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Abstract. Modular exponentiations have been considered the most ex-
pensive operation in discrete-logarithm based cryptographic protocols.
In this paper, we propose a new secure outsourcing algorithm for ex-
ponentiation modular a prime in the one-malicious model. Compared
with the state-of-the-art algorithm [33], the proposed algorithm is supe-
rior in both efficiency and checkability. We then utilize this algorithm
as a subroutine to achieve outsource-secure Cramer-Shoup encryptions
and Schnorr signatures. Besides, we propose the first outsource-secure
and efficient algorithm for simultaneous modular exponentiations. More-
over, we prove that both the algorithms can achieve the desired security
notions.

Keywords: Cloud computing, Outsource-secure algorithms, Modular
exponentiation.

1 Introduction

Cloud computing, the long-standing vision of computing as a utility, enables
convenient and on-demand network access to a centralized pool of configurable
computing resources. One of the most attractive benefits of the cloud comput-
ing is the so-called outsourcing paradigm, where the resource-constraint devices
can outsource their large computation workloads to the cloud servers in a pay-
per-use manner. As a result, the enterprises can avoid large capital outlays in
hardware/software deployment and maintenance.
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Despite the tremendous benefits, outsourcing computation also inevitably in-
volves in some new security concerns and challenges. Firstly, the cloud servers
are not (fully) trusted. Actually, it is impossible to find a trusted server for all
outsourcers in cloud paradigm. On the other hand, the computation tasks of-
ten contain some sensitive information that should not be exposed to the cloud
servers. Therefore, the first security challenge is the secrecy of the outsourcing
computation: the cloud servers should not learn anything about what it is actu-
ally computing (including the secret inputs and the outputs). We argue that the
encryption can only provide a partial solution to this problem since it is very
difficult to perform meaningful computations over the encrypted data. Secondly,
the semi-trusted cloud servers may return an invalid result. For example, the
servers might contain a software bug that will fail on a constant number of in-
vocation. Moreover, the servers might decrease the amount of the computation
due to financial incentives and then return a computationally indistinguishable
(invalid) result. Therefore, the second security challenge is the checkability of the
outsourcing computation: the outsourcer should have the ability to detect any
failures if the cloud servers misbehave. Trivially, the test procedure should never
be involved in some other complicated computations since the computationally
limited devices such as RFID tags or smartcard may be incapable to accomplish
the test. At the very least, it must be far more efficient than accomplishing the
computation task itself (recall the motivation for outsourcing computations).

The problem of secure outsourcing expensive computations has been well stud-
ied in the cryptography community. Chaum and Pedersen [17] firstly introduced
the idea of “wallets with observers” that allows a piece of hardware installed on
the client’s device to carry out some computations for each transaction. Golle and
Mironov [31] first introduced the concept of ringers to elegantly solve the prob-
lem of verifying computation completion for the “inversion of one-way function”
class of outsourcing computations. Hohenberger and Lysyanskaya [33] presented
the security model for outsourcing cryptographic computations, and proposed
the first outsource-secure algorithm for modular exponentiations.

Our Contribution. In this paper, we propose a new secure outsourcing algo-
rithm of modular exponentiation in the one-malicious model. To the best of our
knowledge, it seems that the proposed algorithm is the second one for expo-
nentiation modular a prime. Compared with the state-of-the-art algorithm [33],
the proposed algorithm is superior in both efficiency and checkability. Similar to
[33], we also utilize this algorithm as a subroutine to achieve outsource-secure
Cramer-Shoup encryptions and Schnorr signatures. Another main contribution
of this paper is the first outsource-secure and efficient algorithm for simultaneous
modular exponentiations, which efficiency is (surprisingly) comparable to that
of outsourcing only one modular exponentiation in [33].

1.1 Related Work

Abadi et al. [2] proved the impossibility of secure outsourcing an exponential
computation while locally doing only polynomial time work. Therefore, it is
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meaningful only to consider outsourcing expensive polynomial time computa-
tions. The theoretical computer science community has devoted considerable at-
tention to the problem of how to securely outsource different kinds of expensive
computations. Atallah et al. [3] presented a framework for secure outsourcing
of scientific computations such as matrix multiplications and quadrature. How-
ever, the solution used the disguise technique and thus allowed leakage of private
information. Atallah and Li [4] investigated the problem of computing the edit
distance between two sequences and presented an efficient protocol to securely
outsource sequence comparisons to two servers. Benjamin and Atallah [8] ad-
dressed the problem of secure outsourcing for widely applicable linear algebra
computations. However, the proposed protocols required the expensive opera-
tions of homomorphic encryptions. Atallah and Frikken [1] further studied this
problem and gave improved protocols based on the so-called weak secret hiding
assumption. Recently, Wang et al. [45] presented efficient mechanisms for secure
outsourcing of linear programming computations.

In the cryptographic community, there are also plenty of research work on the
securely outsourcing computations. In 1992, Chaum and Pedersen [17] firstly in-
troduced the notion of wallets with observers, a piece of secure hardware installed
on the client’s computer to perform some expensive computations. Hohenberger
and Lysyanskaya [33] proposed the first outsource-secure algorithm for modu-
lar exponentiations based on the two previous approaches of precomputation
[15,24,40,42] and server-aided computation [10,29,39,46].

Since the servers (or workers) are not trusted by the outsourcers, Golle and
Mironov [31] first introduced the concept of ringers to solve the trust problem
of verifying computation completion. The following researchers focused on the
other trust problem of retrieving payments [7,19,20,43]. Besides, Gennaro et al.
[27] first formalized the notion of verifiable computation to solve the problem of
verifiably outsourcing the computation of an arbitrary functions, which has at-
tracted the attention of plenty of researchers [11,13,14,28,30,34,35,38]. Gennaro
et al. [27] also proposed a protocol that allowed the outsourcer to efficiently verify
the outputs of the computations with a computationally sound, non-interactive
proof (instead of interactive ones). Benabbas et al. [12] presented the first prac-
tical verifiable computation scheme for high degree polynomial functions based
on the approach of [27]. In 2011, Green et al. [26] proposed new methods for effi-
ciently and securely outsourcing decryption of attribute-based encryption (ABE)
ciphertexts. Based on this work, Parno et al. [41] showed a construction of a
multi-function verifiable computation scheme.

1.2 Organization

The rest of the paper is organized as follows: Some security definitions for out-
sourcing computation are given in Section 2. The proposed new outsource-secure
modular exponentiations algorithm and its security analysis are given in Sec-
tion 3. The proposed outsource-secure Cramer-Shoup encryptions and Schnorr
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signatures are given in Section 4. The secure and efficient outsourcing algorithm
for simultaneous modular exponentiations is given in Section 5. Finally, conclu-
sions will be made in Section 6.

2 Definition of Security

Informally, we say that T securely outsources some work to U , and (T, U) is an
outsource-secure implementation of a cryptographic algorithm Alg if (1) T and
U implement Alg, i.e., Alg = TU and (2) suppose that T is given oracle access to
an adversary U ′ (instead of U) that records all of its computation over time and
tries to act maliciously, U ′ cannot learn anything interesting about the input and
output of TU ′

. In the following, we introduce the formal definitions for secure
outsourcing of a cryptographic algorithm [33].

Definition 1. (Algorithm with outsource-I/O) An algorithm Alg obeys the
outsource input/output specification if it takes five inputs, and produces three
outputs. The first three inputs are generated by an honest party, and are classified
by how much the adversary A = (E,U ′) knows about them, where E is the
adversarial environment that submits adversarially chosen inputs to Alg, and U ′

is the adversarial software operating in place of oracle U . The first input is call
the honest, secret input, which is unknown to both E and U ′; the second is called
the honest, protected input, which may be known by E, but is protected from U ′;
and the third is called the honest, unprotected input, which may be known by
both E and U . In addition, there are two adversarially-chosen inputs generated
by the environment E: the adversarial, protected input, which is known to E, but
protected from U ′; and the adversarial, unprotected input, which may be known
by E and U . Similarly, the first output called secret is unknown to both E and
U ′; the second is protected, which may be known to E, but not U ′; and the third
is unprotected, which may be known by both parties of A.

The following definition of outsource-security ensures that the malicious envi-
ronment E cannot gain any knowledge of the secret inputs and outputs of TU ,
even if T uses the malicious software U ′ written by E.

Definition 2. (Outsource-security) Let Alg be an algorithm with outsource
I/O. A pair of algorithms (T, U) is said to be an outsource-secure implementation
of Alg if:

1. Correctness: TU is a correct implementation of Alg.
2. Security: For all probabilistic polynomial-time adversaries A = (E,U ′), there

exist probabilistic expected polynomial-time simulators (S1, S2) such that the
following pairs of random variables are computationally indistinguishable.

– Pair One. EVIEWreal ∼ EVIEWideal:

• The view that the the adversarial environment E obtains by partici-
pating in the following real process:
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EVIEWi
real = {(istatei, xihs, xihp, xihu)← I(1k, istatei−1);

(estatei, ji, xiap, x
i
au, stop

i)← E(1k,EVIEWi−1
real, x

i
hp, x

i
hu);

(tstatei, ustatei, yis, y
i
p, y

i
u)←

TU ′(ustatei−1)(tstatei−1, xj
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au) :

(estatei, yip, y
i
u)}

EVIEWreal = EVIEWi
real if stop

i = TRUE.

The real process proceeds in rounds. In round i, the honest (secret, pro-
tected, and unprotected) inputs (xihs, x

i
hp, x

i
hu) are picked using an hon-

est, stateful process I to which the environment E does not have access.
Then E, based on its view from the last round, chooses (0) the value of
its estatei variable as a way of remembering what it did next time it is
invoked; (1) which previously generated honest inputs (xihs, x

i
hp, x

i
hu) to

give to TU ′
(note that E can specify the index ji of these inputs, but not

their values); (2) the adversarial, protected input xiap; (3) the adversar-

ial, unprotected input xiau; (4) the Boolean variable stopi that determines
whether round i is the last round in this process. Next, the algorithm TU ′

is run on the inputs (tstatei−1, xj
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au), where tstatei−1

is T ’s previously saved state, and produces a new state tstatei for T , as
well as the secret yis, protected y

i
p and unprotected yiu outputs. The oracle

U ′ is given its previously saved state, ustatei−1, as input, and the current
state of U ′ is saved in the variable ustatei. The view of the real process
in round i consists of estatei, and the values yip and yiu. The overall view
of E in the real process is just its view in the last round (i.e., i for which
stopi = TRUE.).
• The ideal process:

EVIEWi
ideal = {(istatei, xihs, xihp, xihu)← I(1k, istatei−1);

(estatei, ji, xiap, x
i
au, stop

i)← E(1k,EVIEWi−1
ideal, x

i
hp, x

i
hu);

(astatei, yis, y
i
p, y

i
u)← Alg(astatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei, Y i
p , Y

i
u, rep

i)← S
U ′(ustatei−1)
1

(sstatei−1, · · · , xjihp, xj
i

hu, x
i
ap, x

i
au, y

i
p, y

i
u);

(zip, z
i
u) = repi(Y i

p , Y
i
u) + (1− repi)(yip, y

i
u) :

(estatei, zip, z
i
u)}

EVIEWideal = EVIEWi
ideal if stop

i = TRUE.

The ideal process also proceeds in rounds. In the ideal process, we have a
stateful simulator S1 who, shielded from the secret input xihs, but given
the non-secret outputs that Alg produces when run all the inputs for round
i, decides to either output the values (yip, y

i
u) generated by Alg, or replace

them with some other values (Y i
p , Y

i
u). Note that this is captured by having

the indicator variable repi be a bit that determines whether yip will be

replaced with Y i
p . In doing so, it is allowed to query oracle U ′; moreover,

U ′ saves its state as in the real experiment.
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– Pair Two. UVIEWreal ∼ UVIEWideal:

• The view that the untrusted software U ′ obtains by participating in
the real process described in Pair One. UVIEWreal = ustatei if
stopi = TRUE.

• The ideal process:

UVIEWi
ideal = {(istatei, xihs, xihp, xihu)← I(1k, istatei−1);

(estatei, ji, xiap, x
i
au, stop

i)← E(1k, estatei−1, xihp, x
i
hu, y

i−1
p , yi−1

u );

(astatei, yis, y
i
p, y

i
u)← Alg(astatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei)← S
U ′(ustatei−1)
2 (sstatei−1, xj

i

hu, x
i
au) :

(ustatei)}
UVIEWideal = UVIEWi

ideal if stop
i = TRUE.

In the ideal process, we have a stateful simulator S2 who, equipped with
only the unprotected inputs (xihu, x

i
au), queries U ′. As before, U ′ may

maintain state.

Definition 3. (α-efficient, secure outsourcing) A pair of algorithms (T, U)
is said to be an α-efficient implementation of Alg if (1) TU is a correct imple-
mentation of Alg and (2) ∀ inputs x, the running time of T is no more than an
α-multiplicative factor of the running time of Alg.

Definition 4. (β-checkable, secure outsourcing) A pair of algorithms (T, U)
is said to be an β-checkable implementation of Alg if (1) TU is a correct imple-
mentation of Alg and (2) ∀ inputs x, if U ′ deviates from its advertised function-
ality during the execution of TU ′

(x), T will detect the error with probability no
less than β.

Definition 5. ((α, β)-outsource-security) A pair of algorithms (T, U) is said
to be an (α, β)-outsource-secure implementation of Alg if it is both α-efficient
and β-checkable.

3 New and Secure Outsourcing Algorithm of Modular
Exponentiations

3.1 Security Model

Hohenberger and Lysyanskaya [33] first presented the so-called two untrusted
program model for outsourcing exponentiations modulo a prime. In the two un-
trusted program model, the adversarial environment E writes the code for two
(potentially different) programs U ′ = (U ′

1, U
′
2). E then gives this software to T ,

advertising a functionality that U ′
1 and U ′

2 may or may not accurately compute,
and T installs this software in a manner such that all subsequent communica-
tion between any two of E, U ′

1 and U ′
2 must pass through T . The new adversary

attacking T is A = (E,U ′
1, U

′
2). Moreover, we assume that at most one of the pro-

grams U ′
1 and U ′

2 deviates from its advertised functionality on a non-negligible
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fraction of the inputs, while we cannot know which one and security means that
there is a simulator S for both. This is named as the one-malicious version of two
untrusted program model (i.e., “one-malicious model” for the simplicity). In the
real-world applications, it is equivalent to buy the two copies of the advertised
software from two different vendors and achieve the security as long as one of
them is honest.

In the security model [33], a subroutine named Rand is used in order to
speed up the computations. The inputs for Rand are a prime p, a base g ∈
Z

∗
p, and possibly some other values, and the outputs for each invocation are

a random, independent pair of the form (b, gb mod p), where b ∈ Zq. There
are two approaches to implement this functionality. One is for a trusted server
to compute a table of random, independent pairs in advance and then load it
into the memory of T . For each invocation of Rand, T just retrieves a new pair
in the table (the table-lookup method).1 The other is to apply the well-known
preprocessing techniques. By far, the most promising preprocessing algorithm
is the EBPV generator [40], which is secure against adaptive adversaries and
runs in time O(log2 n) for an n-bit exponent. On input a sufficiently large subset
of truly random (k, gk) pairs, EBPV generator outputs a pair (l, gl) that is
statistically close to the uniform distribution. Therefore, we argue that T can
never control the output of the subroutine Rand, especially the value of l for
both of the approaches.

3.2 Outsourcing Algorithm

In this section, we propose a new secure outsourcing algorithm Exp for expo-
nentiation modulo a prime in the one-malicious model. In Exp, T outsources its
modular exponentiation computations to U1 and U2 by invoking the subroutine
Rand. A requirement for Exp is that the adversary A cannot know any useful
information about the inputs and outputs of Exp. Similar to [33], Ui(x, y)→ yx

also denotes that Ui takes as inputs (x, y) and outputs yx mod p, where i = 1, 2.
Let p, q be two large primes and q|p−1. The input ofExp is a ∈ Z

∗
q , and u ∈ Z

∗
p

such that uq = 1 mod p (for an arbitrary base u and an arbitrary power a). The
output of Exp is ua mod p. Note that a may be secret or (honest/adversarial)
protected and u may be (honest/adversarial) protected. Both of a and u are
computationally blinded to U1 and U2.

To implement this functionality using U1 and U2, T firstly runs Rand twice
to create two blinding pairs (α, gα) and (β, gβ). We denote v = gα mod p and
μ = gβ mod p.

Our trick is a more efficient solution to logically split u and a into random
looking pieces that can be computed by U1 and U2. The first logical divisions
are

ua = (vw)a = gaαwa = gβgγwa,

where w = u/v and γ = aα− β.
1 In most applications, the pair cannot be reused. For example, reusing such a pair in
Schnorr signature will result in the secret key exposure of the signer.
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The second logical divisions are

ua = gβgγwa = gβgγwk+l = gβgγwkwl,

where l = a− k.
Next, T runs Rand to obtain three pairs (t1, g

t1), (t2, g
t2), and (t3, g

t3).

T queries U1 in random order as
U1(t2/t1, g

t1)→ gt2 ;
U1(γ/t3, g

t3)→ gγ ;
U1(l, w)→ wl.

Similarly, T queries U2 in random order as
U2(t2/t1, g

t1)→ gt2 ;
U2(γ/t3, g

t3)→ gγ ;
U2(k, w)→ wk.

Finally, T checks that both U1 and U2 produce the correct outputs, i.e.,
gt2 = U1(t2/t1, g

t1) = U2(t2/t1, g
t1) and U1(γ/t3, g

t3) = U2(γ/t3, g
t3). If not,

T outputs “error”; otherwise, T can compute ua = μgγwkwl.

Remark 1. In the one-malicious model, the equation U1(γ/t3, g
t3) = U2(γ/t3, g

t3)
implies both U1 and U2 produce the correct gγ . Therefore, the partial computa-
tion result gγ also plays the role of a test query. This is slightly different from
the technique in [33] while it indeed improves the efficiency and checkability of
the computations.

Remark 2. Trivially, the proposed algorithmExp can be extend to the outsource-
secure scalar multiplications on elliptic curves, i.e., aU for any a ∈ Z

∗
q .

3.3 Security Analysis

Theorem 1. In the one-malicious model, the algorithms (T, (U1, U2)) are an
outsource-secure implementation of Exp, where the input (a, u) may be honest,
secret; or honest, protected; or adversarial, protected.

Proof. The proof is similar to [33]. The correctness is trivial and we only focus
on security. Let A = (E,U ′

1, U
′
2) be a PPT adversary that interacts with a PPT

algorithm T in the one-malicious model.
Firstly, we prove Pair One EVIEWreal ∼ EVIEWideal:
If the input (a, u) is anything other than honest, secret, then the simulator S1

behaves the same way as in the real execution. If (a, u) is an honest, secret input,
then the simulator S1 behaves as follows: On receiving the input on round i, S1

ignores it and instead makes three random queries of the form (αj , βj) to both
U ′
1 and U ′

2. S1 randomly tests two outputs (i.e., β
αj

j ) from each program. If an

error is detected, S1 saves all states and outputs Y i
p=“error”, Y i

u=∅, repi=1 (i.e.,

the output for ideal process is (estatei, “error”,∅)). If no error is detected, S1

checks the remaining two outputs. If all checks pass, S1 outputs Y i
p=∅, Y i

u=∅,

repi=0 (i.e., the output for ideal process is (estatei, yip, y
i
u)); otherwise, S1 se-

lects a random element r and outputs Y i
p=r, Y

i
u=∅, repi=1 (i.e., the output for
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ideal process is (estatei, r,∅)). In either case, S1 saves the appropriate states.
The input distributions to (U ′

1, U
′
2) in the real and ideal experiments are com-

putationally indistinguishable. In the ideal experiment, the inputs are chosen
uniformly at random. In the real experiment, each part of all three queries that
T makes to any one program is independently re-randomized and thus computa-
tionally indistinguishable from random. If (U ′

1, U
′
2) behave honest in the round

i, then EVIEWi
real ∼ EVIEWi

ideal (this is because T (U ′
1,U

′
2) perfectly executes

Exp in the real experiment and S1 simulates with the same outputs in the ideal
experiment, i.e., repi=0). If one of (U ′

1, U
′
2) is dishonest in the round i, then it

will be detected by both T and S1 with probability 2
3 , resulting in an output of

“error”; otherwise, the output of Exp is corrupted (with probability 1
3 ). In the

real experiment, the three outputs generated by (U ′
1, U

′
2) are multiplied together

along with a random value. In the ideal experiment, S1 also simulates with a
random value r. Thus, EVIEWi

real ∼ EVIEWi
ideal even when one of (U ′

1, U
′
2) is

dishonest. By the hybrid argument, we conclude that EVIEWreal ∼ EVIEWideal.
Secondly, we prove Pair Two UVIEWreal ∼ UVIEWideal:
The simulator S2 always behaves as follows: On receiving the input on round

i, S2 ignores it and instead makes three random queries of the form (αj , βj) to
both U ′

1 and U ′
2. Then S2 saves its states and the states of (U ′

1, U
′
2). E can easily

distinguish between these real and ideal experiments (note that the output in
the ideal experiment is never corrupted). However, E cannot communicate this
information to (U ′

1, U
′
2). This is because in the round i of the real experiment, T

always re-randomizes its inputs to (U ′
1, U

′
2). In the ideal experiment, S2 always

generates random, independent queries for (U ′
1, U

′
2). Thus, for each round i we

have UVIEWi
real ∼ UVIEWi

ideal. By the hybrid argument, we conclude that
UVIEWreal ∼ UVIEWideal. ��

Theorem 2. In the one-malicious model, the algorithms (T, (U1, U2)) are an

(O( log
2 n
n ), 23 )-outsource-secure implementation of Exp.

Proof. The proposed algorithm Exp makes 5 calls to Rand plus 7 modular mul-
tiplication (MM) and 3 modular inverse (MInv) in order to compute ua mod p
(we omit other operations such as modular additions). Also, Exp takes O(log2 n)
or O(1) MM using the EBPV generator or table-lookup method, respectively,
where n is the bit of the a. On the other hand, it takes roughly 1.5n MM to
compute ua mod p by the square-and-multiply method. Thus, the algorithms

(T, (U1, U2)) are an O( log
2 n
n )-efficient implementation of Exp.

On the other hand, U1 (resp. U2) cannot distinguish the two test queries from
all of the three queries that T makes. If U1 (resp. U2) fails during any execution
of Exp, it will be detected with probability 2

3 . ��

3.4 Comparison

We compare the proposed algorithm with Hohenberger-Lysyanskaya’s algorithm
in [33]. We denote by MM a modular multiplication, by MInv a modular inverse,
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and by RandInvoke an invocation of the subroutine Rand. We omit other opera-
tions such as modular additions in both algorithms. Table 1 presents the compar-
ison of the efficiency and the checkability between Hohenberger-Lysyanskaya’s
algorithm and our proposed algorithm Exp.

Table 1. Comparison of the two algorithms

Algorithm [33] Algorithm Exp

MM 9 7

MInv 5 3

Invoke(Rand) 6 5

Invoke(U1) 4 3

Invoke(U2) 4 3

Checkability 1
2

2
3

Compared with Hohenberger-Lysyanskaya’s algorithm, the proposed algo-
rithm Exp is superior in both efficiency and checkability. More precisely, Exp
requires only 7 MM, 3 MInv, 5 invocation of Rand, and 3 invocation of U1 and
U2 for each modular exponentiation. Note that the modular exponentiation is
the most basic operation in discrete-logarithm based cryptographic protocols,
and millions of such computations may be outsourced to the server every day.
Thus, our proposed algorithm can save huge of computational resources for both
the outsourcer T and the servers U1 and U2.

4 Secure Outsourcing Algorithms for Encryption and
Signatures

In this section, we propose two secure outsourcing algorithms for Cramer-Shoup
encryption scheme [18] and Schnorr signature scheme [42].

4.1 Outsource-Secure Cramer-Shoup Encryptions

The proposed outsource-secure Cramer-Shoup encryption scheme consists of the
following efficient algorithms:

– System Parameters Generation: Let G be an abelian group of a large
prime order q. Let g be a generator of G. Define a cryptographic secure hash
function H : G3 → Zq. The system parameters are SP = {G, q, g,H}.

– Key Generation: On input 1l, run the key generation algorithm to obtain
the secret/public key pair (SK,PK), here SK = (w, x, y, z) ∈R Z

∗
q × Z

3
q ,

PK = (W,X, Y, Z) = (gw, gx, gy, gz).
– Encryption: On input the public key PK and a message m ∈ G, the

outsourcer T runs the subroutine Rand and generates the ciphertext C as
follows:
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1. T runs Rand to obtain a pair (k, r = gk mod p).
2. T firstly runs Exp to obtain Exp(k,W ) → s, Exp(k, Z) → t and then

computes e = mt, and h = H(r, s, e).
3. T runs Exp to obtain Exp(k,X) → α, Exp(kh, Y ) → β and then

computes γ = αβ.
4. T outputs the ciphertext C = (r, s, e, γ).

– Decryption: On input the verification key y, the message m, and the sig-
nature σ = (e, s), the outsourcer T runs the subroutine Exp and verifies the
signature σ as follows:
1. T computes h = H(r, s, e).
2. T runs Exp to obtain Exp(w, r)→ ψ1 and Exp(x + yh, r)→ ψ2.
3. If and only if s = ψ1 and γ = ψ2, T runs Exp to obtain Exp(z, r) → t

computes m = et−1.
4. T outputs m.

Remark 3. We present a secure outsourcing algorithm for Cramer-Shoup en-
cryption scheme CS1b. Compared with [33], we do not use a new subroutine
Rand′ that produces a triple (b, gb mod p, g′b mod p), while our algorithm re-
quires one more invocation of Exp (only) for encryption. Trivially, we could
present outsouce-secure Cramer-Shoup encryption scheme CS1a (running either
Rand or Rand′).

4.2 Outsource-Secure Schnorr Signatures

The proposed outsource-secure Schnorr signature scheme consists of the follow-
ing efficient algorithms:

– System Parameters Generation: Let p and q be two large primes that
satisfy q|p − 1. Let g be an element in Z

∗
p such that gq = 1 mod p. De-

fine a cryptographic secure hash function H : {0, 1}∗ → Zp. The system
parameters are SP = {p, q, g,H}.

– Key Generation: On input 1l, run the key generation algorithm to obtain
the signing/verification key pair (x, y), here y = g−x mod p.

– Signature Generation: On input the singing key x and a message m, the
outsourcer T runs the subroutine Rand and generates the signature σ as
follows:
1. T runs Rand to obtain a pair (k, r = gk mod p).
2. T computes e = H(m||r) and s = k + xe mod q.
3. T outputs the signature σ = (e, s).

– Signature Verification: On input the verification key y, the message m,
and the signature σ = (e, s), the outsourcer T runs the subroutine Exp and
verifies the signature σ as follows:
1. T runs Exp to obtain Exp(s, g)→ ψ1 and Exp(e, y)→ ψ2.
2. T computes r′ = ψ1ψ2 mod p and e′ = H(m||r′).
3. T outputs 1 if and only if e′ = e.

Remark 4. The proposed outsource-secure Schnorr signature scheme is basically
same as that in [33]. Note that the subroutine Exp is only used for the signature
verification.
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5 Outsource-Secure Algorithm of Simultaneous Modular
Exponentiations

In this section, we focus on simultaneous modular exponentiations ua1u
b
2 mod p,

which play an important role in many cryptographic primitives such as chameleon
hashing [5,6,21,22,36,44] and trapdoor commitment [9,16,23,25,32]. Trivially, a
simultaneous modular exponentiation can be carried out by invoking 2 modular
exponentiations. This requires roughly 3n MM, where n is the bit of a and b.
However, the computation cost is only 1.75n MM (i.e., roughly 1.17 modular
exponentiation) if we use the Algorithm 14.88 of [37].

In the following, we propose an efficient outsource-secure algorithm of simul-
taneous modular exponentiations SExp in the one-malicious model.

Let p, q be two large primes and q|p−1. Given two arbitrary bases u1, u2 ∈ Z

∗
p

and two arbitrary powers a, b ∈ Z

∗
q such that the order of u1 and u2 is q. The

output of SExp is ua1u
b
2 mod p.

Similarly, T firstly runs Rand twice to create two blinding pairs (α, gα) and
(β, gβ). We denote v = gα mod p and μ = gβ mod p.

The first logical divisions are

ua1u
b
2 = (vw1)

a(vw2)
b = gβgγwa

1w
b
2,

where w1 = u1/v, w2 = u2/v, and γ = (a+ b)α− β.
The second logical divisions are

ua1u
b
2 = gβgγwa

1w
b
2 = gβgγwk

1w
l
1w

t
2w

s
2,

where l = a− k and s = b− t.
Next, T runs Rand to obtain three pairs (t1, g

t1), (t2, g
t2), and (t3, g

t3).

T queries U1 in random order as
U1(t2/t1, g

t1)→ gt2 ;
U1(γ/t3, g

t3)→ gγ ;
U1(k, w1)→ wk

1 ;
U1(t, w2)→ wt

2.

Similarly, T queries U2 in random order as
U2(t2/t1, g

t1)→ gt2 ;
U2(γ/t3, g

t3)→ gγ ;
U2(l, w1)→ wl

1;
U2(s, w2)→ ws

2.

Finally, T checks that both U1 and U2 produce the correct outputs, i.e., gt2 =
U1(t2/t1, g

t1) = U2(t2/t1, g
t1) and U1(γ/t3, g

t3) = U2(γ/t3, g
t3). If not, T out-

puts “error”; otherwise, T can compute ua1u
b
2 = μgγwk

1w
l
1w

t
2w

s
2.

Note that SExp requires only 10 MM, 4 MInv, 5 invocation of Rand, and 4
invocation of U1 and U2 for each modular exponentiation. Therefore, the com-
putation cost of SExp is much less than that of double running Exp. Moreover,
it is even comparable to that of outsourcing one modular exponentiation [33].
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Table 2. Efficiency comparison for two algorithms

Algorithm [33] Algorithm SExp

MM 9 10

MInv 5 4

Invoke(Rand) 6 5

Invoke(U1) 4 4

Invoke(U2) 4 4

Checkability 1
2

1
2

Table 2 presents the comparison of the efficiency and the checkability between
Hohenberger-Lysyanskaya’s Exp algorithm and our proposed algorithm SExp.

Similar to theorem 3.2, we can easily prove the following theorem:

Theorem 3. In the one-malicious model, the algorithms (T, (U1, U2)) are an

(O( log
2 n
n ), 12 )-outsource-secure implementation of SExp.

6 Conclusions

In this paper, we propose two outsource-secure and efficient algorithms for mod-
ular exponentiations and simultaneous modular exponentiations, which are the
most basic and expensive operations in many discrete-logarithm cryptosystems.
Compared with the algorithm [33], the proposed algorithm is superior in both
efficiency and checkability.

The security model of our outsourcing algorithms requires the outsourcer to
interact with two non-colluding cloud servers (the same as [33]). Therefore, an
interesting open problem is whether there is an efficient algorithm for secure
outsourcing modular exponentiation using only one untrusted cloud sever.
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