
Tapping the Potential: Secure Chunk-based
Deduplication of Encrypted Data for Cloud Backup

Wenhai Sun, Ning Zhang, Wenjing Lou, and Y. Thomas Hou
Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

Abstract—We, in this work, investigate the problem of design-
ing a secure chunk-based deduplication scheme in the enterprise
backup storage setting. Most of the existing works focus on
realizing file-level encrypted data deduplication or key/metadata
management. Little attention is drawn to the practical chunk-
level deduplication system. In particular, we identify that the
information contained in a small-sized chunk is more susceptible
to the brute-force attack compared with file-based deduplication.
We propose a randomized oblivious key generation mechanism
based on the inner workings of the backup service. In con-
trast with the current work that compromising one client will
eventually expose all the clients’ storage, our scheme offers a
counter-intuitive property of achieving security against multi-
client compromise with minimal deduplication performance loss.
In addition, we enforce a per-backup rate-limiting policy to slow
down the online brute-force attack. We show that the proposed
scheme is provably secure in the malicious model. We also
calibrate the system design by taking into account the practical
deduplication requirements to accomplish a comparable plaintext
deduplication performance. Our experiment on the real-world
dataset shows its efficiency, effectiveness, and practicality.

I. INTRODUCTION

Data deduplication (or dedupe for short) is increasingly

adopted by cloud storage providers, such as Amazon S3, as

an effective technique to reduce the storage cost. When the

system detects data redundancy, dedupe process will retain

only one copy of the same data and make a reference pointing

to the stored copy for other duplicates. Data confidentiality is

realized by exploiting deterministic encryption, e.g., conver-

gent encryption (CE) [1], in which the key is generated from

the data itself and the same plaintext will always yield the

same key and ciphertext. As a result, we can apply dedupe to

the ciphertext without leaking underlying stored information.

However, the existing secure deduplication designs [1], [2],

[3], [4], [5], [6], to some extent, are at odds with the real-world

dedupe requirements in terms of security and performance.

Knowing the Gap. By using different chunking methods,

deduplication can be carried out either in the coarse-grained
file level, or fine-grained chunk level. In a nutshell, file-based

deduplication (FBD) is suitable for small or stationary file

types, e.g., dll, lib, pdb, etc. Even small changes made in the

file will lead to a completely different copy, thereby resulting

in a low dedupe performance. In contrast, chunk-based dedu-

plication (CBD) is capable of dividing a given data stream

into smaller chunks of fixed or variable lengths (typically

from 4KB to 16KB). As such, a considerable storage saving

can be reaped from chunk-level redundancy elimination. In

fact, there is a trend towards large files being the principal

consumer of the storage [10]. More and more real-world

storage systems are using CBD as their core deduplication

technique [11]. Most of the existing works focus on secure file-

level dedupe. Chunk-level designs [2], [22], [31] with different

research concentration paid little attention to the challenges

and practical requirements of CBD.

1) Low-entropy chunks. Deterministic CE is inherently vul-

nerable to brute-force attack for predictable files. For example,

given the ciphertext, the adversary is able to enumerate all

the file candidates, encrypt and compare them with the target

ciphertext in an offline manner. Prior works provide solutions

by deriving the encryption key from an online third party, i.e.,

either an independent key server [4] or other peer clients [6],

instead of offline key generation from data itself. However, an

adversary compromising one authorized client and observing

the dedupe process can still launch an online brute-force

attack. In general, the data leakage covers the storage of all

clients in the system. A rate-limiting strategy may be enforced

to slow down the attack speed. But such approach is merely

effective if the deduplicated data has enough unpredictability.

CBD will amplify the attack efficacy due to the potentially

much lower entropy contained in a small chunk. Albeit it is

an open problem to entirely prevent the brute-force attack,

we still need to answer the question: To what extent, can we
reduce the risk of the information leakage with minimal impact
on the underlying deduplication routine?
2) Increased system operation overhead. Besides the in-

evitable cost of performing file chunking, directly applying

existing schemes to chunk-level deduplication usually incurs

higher latency and computation overhead. This is because the

client needs to run the key generation protocol with other

online parties (a key server [4] or peer clients [6]) to produce

a CE key for each chunk of a file instead of one protocol

execution for the whole file. Thus, a natural question is: Can
we speed up the key generation while still ensuring an effective
deduplication function?
3) Practical dedupe performance. In addition to the dedupli-
cation ratio (or space reduction percentage, see Sect. II) that

is widely used in measuring the effectiveness of deduplication

[12], there are also other metrics in practice to determine

the dedupe system performance, such as chunk fragmentation
level, or data restore speed (see Sect. II). Chunk fragmentation

is caused by CBD in which data logically belonging to a

recent backup scattered across multiple older backups [13]. A

higher chunk fragmentation level typically adversely affects

the system read performance and further increase the data

restore cost. On the contrary, fragmentation is not widespread

in file-based deduplication owing to the sequentially stored

files on disk. It is expected that any secure chunk-level
dedupe design should provide a read performance on par with
plaintext CBD practice.

Aiming to answer the above challenges, we design a

chunk-based deduplication scheme for encrypted enterprise

backup storage in the cloud. The core of the technique is the

proposal of a randomized oblivious key generation (ROKG)

protocol, which is simple by its design but powerful by its

efficacy. Specifically, we are inspired by the observation that

using randomized encryption will completely protect the low-

entropy chunks albeit it, in turn, will outright incapacitate

the deduplication. Similarly, we attempt to introduce the

randomness into the chunk key generation. This gives us

the desired asymmetry between security and performance,

i.e. resilient to multiple compromised clients, compared to

existing work, but only with minimal dedupe performance loss.

We confine the proposed security and privacy preservation

design to the enterprise internal network via setting up a key

server in order to stay transparent to and compatible with the

existing public cloud backup service. We further accelerate

the key generation for frequent insensitive data by leveraging

the content-aware deduplication. A per-backup rate-limiting

strategy is also presented to further slow down the online

brute-force attack without interfering the dedupe procedure.

In addition, our design achieves faster data restore speed and

comparable space savings for backup storage with plaintext

CBD. We summarize the contributions as follows.

1) To the best of our knowledge, we are among the first

to discuss the challenges of and solutions to securing chunk-

based deduplication of encrypted backup storage as per the

practical performance requirements.

2) We propose a randomized oblivious key generation algo-

rithm, which can effectively reduce the risk of the information

leakage by resilient to multiple compromised clients. We also

enforce a per-backup rate limiting policy to slow down the

online brute-force attack. Our presented scheme is provably

secure in the malicious model.

3) We show that the efficiency of the online key generation

for frequent insensitive data can be significantly improved by

using content-aware deduplication technique. The experiment

on the real-world dataset demonstrates a faster data restore

speed while retaining an on-par deduplication effectiveness

for backup storage with the plaintext CBD.

II. BACKGROUND

A. Data Deduplication

Similar to data compression that identifies intra-file redun-

dancy, deduplication is used to eliminate both intra and inter
file duplicates. In general, chunk-based dedupe can capture

“smaller” redundancy within files and thus often yields higher

deduplication ratio dr = originial dataset size
stored dataset size , or the space

reduction percentage sr = 1 − 1/dr [12]. In storage backup

scenario, the “original dataset” is an accumulated collection of

all the data before deduplication from previous backup cycles.

Further, if dedupe is allowed to be performed cross users, we

usually can expect more space savings. On the other hand,

dedupe occurring on the server side consumes more network

bandwidth than the client-side dedupe, but with less privacy

breach risk (see Sect. IV).

1) Chunking Algorithms: The data stream can be parti-

tioned into fixed-sized chunks, which offers high processing

rates and small computation overhead. However, it suffers

from the boundary-shifting problem, where even a single

bit added to the beginning of a file will result in different

chunks [11]. A bit more CPU-intensive variable-sized chunk-
ing method can be used to address this problem. Briefly, this

algorithm adopts a fixed-length sliding window to move on-

wards the data stream byte by byte. If the fingerprint (typically

Rabin’s fingerprint [14]), of the data segment covered by the

window, satisfies a certain condition, this segment is marked

as a partition point. The region between two consecutive

partition points constitutes a chunk (see [10], [11] for detailed

discussion). Variable-sized chunking provides users with more

storage savings and is widely used in practice [11]. In addition,

we can apply advanced content-aware chunking algorithms

to identify duplicates on semantic information level [15],

[16], [17], given the knowledge of file type, format, statistics

information, etc. It turns out to be useful in speeding up the

online chunk key generation (see Sect. V-A).

2) Chunk Fragmentation: A succinct chunk ID is computed

by applying a hash function, such as SHA11, over this chunk.

We can determine whether the chunk has already been stored

by looking up a key-value index table that maintains unique

chunk IDs and their corresponding chunk storage locations. To

achieve high write performance, each unique chunk is not di-

rectly written into the storage; instead, it is stored into a fixed-

sized container (typically 2MB or 4MB) in the cache and the

whole container is flushed to the storage once it is full. To read

a chunk from storage, the entire container storing the chunk

is retrieved. Therefore, it is likely that data restoration needs

to read the shared chunks physically dispersed over different

containers. A higher chunk fragmentation means more severe

physical dispersion, which ends up with read performance

degradation [13], [18]. We can use the average number r of

containers read per MB to measure the fragmentation level

and evaluate the read performance by speed factor 1/r [18].

B. Convergent Encryption

CE is extensively used in secure dedupe systems [1], [2],

[3], [4], [5], [6], [9] as a prominent instantiation of message-

locked encryption (MLE) [7], [8]. More precisely, to encrypt

a file f with CE, we first locally derive the CE key k = h(f),
where h is a secure hash function, e.g., SHA256. Next, we

use any secure symmetric encryption Enc, such as AES128,

with secret key k to obtain the ciphertext c = Enc(k, f).
Apparently, the deterministic encryption process will always

generate the same ciphertext c for the same plaintext f and

enable ciphertext deduplication. It is worth noting that CE

1Note that the security vulnerability of SHA1 is orthogonal to its applica-
tion here in dedupe setting.

only provides security guarantees for unpredictable data and

is inherently vulnerable to offline brute-force attack [4], [6].

In this work, we introduce a server-aided CE in the sense that

the secret key is still derived from the target chunk but with

the assistance of a dedicated key server (see Sect. V).

C. Blind RSA Signature

In a server-client model, blind signature allows the server

to cryptographically sign the secure hash of a message from

the client without disclosing the message content. In a blind

RSA signature [19], let {N, e, d} be a valid set of RSA

parameters, where the modulus N is the product of two large

primes p and q, ed = 1 mod ϕ(N) and gcd(e, ϕ(N)) = 1.

ϕ(N) = lcm(p − 1, q − 1). Then the public key is (e,N)
and the private key is d. 1) z ←MessageMask(msg, r): The

client prepares a random number r ∈ Zn and a full domain

hash H : {0, 1}∗ → Zn. He masks his original message msg
by z = H(msg)re mod N ; 2) θ′ ←Sign(z): The server signs

z with the private key and sends the signature θ′ = zdmod N
back to the client; 3) θ ←Unmask(θ′): On the client side, the

intended signature on msg is derived from θ = θ′r−1 mod N

and can be verified by H(msg)
?
= θe mod N . In Section V,

we will show how to build the ROKG protocol on top of the

blind RSA signature and further improve its efficiency.

III. RELATED WORK

In the literature, there are in general two approaches, i.e.

server-aided and serverless schemes, to prevent the direct key

derivation from the data by the client.

A. Server-aided Encryption Solutions

Server-aided solutions (including ours) is more suitable

for the enterprise/organization network and transparent to the

established deduplication services. Puzio et al. [2] proposed

to use an honest proxy server to encrypt the CE-generated

ciphertexts by the client before uploading them to a storage

server. Their scheme claims to provide secure chunk-level

deduplication but it is unclear how to mitigate online brute-

force attack in the malicious model. By the adoption of an

identity server, Stanek et al. in [3] presented a secure file-based

deduplication scheme that prevents online brute-force attack

from masqueraded clients. However, only non-private popular

files can be deduplicated by using a threshold encryption.

Bellare et al. [4] proposed a server-aided secure dedupe system

in the enterprise setting. By blind RSA signature, the CE key

can be obliviously generated. The offline brute-force attack is

prevented since the compromised storage server cannot access

the key server. However, the online attack is still possible

by controlling a legitimate client. As a result, all the client’s

storage can be revealed by the attack. They applied a per-client

file-based rate-limiting method to slow down the online attack.

B. Serverless Encryption Solutions

Duan [5] proposed to replace the role of a key server

with clients using a modified Shoup RSA threshold signature

scheme. It is unclear how to enforce any rate-limiting policy

to slow down the brute-force attack. Xu et al. [9] proposed to

deduplicate the message ciphertexts generated by randomized

encryption. It only stores the first-uploaded file. For the same

file uploading request, it provides the file encryption key to

the user, which in turn is encrypted by the file. If the user

indeed owns the file, he can derive the key and decrypt the file

ciphertext. Brute-force attacks are avoided by assuming that

the storage server is honest and cannot be compromised. In

[6], the authors introduced a cross-user deduplication scheme.

For an already stored file, a client executes a password-

authenticated key exchange protocol with online clients who

have previously uploaded the same file to obtain the CE key.

Note that this process still needs to be coordinated by the

storage server. Similar to [4], the offline brute-force attack is

impossible because the CE key is not self-generated. They

also adopt a per-file rate-limiting strategy to bound how many

online protocol instances for each file can be invoked. Notice

that these solutions cannot be directly integrated into the ex-

isting cloud storage services without substantial modification.

Besides failing the protection of low-entropy chunks, applying

the above-mentioned schemes to chunk-based deduplication

will incur a considerable performance penalty in key genera-

tion and deduplication.

C. Other Security Aspects

The cross-user client-side deduplication may introduce side-

channel attacks. By uploading a crafted file to the storage

server and observing the deduplication process, the adversary

can learn additional information about the file, e.g. whether

it has been uploaded by other clients, etc. This is more

devastating for predictable data. Harnik et al. [20] proposed

a randomized threshold approach to alleviate such side chan-

nel attack. To avoid private data leakage by using a single

hash, Halevi et al. [21] proposed a proof-of-ownership (PoW)

framework to verify the ownership of the file that the client

is trying to access. Recently, Li et al. [32] presented a

practical attack to reveal the deduplicated ciphertext storage by

frequency analysis due to the deterministic nature of CE/MLE.

Along another research line, the authors in [22] proposed a

CE key management scheme that applies deduplication over

encryption keys and distributes the key shares across multiple

key servers. Chen et al. in [31] proposed an MLE scheme

also with the focus on key management in the CBD setting.

However, they did not consider the protection of low-entropy

chunk and practical dedupe performance.

IV. PROBLEM STATEMENT

A. System Model

There are three entities in our secure client-side cross-

user deduplication system, key server (KS), clients (C’s) and

public cloud storage server (SS) as shown in Fig. 1. We

consider a periodical file backup service provided to C’s in

an enterprise network. The key server KS is set up in charge

of client authentication and chunk encryption key generation.

Specifically, a client Cj performs the chunking algorithm

on his backup data. KS authenticates Cj upon request and

generates the CE key k for each chunk ch of Cj’s backup data

in an oblivious manner. Then Cj encrypts the data chunks with

the associated keys and uploads ciphertexts to SS2, such as

Microsoft Azure Backup. SS stores the deduplicated incoming

data stream in the corresponding containers before writing

them into storage. As a result, the entire data protection phase,

including key generation and data encryption, is transparent to

SS . SS only offers a basic and simple interface to its clients

as in the plaintext data backup scenario.

B. Security Model

We focus on protecting the confidentiality of predictable

data in this work because we can achieve semantic security

for unpredictable data with CE. KS learns nothing about Cj’s

input chunk during the protocol execution. A compromised SS
can launch offline brute-force attack by enumerating cipher-

texts of predictable file candidates and comparing them with

the target ciphertext in an offline manner. Although enterprise

network is usually protected by enforcing rigorous security

policies, we assume that it is possible for an external adversary

to compromise a limited number of internal clients. Thus the

adversary can perform an online brute-force attack by further

accessing KS .

We first define an ideal functionality Fdedupe of our scheme.

The input of Fdedupe:

• The client Cj has an input chunk ch;

• The key server KS’s input is a chosen secret dt;
• The cloud storage server SS has no input.

The output of Fdedupe:

• Cj obtains the chunk key k;

• The output of KS is θ′;
• SS gets the ciphertext c = Enc(k, ch) and learns

whether it has been stored.

We will prove our scheme secure in the malicious model

if a probabilistic polynomial-time (PPT) adversary cannot

distinguish the real-world execution of the proposed scheme

and an ideal-world protocol that implements the functionality

Fdedupe in the presence of a PPT simulator. In addition,

we do not consider side-channel attacks, proof of ownership

and key management in this study. Our system design will

complement the current research [4], [6], [20], [21], [22],

[31], [32]. Further, we assume that all the communication

channels between KS , Cj and SS are secure, and cannot be

eavesdropped or tampered with by the adversary.

C. Design Goals

We devise a privacy-preserving chunk-based dedupe system

aiming to achieve the following design goals. Pertaining to

security, 1) realize the ideal functionality Fdedupe in the

malicious model; 2) prevent offline brute-force attack by SS;

3) mitigate online brute-force attack by slowing down its

speed and providing multi-client compromise resilience. In

the performance aspect, 4) realize efficient chunk encryption

2For simplicity, we omit the non-security steps, such as chunk ID generation
and index table lookup on SS.

 Key Server

Enterprise Network

Clients

...
Cloud Storage Server

Encrypted
Data Flow

Fig. 1. Framework of the proposed scheme.

key generation; 5) our design should be comparable with the

plaintext CBD with respect to performance, such as dedupe

ratio and data restore speed.

V. PROTOCOL DESIGN

In this section, we elaborate on our protocol design and

provide discussion on the adopted techniques.

A. Randomized Oblivious Key Generation

Chunk encryption key can be generated by running a secure

(oblivious) two-party computation between Cj and KS , so that

KS learns nothing on the Cj’s input and algorithm output

while Cj cannot infer KS’s secret. In general, such desired

protocol can be realized by any blind signature scheme. Here

we use the widely-adopted blind RSA signature similar to

prior work [4] and further introduce the randomness into the

oblivious key generation.

1) Algorithm Definition: Let the hash functions G : Zn →
{0, 1}l and H : {0, 1}∗ → Zn. We define the ROKG algorithm

as follows.

Definition 1: (ROKG algorithm) The proposed randomized

oblivious key generation for a total of s clients in the system

consists of four fundamental algorithms.

• Setup(λr, λn) → ({PK,MK}): The setup algorithm

takes as input the security parameters λr and λn and

outputs n sets of RSA parameters {(Ni, ei, di)|1 ≤ i ≤
n}. Thus, the public parameters are PK = {(Ni, ei)}
and master secrets are MK = {di}.

• ChObf(ch, r, PKi,H) → z: This chunk obfuscation

algorithm takes as input the chunk data ch, a random

number r, the associated PKi = {Ni, ei} and hash

function H. It outputs the obfuscated chunk data z.

• OKeyGen(MKi, z) → θ′: This oblivious chunk key

generation algorithm takes as input the associated master

secret MKi = di for the client and obfuscated chunk z.

It outputs the corresponding obfuscated chunk key θ′.
• KeyRec(θ′,H,G, PKi, r) → k or ⊥: This chunk key

recovery algorithm takes as input θ′, hash functions G and

H, the associated public parameter PKi and the random

number r. If θ′ is successfully verified, it outputs the

chunk encryption key k. Otherwise, it outputs ⊥.

20 40 60 80 100 120
n master secrets

20

40

60

80

100

120

E m
(n

)

ROKG
Intuition

Fig. 2. Em(n) with the increased number n of the master secrets in the
system.

2) ROKG Construction: In what follows, we provide con-

crete ROKG design.

System setup. At the setup phase, the key server KS calls the

Setup algorithm to generate n pairs of {(PKi,MKi)}. PK
is published to all the clients C’s. MK is kept as the master

secrets for the following protocol execution.

Client registration. Each new client Cj in the system needs to

be authorized and registered by KS before he can request the

chunk encryption key. Specifically, for the authorized Cj , KS
uniformly at random selects a master secret MKi from MK
and stores the tuple (id(Cj), i) on the user list. The selection

i is then returned to Cj .

Chunk data mask. For a chunk data ch, the client Cj calls

the algorithm ChObf to obfuscate ch before sent to KS . In

particular, Cj chooses the corresponding PKi = {Ni, ei} and

a random number r. Then he masks the original chunk by

z = H(ch)rei mod Ni and sends z to KS .

Obfuscated chunk key generation. Upon receiving the key

generation request from Cj , the key server prepares the cor-

responding MKi and PKi by looking up the user list. KS
then calls the OKeyGen algorithm to generate the obfuscated

chunk key θ′ = zdimod Ni and returns it to the client.

Key recovery. The client Cj invokes the algorithm KeyRec
to derive the real chunk encryption key k. Specifically, he

first unmasks θ′ to θ = θ′r−1 mod Ni. Cj then verifies θ by

H(ch)
?
= θei mod Ni. If θ is valid, he can further recover the

chunk encryption key k = G(θ).
The proposed ROKG algorithm hides Cj’s input chunk ch

and actual output key k from KS while protecting KS’s secrets

MK from prying eyes of the client.

3) Asymmetry between Security Gain and Dedupability
Loss: Intuitively, the security gain grows linearly with the

increased number n of master secrets in the system but the

dedupe effectiveness also degrades at the comparable rate.

However, our proposed ROKG scheme brings us a counter-

intuitive asymmetry property between the security gain and

deduplication loss due to the characteristics of the accumulated

storage backup. In other words, with the increased n, the

growth rate of protection is much larger than that for dedupe

performance loss. In what follows, we elaborate the impact of

ROKG on these two aspects.

5 25 45 65 85 105 125 145 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m compromised clients

P

P5

P10

P15

P20

Fig. 3. Pn(m) with m compromised clients when n = 5, 10, 15, 20.

Multi-client compromise resilience. In prior work [2], [3],

[4], once a legitimate client is compromised, the entire en-

crypted storage of all clients can be revealed using online

brute-force attack by taking KS as a key oracle. In contrast,

we introduce randomness into the key generation. Obviously,

given any compromised Cj out of s clients in the system,

the adversary can only infer at most s
n clients’ data on SS

(s ≥ n). On the other hand, the adversary is able to increase

his advantage by compromising more clients. In previous

works [4], [6], compromising one client suffices for the whole

storage exposure. Here we care about the equivalent situation

of revealing the storage under all n secrets by controlling m
clients and quantify the leakage.

We define our security gain as Em(n), which is the expected

number of clients to be compromised for accessing all n
secrets. Em(n) can be denoted by n(1 + 1

2 + · · · + 1
n)

from the insights of the coupon collector’s problem [24].

By intuition, the growth rate of Em(n) is expected to be

comparable with that of n. However, using ROKG gives us a

much faster increase in Em(n) as shown in Fig. 2. Therefore,

we can choose a relatively small n but stay resilient to more

compromised clients. We also provide the accurate probability

Pn(m) for the case that the adversary compromises m clients

in order to infer the storage under all n master secrets of

KS (m ≥ n). In general, there are nm possible ways, in

which we are interested in the number of functions from a

set of m elements to a set of n elements. Such number can be

denoted by n!S(m,n). S(m,n) = 1
n!

∑n
j=0(−1)n−j

(
n
j

)
jm is

the Sterling number of the second kind [23]. Therefore, the

probability is Pn(m) = n!S(m,n)
nm . Given a fixed n, Pn(m)

grows as expected by compromising more clients shown in

Fig. 3. It also exhibits that the whole dedupe system becomes

more robust under the attack by increasing n.

In practice, we can tweak the parameter n to accommodate

the real network scale. The number of compromised machines

in an enterprise network usually depends on not only the

company’s size but also its security policies/controls. The

typical infection percentage ranges from 0.1% to 18.5% [25].

To demonstrate the effectiveness of our protocol, we take into

account a fairly protected small company of 100 employees

with 10% or lower infection ratio (10 compromised clients).

Thus, for n = 5 the adversary will succeed only with the

probability less than 50%. Note that we are free to adopt a

larger n to further make Pn(m) negligible.

Impact on deduplication. Indeed, the resulted threat isolation

comes at the price of dedupe effectiveness loss. This is two

folds. First, we study the case for one backup cycle. W.l.o.g,

the stored data can be represented by x+ y under one secret.

x is the size of data that cannot be deduplicated across all the

users. y refers to the size of data that have been deduplicated.

We consider the best case that all the users share the same

data portion of y. Thus, x + y is the lower bound of stored

data size we can achieve in reality. By using n secrets in the

system, the size of the stored data is x + ny. Compared to

the dedupe ratio dr1 under one key, the dedupe ratio using

n keys is drn = x+y
x+ny · dr1. Obviously, the performance

degradation does not follow the simple linearity, which is

also demonstrated by our experiment (see Sect. VII). If x
outsizes y significantly, selecting a small or moderate n will

not introduce an obvious performance penalty. The example

may be that the backup contains data types not naturally

suited for deduplication, such as compressed files commonly

seen in the archive storage, the rich media data (e.g. videos,

images). Therefore, our scheme can provide better security

guarantee in this situation. Otherwise, non-negligible dedupe

loss is expected for this one-time backup scenario. On the other

hand, the periodic backup service will eventually give rise to

a high dedupe performance with our scheme. This is because

the size of the accumulated backup storage is a more dominant

factor in the dedupe ratio computation compared to the orders

of magnitude smaller n. Thus, we can take advantage of

this asymmetry to achieve stronger privacy protection with

a larger n while enjoying comparable space savings with the

plaintext CBD. This analysis is consistent with our experiment

(see Sect. VII). In addition, our scheme enables better read

performance (see Sect. V-C).

4) Efficiency Improvement for Frequent Insensitive Data:
We observe that files sharing the similar contents or with the

same data type, e.g., .pdf, .doc, may contain identical data

fields. Intuitively, if we extract these immutable parts and

utilize them as a file fingerprint, we can accelerate the key

generation significantly. In this case, we modify the original

ROKG protocol for the frequent insensitive data as follows.

The setup and client registration remain the same. Cj first

adopts the content-aware deduplication [15], [16], [17] to

identify the common data parts for his files with the same

format or data type. For instance, in Fig. 4, given the extracted

common data chunks F1, F2, and F3, we can compute the file

format fingerprint hf = H(F1||F2||F3). Instead of running the

remaining algorithms, i.e. ChObf, OkeyGen, and KeyRec
for each chunk, Cj uses the fingerprint hf as the input to

get the file format key kf . Subsequently, Cj produces the

chunk key k = G(kf ||ch) offline for all the chunks ch in the

file with the same fingerprint. Therefore, we have a constant

computation and communication overhead for the modified

ROKG protocol. For files containing sensitive information, Cj
still needs to run the online protocol per chunk with KS to

File A

File B

1F 2F 3F

1F 2F 3F

3A2A1A

1B 2B 3B 4B 5B

5A

Fig. 4. F1, F2, and F3 are immutable parts identified by content-aware
chunking algorithm in two file copies A and B of the same file format.

stay more resilient to the brute-force attack.

B. Slowing down Online Brute-force Attack

Online brute-force attack can be launched by compromising

a legitimate client and interacting with the key server to

obtain the chunk encryption key. Completely preventing such

attack is still an open problem. Using our ROKG design

only partially mitigate this issue. On the other hand, rate-

limiting strategy is broadly used to slow down this online

attack in file-based dedupe scenario [4], [6]. We propose to

enforce a per-backup rate-limiting policy in the chunk-based

dedupe system, which is inspired by the observed features of

storage backup in practice. Specifically, given the projected

backup data size and expected chunk size, we set a budget

q = projected backup data size
expected chunk size for each client to bound the

number of requests that are allowed to be processed by KS
during the prescribed time window, e.g. 2:00 – 3:00 AM every

Tuesday. Otherwise, KS will not respond to the client.

This policy is made based on the following observations.

First, the enterprise backup workloads usually exhibit period-

icity, i.e., they follow the scheduled time window and update

cycle. Moreover, it is expected that the content and size of

the periodical backup data from an enterprise user does not

change rapidly [10]. For example, a weekly 2GB OS snapshot

of a client’s machine is backed up to the cloud storage with the

expected chunk size 8KB. We can estimate a weekly backup

budget q = 250, 000 for each client. We may also set an

additional buffer to tolerate the error and ensure the success

of the backup. We assume that any attempt to use the budget

for the attack without actually storing the data, or only storing

a portion below the budget will be detected in a post auditing

process. In addition, our approach is supposed to work with

both full and incremental backup (only storing deltas between

files) scenarios. Note that the rate-limiting strategy may not

be fully compatible with the proposed content-aware key

generation mechanism because the adversary can circumvent

the online restriction by offline computation. Thus, it is desired

to enforce the policy for sensitive data.

C. Improving Data Restore Speed

There are several reasons why we are concerned about

read performance even in the backup storage. First of all,

data restore speed is considered critical for crash/corruption

recovery, where higher read speed results in shorter recovery

window time. Furthermore, we need to reconstruct the original

data stream (more frequent than user-triggered data retrieval)

for staging the backup data streams to archive storage in light

of limited capacity of deduplication storage [26].

Despite the reduced dedupe ratio, the proposed scheme will

naturally enable better read performance for a user as we

allow a duplicate chunk copy under one secret to be kept

in the storage without referring it to an existing copy under

another secret in an old container. As a result, we trade off

deduplication for faster user backup restore speed, which hap-

pens to reflect a similar optimization philosophy in plaintext

dedupe research [15], [26], [27]. We can further improve

read performance by adopting a reconstruction-aware chunk

placement mechanism to enforce a high spatial locality for

chunks. Specifically, the system maintains a set of dedicated

chunk containers cnti,j in the cache for each KS secret di,
where 1 ≤ i ≤ n and j indicates a distinct container for

the same key3. We achieve high spatial locality by storing

cnti,j in separate locations of the disk according to i, such as

in different partitions. Therefore, chunks under the same KS
secret are stored close to each other. When restoring a client’s

data, read access is only restricted to a limited scope of the

disk instead of random accessing the whole storage.

We argue that the proposed chunk placement will not

disclose the additional information except what has been

learned by the adversary. In particular, while improving the

read performance, the adversary may identify clients under the

same KS secret by observing their chunks stored in the same

set of containers cntt,j . However, such information leakage is

inevitable in any dedupe system, which the adversary on SS
always knows from deduplication process. Furthermore, we

can leverage the encrypted data search techniques to realize

the secure chunk retrieval and verification [28] or combine

ORAM to hide the access pattern [29], which are interesting

future research directions.

VI. SECURITY ANALYSIS

In this section, we show that the presented scheme ac-

complishes our security goals. As we discussed, our proposal

alleviates the online brute-force attack even when multiple

clients are compromised and we can diminish the attack

efficiency by the per-backup rate-limiting strategy. In what

follows, we show that Fdedupe and offline brute-force attack

prevention are achievable as well.

Theorem 1: Our secure chunk-based deduplication protocol

computing the ideal functionality Fdedupe is secure in the

malicious model if the blind RSA signature is secure in the

random oracle model and the hash function G is modeled as

a random oracle.

Proof: (Sketch) Assume the blind RSA signature protocol

to be an oracle that takes in participants’ inputs and then sends

outputs to them. For simplicity, we only consider one KS
secret in the system, whose security can be easily extended

to the multi-secret situation. Suppose that there is a simulator

S for the corrupted parties in the ideal world. S can access

Fdedupe in the ideal world and record message transcript

from the protocol execution in the real world. Therefore,

the adversary A cannot distinguish the view IdealA,S(λr)

3We need an additional 1-byte field cnt num in the chunk metadata to mark
which set of containers this chunk should go to.

constructed by S in the ideal world from the view RealA(λr)
in the real-world protocol execution.

Corrupted Cj : Assume that SS and KS are honest in this

case. Simulator S records the calls Cj makes to the blind

RSA signature with the input chunk ch. It invokes the ideal

functionality Fdedupe with the same ch. S also records the

output θ from the blind RSA signature and keeps a list

{(θ, k)}. If S receives a θ that appears on the list, it returns the

corresponding k as the chunk key. Otherwise, k is a random

number and S writes it back onto the list. In the end, Fdedupe

also outputs a chunk key kΔ for ch and θ′Δ. S may simulate the

message transcript as follows. It sets r =
θ′
Δ

θ . zΔ is simulated

as reθe and hΔ = θe. If Cj behaves honestly, k is equal to

kΔ. On the other hand, A can deviate from the protocol by

modifying his inputs and replacing elements that are sent to S .

In this case, θ and k are random numbers in light of the RSA

signature and random oracle G. S can simulate the message

transcript similar to the above. The message transcripts cannot

be computationally distinguished by adversary A in the real

and ideal worlds. Thus, IdealA,S(λr) and RealA(λr) are

identically distributed.

Corrupted KS: Assume that Cj and SS are honest. Fdedupe

outputs θ′Δ for KS . S can simulate the incoming message zΔ
similarly to the above. KS can deviate from the designated

protocol execution by replacing the signature, which, however,

will only pass the client-side verification with negligible

probability given the unforgeability of blind RSA signature.

Thus, A still cannot distinguish IdealA,S(λr) and RealA(λr).
Corrupted SS: Assume that both Cj and KS are honest. By

providing Fdedupe with the input ch and di, S receives the

chunk ciphertext cΔ = Enc(kΔ, ch). If ch exists, the ideal-

world cΔ is the same as c in the real world. Otherwise, the

chunk key and ciphertext are random in both the real and ideal

worlds. SS can deviate from the protocol by modifying the

ciphertext, which may result in a failed chunk deduplication.

Thus, A cannot distinguish IdealA,S(λr) and RealA(λr).
According to Theorem 1, the proposed protocol securely

computes the ideal functionality Fdedupe. In addition, the

adversary (in the case of corrupted SS) cannot generate the

encryption key from chunk data itself or access KS , thereby

preventing the offline brute-force attack.

VII. PERFORMANCE EVALUATION

We implement our secure chunk-based deduplication system

on the real-world backup storage from File systems and Stor-

age Lab at Stony Brook University [30]. We focus on the 2013

MacOS Snapshots dataset collected on a Mac OS X Snow

Leopard server with 54 users. There are 249 snapshots (daily

backup) in total with the duration of 11 months, and each

snapshot is generated by using variable-sized chunking with an

average chunk size of 8KB. To simulate our enterprise backup

setting, we synthesize each individual user’s daily backup by

extracting his files from the snapshot and incorporate data of

UID-0 as the base file system. The total size of the backup

storage we considered here before deduplication is roughly

463 TB. We also set the size of the chunk container and LRU

50 100 200 25010−3

10
−2

10− 1

10
0

10
1

102

103

10
4

Backup stream size (MB)

La
te

nc
y

(s
)

 Basic scheme
 1 format key
 5 format keys
10 format keys
15 format keys

(a)

50 100 200 25010−1

100

10
1

102

103

104

Backup stream size (MB)

Ti
m

e
co

st
 (s

)

Basic scheme
5 format keys

(b)

Fig. 5. (a) Latency and (b) Client-side computation overhead for the online
key generation protocol with the increased size of backup stream of a client.
We invoke an online protocol instance for each chunk in our basic scheme.

cache as 4 MB and 512 MB respectively. We do not use the

relevant optimization technique, such as parallelization. The

corresponding experimental results are an average of 100 trials.

The existing secure chunk-based designs [2], [22], [31], with

the different research focus, do not consider the protection

of low-entropy data in the presence of a strong attacker and

the practical deduplication performance, such as fragmentation

level. Their performance should be roughly the same as that

of plaintext CBD in terms of dedupe ratio and data restore

speed because they heuristically keep unique chunk copy in

the system. We will not explicitly mention them hereafter and

only compare the proposed scheme with plaintext CBD instead

(see Sect. VII-B and VII-C).

A. Online Key Generation

We use Python to implement our TCP-based randomized

oblivious key generation protocol between the key server KS
and client Cj . The server machine is equipped with a 3.1
GHz AMD FX 8120 processor and 32GB DDR3 memory.

On the same LAN, the client machine has an Intel i3-2120
processor with 12GB memory. The blind RSA signature is

implemented with RSA1024 and SHA256. CE is instantiated

by CTR[AES128].
1) Latency: We measure the latency incurred by the pro-

posed online protocol, which is defined as the time between

that Cj sends out the request to and receives the response

from KS . As shown in Fig. 5(a), the overhead of the basic

scheme without optimizing the chunk key generation is linear

in the size of the client’s data. A large size backup data

stream produces more chunks, which will invoke more per-

chunk key generation protocol instances. Fig. 5(a) also shows

that the protocol latency is dramatically reduced and becomes

constant if we resort to the content-aware chunking and only

run the protocol to generate the format key kf . Thus, the

latency merely depends on the number of distinct file formats

in the backup stream of the client (supposing all are predictable

files), regardless of the size.

2) Client-side Cost: We also measure the additional client-

side cost due to the ROKG protocol and convergent en-

cryption. As shown in Fig. 5(b), the overhead is mainly

contingent on the size of the backup data stream. It is worth

noting that this cost still demonstrates the linearity with the

total backup data size even using the proposed efficient key

40 80 120 160 200 240
0.99

0.992

0.994

0.996

0.998

1

Number of backups

Sp
ac

e
re

du
ct

io
n

pe
rc

en
ta

ge

Plaintext CBD
5 keys
10 keys
15 keys

Fig. 6. Space savings sr with the increased number of backup storage in the
cloud. Each backup includes snapshots of 54 users’ machines. The comparison
is drawn between the plaintext CBD, and our scheme using 5, 10, and 15
KS secret keys.

(a) (b)

Fig. 7. (a) Fragmentation level r and (b) data restore speed 1/r with the
increased number of backups in the cloud. Both fragmentation level and read
performance are measured by recovering the backup dataset of a randomly
selected user. All the comparisons are drawn between the plaintext CBD, and
our scheme using 5, 10, and 15 KS secret keys.

generation algorithm. This is because client still needs to

carry out the offline hashing for each chunk key, and encrypts

them individually. Again, it shows a significant performance

advantage by the efficient key generation protocol.

B. Deduplication Effectiveness

We develop a deduplication simulator with C code to mea-

sure the corresponding dedupe performance of the proposed

scheme and compare our protocol with plaintext CBD.

Adhering to our previous analysis (see Sect. V-A3), for

a single backup attempt, for example, the 40th backup in

Fig. 6, the dedupe ratio dr5 with 5 KS secrets is about

half of dr1 in the plaintext CBD, which exhibits a non-

linear performance loss with n. Fig. 6 also shows that the

space reduction percentage sr is sensitive to the number of

backups and increases as periodic backup service continues.

With more backup date added, sr gradually approaches the

plaintext dedupe performance regardless of the number of

master secrets used in the system because the size of the

accumulated “original dataset” dominates the computation for

sr. As a result, we can adopt more KS secrets to achieve

stronger privacy protection with a minimal dedupability loss.

C. Fragmentation

We focus on the fragmentation/read performance compar-

ison with plaintext CBD because of the sequentially writ-

ten/read files and defragmentation schedule in file-based dedu-

plication. Although our design shows a slight loss of dedu-

pability so as to achieve the desired security objectives, the

chunk fragmentation level r for user backup is also reduced,

thereby the increased data restore speed shown in Fig. 7(a)

and Fig. 7(b) respectively.

We neglect the actual low-level data placement on disk (i.e.

our high spatial locality design in Sect. V-C), and other com-

mon optimization techniques (e.g. large container/cache). We

use the same simulator to study the impact of fragmentation on

a user’s backup data caused by our security design only. The

result, as shown in Fig. 7(a), again validates the importance of

the fragmentation issue in the chunk-based deduplication that

the more data added to the storage, the more severe the chunk

fragmentation level. Fig. 7(a) also shows that our design can

maintain a lower fragmentation level than plaintext CBD. In

addition, the number of KS secret keys used in the system

has a negligible impact on the chunk fragmentation. Note

that we can enjoy substantial fragmentation reduction with

the increased size of backup storage. Fig. 7(b) accordingly

shows that the proposed scheme achieves better user backup

read performance than plaintext CBD. As a result, we can

use more KS secret keys to realize faster restore speed and

stronger privacy guarantees at the same time.

VIII. CONCLUSION

We in this work discuss and address challenges in designing

a data deduplication system at the chunk level. The impact

of online brute-force attack can be substantially alleviated by

allowing clients to invoke the proposed randomized oblivious

key generation protocol with a key server and enforcing a per-

backup rate-limiting policy. We also exploit the content-aware

deduplication technique to further improve the efficiency of the

online key generation. Our scheme is on par with the plaintext

practice in terms of the deduplication performance while

gaining better security guarantees compared to the existing

work.

ACKNOWLEDGMENTS

This work was supported in part by US National Science

Foundation grants CNS-1446478 and CNS-1443889.

REFERENCES

[1] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon and M. Theimer,
“Reclaiming space from duplicate files in a serverless distributed file
system”, in Proc. of IEEE ICDCS, pp. 617–624, 2002.

[2] P. Puzio, R. Molva, M. Onen, and S. Loureiro, “ClouDedup: Secure
deduplication with encrypted data for cloud storage”, in Proc. of IEEE
CloudCom, pp. 363–370, 2013.

[3] J. Stanek, A. Sorniotti, E. Androulaki, and L. Kencl, “A secure data
deduplication scheme for cloud storage”, in Financial Cryptography and
Data Security, pp. 99–118, 2014.

[4] M. Bellare, S. Keelveedhi, and T. Ristenpart, “DupLESS: Server-aided
encryption for deduplicated storage”, in Proc. of USENIX Security, pp.
179–194, 2013.

[5] Y. Duan, “Distributed key generation for encrypted deduplication:
Achieving the strongest privacy”, in Proc. of ACM CCSW, pp 57–68,
2014.

[6] J. Liu, N. Asokan, and B. Pinkas, “Secure deduplication of encrypted
data without additional independent servers”, in Proc. of ACM CCS, pp.
874–885, 2015.

[7] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-locked encryp-
tion and secure deduplication”, Advances in Cryptology-EUROCRYPT,
pp. 296–312, 2013.

[8] M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and G. Segev,
“Message-locked encryption for lock-dependent messages”, Advances
in Cryptology-CRYPTO, pp. 374-391, 2013.

[9] J. Xu, E.-C. Chang, and J. Zhou, “Weak leakage-resilient client-side
deduplication of encrypted data in cloud storage”, in Proc. of ACM
ASIACCS, pp. 195–206, 2013.

[10] D. T. Meyer and W. J. Bolosky, “A study of practical deduplication”,
ACM TOS, vol. 7, no. 4, p. 14, 2012.

[11] J. Paulo and J. Pereira, “A survey and classification of storage dedupli-
cation systems”, ACM CSUR, vol. 47, no. 1, p. 11, 2014.

[12] M. Dutch, “Understanding data deduplication ratios”, SNIA Data Man-
agement Forum, http://www.snia.org/sites/default/files/Understanding
Data Deduplication Ratios-20080718.pdf, 2008.

[13] M. Kaczmarczyk, M. Barczynski, W. Kilian and C. Dubnicki, “Reducing
impact of data fragmentation caused by in-line deduplication”, in Proc.
of ACM SYSTOR, p. 15, 2012.

[14] A. Z. Broder, “Some applications of Rabins fingerprinting method”,
Sequences II: Methods in Communications, Security and Computer
Science, pp. 143–152, 1993.

[15] D. R. Bobbarjung, S. Jagannathan, and C. Dubnicki, “Improving du-
plicate elimination in storage systems”, ACM TOS, vol. 2, no. 4, pp.
424–448, 2006.

[16] C. Liu, Y. Lu, C. Shi, G. Lu, D. H. Du, and D. S. Wang, “ADMAD:
Application-driven metadata aware de-duplication archival storage sys-
tem”, in Proc. of IEEE SNAPI, pp. 29–35, 2008.

[17] G. Lu, Y. Jin, and D. H. Du, “Frequency based chunking for data de-
duplication”, in Proc. of IEEE MASCOTS, pp. 287–296, 2010.

[18] M. Lillibridge, K. Eshghi, and D. Bhagwat, “Improving restore speed
for backup systems that use inline chunk-based deduplication”, in Proc.
of Usenix Fast, pp. 183–197, 2013.

[19] D. Chaum, ”Blind signatures for untraceable payments”, Advances in
Cryptology-CRYPTO, pp. 199–203, 1983.

[20] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels in cloud
services: Deduplication in cloud storage”, in Proc. of IEEE S&P, vol.
8, no. 6, pp. 40–47, 2010.

[21] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of
ownership in remote storage systems”, in Proc. of ACM CCS, pp. 491–
500, 2011.

[22] J. Li, X. Chen, M. Li, J. Li, P. P. Lee, and W. Lou, “Secure deduplication
with efficient and reliable convergent key management”, IEEE TPDS,
vol. 25, no. 6, pp. 1615–1625, 2014.

[23] R. P. Stanley, “What is Enumerative Combinatorics?”, Enumerative
Combinatorics, pp. 1–63, 1986.

[24] B. Dawkins, “Siobhan’s problem: the coupon collector revisited”, The
American Statistician, vol. 45, no. 1, pp. 76–82, 1991.

[25] “State of Infection Report – Q2 2014”, Damballa, http://landing.
damballa.com/state-infections-report-q2-2014.html, 2014.

[26] Y. Nam, D. Park, and D. H. Du, “Assuring demanded read performance
of data deduplication storage with backup datasets”, in Proc. of IEEE
MASCOTS, pp. 201–208, 2012.

[27] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti, “iDedup:
Latency-aware, inline data deduplication for primary storage”, in Proc.
of USENIX FAST, pp. 1–14, 2012.

[28] W. Sun, X. Liu, W. Lou, Y. T. Hou, and H. Li, “Catch you if you lie to
me: Efficient verifiable conjunctive keyword search over large dynamic
encrypted cloud data”, in Proc. of IEEE INFOCOM, pp. 2110–2118,
2015.

[29] O. Goldreich, “Towards a theory of software protection and simulation
by oblivious rams”, in Proc. of TC, pp. 182–194, 1987.

[30] “Traces and snapshots public archive”, FSL, http://tracer.filesystems.org,
2012.

[31] R. Chen, Y. Mu, G. Yang, and F. Guo, “BL-MLE: Block-Level Message-
Locked Encryption for Secure Large File Deduplication”, IEEE TIFS,
vol. 10, no. 12, pp. 2643–2652, 2015.

[32] J. Li, C. Qin, P. Lee, and X. Zhang “Information Leakage in Encrypted
Deduplication via Frequency Analysis”, in Proc. of IEEE/IFIP DSN, pp.
2110–2118, 2017.

