6

2 3 4 5 6 7 8 9 10

Total Number of Time Slots K

Fig. 3. The total utility as a function of total available time slots
K for five sessions.

20 A

11

13 Session 1: Node 9=>156

, 12

10 Session 2: Node 4=>5j ------- 15

Session 3: Node 10=>2

Fig. 2. A 15-node ad hoc network with 5 sessions.

5A

in the relaxation solution. If this nonlinear term has
multiple variables, e.g., Ykck, then we need to choose
a partition variable from Y and ck . Specifically, if

i

((Y)U - (Yk)L) min{Yj- (Yk)L, (Y))U yk} >

((cj)u- (cJ)L) min{cj (cij)L, (cij) c } we
partition on Yk and obtain two new value intervals
[(Yjk)L, Yk] and [Yak,(Yj)u]. Otherwise, we partition
on ci.

For our specific problem, by exploiting the physical
interpretation of certain variable and weighing its sig-
nificance, further improvement can be made on partition
variable selection policy. For example, it is clear that
variable tk directly affects the final solution. As a result,
the algorithm will run much more efficiently if we give
it higher priority when we choose a partition variable.
This is precisely what we have done in our algorithm
implementation, where we give the highest priority to tk,
the second highest priority to pk, then ck. and consider
i~~~~~~~~~~~~~~~~iyk last when we choose a partition variable. Note that

this choice will not hamper the convergence property
of the algorithm [13], although it will yield different
computational time.

There are two types of problems that can be eliminated
before solving their LP relaxations. In the first case, if a
problem is found to be infeasible, then there is no need
to solve a full scale LP relaxation. For example, after we
partition on p<, if a node must send and receive within
the same time slot in a new problem, i.e., (PKj)L > 0 and

2

8

.
12.

9.
14

Fig. 4. Optimal routing for three sessions with K = 6

(Pni)L > 0, then this new problem must be infeasible.
In the second case, if a problem cannot provide

significant improvement, then there is no need to solve
a full scale LP either. For example, after we partition
on r (l), if (1 -6) EzL ln(r(l))u < LB, then this new

problem cannot provide significant improvement and can

be eliminated from problem list.

V. SIMULATION RESULTS

In this section, we present some important numerical
results to offer further insights on the optimization
problem. These results are important as they are not
obvious from our theoretical development of the solution
procedure in the last section.
We first describe the simulation settings. We consider

a randomly generated network of 15 nodes deployed over

a 20 x 20 area. There are 5 sessions (see Table I and
Fig. 2). All distances are based on normalized length in
(1). The path loss index is a = 2 and the nominal gain
is chosen as gnom = 0.02. The power density limit Qmax
is assumed to be 1% of the white noise rT [12].
Scheduling. We first investigate how the total utility
is affected when the total available time slots K change.

4

7

0 -t 14
0 4 8 12 16 20

14

1,2 16

12 3,

11

4 12 16 20

