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Abstract—This paper presents a game theoretic solution for
hierarchical spectrum sharing between primary users (PUs) and
secondary users (SUs) in the presence of cognitive interferers.
There exist several forms of uncertainty, including channel
conditions, packet traffic, and spectrum occupancy of users across
channels. This uncertainty is further aggravated by delays (such
as propagation delays observed over satellite links) that make
spectrum-efficient communication a challenging task. A robust
game theoretic framework is developed for dynamic spectrum
access (DSA) management over multiple channels. Cognitive
functionalities employed in the game solution include selecting
channels for data transmission and performing power control at
each user to sustain target rates. By considering random utility
functions, the game engine based on regret minimization pro-
vides low complexity and fast solutions compared to traditional
game solutions based on expected utility maximization. Detailed
numerical results with comparison to benchmark schemes (the
ideal case and the random case where users have perfect or no
knowledge on channel availability, respectively) are provided to
show the effectiveness of robust game theory-enabled approach.

Keywords—Dynamic spectrum access; hierarchical spectrum
sharing; cognitive radio; game theory; regret minimization; un-
certainty.

I. INTRODUCTION

We consider hierarchical spectrum sharing between pri-
mary users (PUs) with dedicated channels and secondary
users (SUs) opportunistically accessing available channels in
the presence of cognitive interferers. The focus is on uplink
transmissions from PUs or SUs to a receiver which may
represent a satellite in a satellite communication (SATCOM)
system. Each PU has assigned channels for its own traffic with
random packet arrivals. Each SU can sense and access idle
channels not used by PUs while each cognitive interferer can
sense PU and SU transmissions and interfere with detected
transmissions.

By taking into account delays in acknowledgments follow-
ing data transmissions (such as those caused by the propagation
delays over satellite links), we design the game engine for
each type of user (PUs, SUs and cognitive interferers). We
apply regret minimization [1] as a low-complexity and fast
alternative to expected utility maximization [2] in the form
of Bayesian games. We define a policy space and utility for
each type of users. The defined utility is a random function,
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since both reward for successful transmissions and cost due to
delay, channel activation and channel reservation are random
variables. We apply regret minimization techniques to choose
a policy randomly based on its regret, which is the additional
cost due to not using the optimal policy. We present a decision
making module for each type of user, i.e. PU, SU, and cogni-
tive interferer, each with its own policy space and utility. The
strategies of users include selecting channels and performing
power control.

1) A PU has data packets that arrive at random intervals
to be transmitted to the receiver by using its assigned
channels. A PU performs handshaking with the re-
ceiver before transmission. Due to round trip delay, a
channel cannot be available immediately after the PU
sends a Request to Send (RTS). Thus, channels are
classified as idle (to be activated), activation pending,
and available. Once a channel is available, the PU
can transmit on the channel, otherwise the channel
will become idle again. PUs need to decide which
idle channels should be activated, which available
channels should be used for transmissions, and which
available channels should be reserved for future trans-
missions. We define a policy space to make these
decisions. We also define a utility function for PUs,
which considers both reward for successful transmis-
sions and cost for delay, activation, and reservation.

2) An SU always has packets to be transmitted on
channels that are sensed as idle. It also performs
handshaking with the receiver before transmission.
Note that if requests from both the PU and an SU are
received, the receiver will send a Clear to Send (CTS)
to the PU. SUs need to decide which idle channels
should be activated. We define a policy space to
make this decision. We also define a utility function
for SUs, which considers both reward for successful
transmissions and cost for delay and activation.

3)  An interferer can sense busy channels. Since we as-
sume limited interferer capability, an interferer needs
to select a subset of busy channels. We define a
policy space to make this decision. The utility of an
interferer is a function of interfered packets.

We then apply regret minimization for each user to select
a suitable policy. This approach has low complexity and fast
convergence speed. Effects of spectrum sensing on throughput
and delay are studied. Results are also compared to an ideal
(genie-based) policy and a random policy in which users have
perfect or no knowledge on channel availability, respectively.



Regret minimization has been applied to cognitive net-
works at different levels [3]-[8]. The focus of [3] was on
coexistence between macro- and femto- cell tiers, whereas we
consider DSA with PUs, SUs, and interferers. [4] solved a one-
shot scheduling problem of enabling the maximum number
of concurrent transmissions. Instead, we address a general
scheduling problem for DSA where different transmissions can
be scheduled in different time slots. [S]-[7] considered PU
and SU transmissions only. We also consider the impact of
interferers. [8] studied a network of PUs, SUs and interferers
but focused on the sensing problem. We consider both sensing
and throughput maximization in this paper.

The rest of the paper is organized as follows. Section II
provides the system model, including the network setting, and
the PU, SU, and cognitive interferer models. Then Section
IIT presents the game engine based on regret minimization
for each type of node. Section IV provides the performance
evaluation of the developed game engine compared to different
alternatives. Finally, Section V concludes the paper.

II. SYSTEM MODEL
A. Network Model

We consider an uplink network scenario. There are three
types of nodes: PUs, SUs, and cognitive interferers:

1) PUs and SUs are transmitting to a receiver (e.g.,
a satellite). PUs have dedicated channels for data
transmission while SUs can access channels only
when PUs are not transmitting.

2)  Cognitive interferers aim to interfere with the uplink
PU/SU transmissions at the receiver.

B. Secondary User (SU) Model

Each SU looks for opportunistic access to PU channels and
aims to regulate its admission of new packets to a rate that can
actually be supported. The opportunistic access requires that
an SU senses some channels, finds idle channels (not in use
by PUs), and then uses these idle channels for transmission.

An SU can sense a PU or another SU transmission by
observing ACK/NAK. When a control packet is sensed on one
channel, this channel is busy unless it was used by a PU and
this PU has an empty queue. Thus, an SU may simply assume
ACK/NAK indicates a busy channel.

In addition, an SU can sense PU/SU transmission either
directly or by sensing sidelobes. For example, a PU/SU ground
transmitter in SATCOM uses a directional antenna to commu-
nicate with the receiver. Although the majority of the power is
transmitted in the main lobe towards the receiver, there is some
power in sidelobes. An SU in a sidelobe can detect channel
busy/idle status. Such information may not always be available,
e.g., an SU is not in a sidelobe, and may have error since
power in sidelobe is much less than interference. Thus, an SU
uses such information as an auxiliary approach to improve the
results by sensing ACK/NAK. Any spectrum sensing method
such as energy detector can be used.

Once some channels are identified as available, an SU
performs handshaking before its transmissions. Since there
are various uncertainties in the system, e.g., uncertainty due
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Fig. 1. Sample SU activities.

to delayed channel status, the actual channel condition is
unknown. The receiver will send an ACK/NAK to confirm
the received data, along with channel status. Each ACK/NAK
is delayed by RTT.

There are two cases of NAK for SU transmissions. The first
case is the same as the NAK for PU transmissions i.e., a NAK
is generated when the received SINR is less than a threshold
SINR,,in. This case may indicate an interfered channel. The
second case is that the receiver has received a PU handshaking
request and thus terminates SU transmissions.

Fig. 1 shows a sample of SU activities on one channel. At
the beginning, SU performs sensing, finds an available channel,
performs handshaking and then transmits its data. Since an SU
always has data to transmit, it transmits the second packet right
after it finishes the transmission of the first packet. Then if an
ACK is received, the SU knows that the current channel is
still available and updates channel status. Otherwise, the SU
knows that the current channel has become unavailable.

In addition to design possibility in this example, we con-
sider more challenging cases in algorithm design, including
1) SU can sense multiple channels and transmit on multiple
available channels, 2) sensing/handshaking/NAK may indicate
that some channels are unavailable and thus not all sensed
channels are available.

C. Primary User (PU) Model

PU model is similar to SU model with the following
differences: 1) Each PU has random packet arrivals. 2) A PU
has a number of assigned channels and thus there is no sensing
before handshaking.

D. Cognitive Interferer Model

Interferer model is also similar to SU model with the
difference that an interferer does not perform handshaking. It
just interferes selected channels after sensing.

III. GAME ENGINE BASED ON REGRET MINIMIZATION

We developed different policies for PUs, SUs and in-
terferers under the regret minimization framework [3]-[8],
where both reward (function of random number of transmitted
packets) and cost (function of random policy) are random func-
tions. These policies are implemented as regret minimization
strategies. In general, regret minimization strategies are known
to converge to approximate correlated equilibria [1]. In some
cases, these equilibria have significantly better social welfare
properties than conventional Nash equilibria, which maximize
expected utility. The full game model for the system that we
have described is a stochastic game with partial observability.



Namely, the system evolves stochastically and the players can-
not observe the entire state, but only various signals associated
with the state. Such a game is the multi-player analog of
a Partially Observable Markov Decision Process (POMDP).
Therefore, expected utility maximization would have very high
complexity and a tractable solution to compute an equilibrium
is unknown. Instead, regret minimization provides a fast and
low-complexity solution of random policy updates (without
solving an optimization problem explicitly).

A. System Model for Game Setting

We consider a time-slotted system consisting of n channels
that are allocated to each PU. There are npy PUs and thus
a total of n x npy channels. We consider ngy SUs and n s
interferers. Each SU can sense and use any idle channels (not
used by the corresponding PU and other SUs) to transmit data
while each interferer can sense and interfere with any busy
channels (used by PU/SU). For simplicity, we assume that a
packet can be transmitted in exactly one slot, although the
number of packets transmitted in one slot may be variable.
The round-trip time between a ground station and the receiver
is divided into r slots. That is, data transmissions in slot ¢ are
acknowledged in slot ¢+7. Similarly, we assume that it takes r
slots to activate an idle channel. When a user wants to activate
a channel, it sends an activation request to the receiver in slot
t, receives a response in slot ¢ 4 and can begin transmitting
on the channel in slot ¢ 4+ r + 1.

Packet failures may still occur even when there is no
interference, but the cause of these failures is unspecified (and
therefore not modeled). In this case, in every slot a user (PU
or SU) decides which subset of channels to use. Data can be
sent on active channels immediately. As noted above, inactive
channels that a user decides to activate in slot ¢ can be used
for data beginning in slot ¢ + r + 1.

B. PU’s Strategy

The complete state for the PU at time ¢ consists of a state
for each channel and the state of each packet in the PU’s queue.
The channel may be active (in which case the PU can send
data on it in slot ¢), idle (in which case the PU can request to
activate it), or in activation stage k, where k € {1,2,...,r}.

Denote the number of channels in each state as
(no,n1,...,np,npg1), where ng is the number of idle chan-
nels, n; is the number of channels in activation stage k €
{1,2,...,r} and n,4; is the number of active channels.
A complete state for each PU packet would indicate the
“waiting stage” of any unacknowledged transmissions of the
packet since it takes r slots to learn the outcome of any
transmission attempt. Denote the number of packets in each
state as (qo,q1,--.,qr), Where go is the number of packets
waiting for transmission and gy, is the number of packets in
waiting stage k € {1,2,...,r}. A packet in waiting stage k
at time ¢ was transmitted in slot ¢ — k and an ACK (or NAK)
is expected in slot ¢t + r — k.

The set of actions available to the PU models deciding
which of the idle channels to activate, which of the active
channels (if any) to deactivate (by not using) and what packets
to transmit on each of the active channels. The feedback that
the PU receives in slot ¢ is the identity of any packets that

succeeded, of those that were transmitted in slot ¢ — . Denote
aqet as the number of channels to activate and ag,,;: as the
number of channels to transmit on, where

QAgct € {Oa 17 . '7n0} and Azmit € {07 17 R n’r+1}- (1)

Moreover, we have

Gaet > 0 only if agpmit = npg. 2)

When qo > azmits Gzmit packets in state O are transmitted.
Otherwise, reservation packets are sent on @y, — go channels
for the sole purpose of keeping those channels active. The
feedback f* received by the PU in slot ¢ is the number of
packets that succeeded in slot t — r and must satisfy

Fref0,. . a = al, ) @)
The evolution for the channel states is specified by
A
nf) - a’fzct + nfﬂrl - a;miﬁ k= 0’
Ggety k=1, )
N1 ke{23,...,r},
al .. +nk, k=r+1.

For the packet queue, the evolution is specified by

t+1
9, =
(gh — alpie) ™ +at — [T +af, k=0,
min{al,,,;;, 45}, k=1, ®)
Q1 ke{2,3,. ...

Here, af is the number of new packet arrivals during slot
t and x* = max{0, z}.

In each time slot, we assume that the PU receives a reward
of one unit for each packet successfully delivered. The PU pays
a delay penalty of cgeiqy for each non-transmitted packet in
queue qo, where 0 < ¢gejay < 1. Finally, the PU pays a cost
crep for each reservation packet transmitted, where ¢y, > 0.
We assume a channel activation cost ¢,.; > 0. The introduction
of cqet 1s to prevent keeping all channels active, which will
negatively impact SUs.

We assume that the PU wishes to maximize the average
slot utility over time. In some sense, it does not matter which
slot particular rewards and costs are credited to. But, when it
comes to machine learning and regret minimization algorithms,
this will make a significant difference. If the number of packets
successfully acknowledged in time slot ¢, f? is credited as the
reward in that time slot, then we end up with the awkward
situation in which the reward in that slot is unconnected to the
action taken in the slot, because it only depends on actions
taken in slot ¢ —r. So, instead, the reward in time slot ¢ is taken
to be the number of packets that are successfully transmitted
in slot ¢, that is f'*". This means that the reward in slot t
is not known until slot ¢ 4+ », but this is easier to handle in
the learning framework than rewards that are decoupled from
actions.

Thus, in time slot ¢, the PU utility is

uf = fir- Cdelay (QB - atxmit)+

t t t
—Crev (awmit - qO)Jr ~ CactQgct- (6)



The PU’s decision includes ammt and al ;. The parameters
include r N, Cdelays Crevs Cacts ao, qk (usually assumed as
Z€ero), nk (usually assumed ng = n and nk = 0 for k£ =
1,...,7+1)and f**" (as a function of af ;). The PU strategy
consmts of two rules, an activation rule and a deactivation rule.

e  Activation rule: Based on the current queue state and
channel state, compute the number of channels that
could definitely be used in slot ¢ + r + 1 if they were
activated now (i.e., assuming no additional arrivals
or failed packets). Call this number n! _,. In slot ¢,
activate enough channels to ensure that there will be
at least nyceq + laer active channels in slot ¢t + 7 + 1
subject to the number of available channels. Call the
parameter [, the activation level of the algorithm.

e  Deactivation rule: Idle channels may be deactivated
provided that this will not cause the number of active
channels to drop below l,,4int (the maintenance level
of the algorithm).

Note that both parameters l,.; and l,,qin¢ take values
from the set {0,1,...,n}. Also note that l,,4in: = n would
be the strategy that keeps all channels active at all times.
Furthermore, note that l,.: = lmaine = 0 would be the
conservative algorithm. An algorithm with positive values
of the two parameters would behave in a way that seems
intuitively sensible: It would activate some more channels than
were currently “needed”, in anticipation of new packet arrivals
and failures, and it might keep some channels active if they
were expected to be needed.

The two parameters for this algorithm can be easily learned
via regret minimization. Namely, the PU can retrospectively
evaluate the performance of the genie-aided algorithm and
compare that to the performance of the developed algorithm
with every possible parameter setting. This evaluation can be
updated after each slot (once the outcomes for that slot are
known 7 slots later).

However, the regret minimization approach is generally
not to simply choose the best parameter value based on past
evaluation. Rather, the retrospective performance with different
possible parameters can be used to choose a probability distri-
bution over algorithm parameters, e.g., the polynomial weights
algorithm [1]. There are standard ways to compute such a
distribution. The idea is to weight the distribution towards the
best performing values, but still have some diversity of action.
The actual behavior chosen in each slot can then be determined
by the algorithm using parameters drawn from the computed
distribution. This stochastic selection has some advantages in
a non-strategic environment, as it limits regret by broadening
the action support, but it will have further advantages when
play becomes strategic (i.e. when an interferer is introduced)
as the randomization will make the PU’s play less predictable
by the interferer.

The set of all possible (lqct, lmaint) values is the PU policy
space. We assume that the PU maintains a weight table of size
(n+1) x (n+1), where each cell is associated with a particular
choice of [, and [,,44n¢. Initially, let this table be filled with
values wo = 1. When the outcomes for slot ¢ are known in
slot ¢+, the PU first evaluates what the genie-aided algorithm
would have done in slot ¢ (i.e. how many channels it would

have activated or deactivated), based on g,nf a5t

and what
th””Jrl will be. Any deviation from this strategy will result in
additional costs ey, Cdelay and cqe; beyond those charged to
the genie-aided algorithm. For every cell (4,7) in the weight
table, the PU calculates the additional loss that would have
resulted from using the algorithm with [, = @ and l,,qint = J
in that slot. Call this loss or regret value [; ;. The weight table

is then updated as
wt ;= wi (1= nlig), (7)

where 7 is the learning rate in the polynomial weights algo-
rithm [1]. Typically, n < 1/2 and may itself be adaptive. It
should be chosen to insure that the weights remain positive.

When deciding how many channels to activate or deactivate
in slot ¢ + r + 1, the PU computes

=D v ®)
i=0 j=0
and then selects the (luct, lmaint) to use with a probability
distribution with probability mass function

Py =wi; /W )

In short, over time the PU learns the best values of the
parameters to use to reduce its regret with respect to the genie-
aided algorithm. Convergence of polynomial weights algorithm
has been shown in [1]. By randomizing mostly over learned
“good” parameter values, the expected regret is further reduced
and an element of uncertainty is introduced. This uncertainty
may have further benefits with respect to avoiding interferers.
If this uncertainty turns out to be particularly desirable, then
keeping a lower learning rate may be indicated.

So far, we discussed the decision process on channels only
without consideration of power selection. After a PU selects
channels, it will allocate its total transmit power on these
channels such that the overall expected throughput can be
maximized. In particular, its sensing module will determine the
minimum equivalent isotropically radiated power (EIRP) on
each channel to achieve target SINR, which in turn determines
the minimum required power consumed on a channel. Then
there are two cases. 1) The total required power on these
selected channels is more than its total power, which means
that some channels with large required power should not be
used. 2) The total required power on these selected channels is
less than its total power, which means that it can allocate more
power on each channel. To improve SINR on all channels, it
can allocate power proportional to minimum required power.

C. SU’s Strategy

SUs also apply regret minimization to develop a per-
channel strategy. In particular, by observing past histories an
SU can estimate the expected regret associated with each
possible action (attempt to activate or not) for each channel
that it does not currently possess in each time slot. Based on
the estimated expected regret associated with each action, the
SU will decide an activation probability for each channel. This
process is similar to PU strategy. After an SU selects channels,
it will allocate its total transmit power on these channels. This
process is again similar to PU power allocation. We omit the
discussion on detailed design of SU’s strategy.



D. Interferer Strategy

Assume that there are cognitive interferers that wish to
interfere with the PU/SU’s uplink transmissions. Further as-
sume that an interferer is power limited and is only able to
interfere with j of the PU’s n uplink channels in each slot. If
one assumes that there is still an independent and identically
distributed (i.i.d.) failure probability of p on the PU’s remain-
ing transmissions, then this means that an interferer can cap
the total throughput of the PU at no more than (n — j)(1 — p)
packets/slot. We consider the case that an interferer can receive
ACK/NAK on all channels. Assume that an interferer’s utility
is based upon the number of packets successfully interfered.
In our model, for slots more than r slots old, an interferer
knows whether or not it interfered and whether the outcome
was ACK, NAK, or idle.

On the basis of these probability estimates, an interferer
can choose the j best channels to interfere with and allocate
the same power on these channels. The parameter m can be
adjusted to optimize the tradeoff between the accuracy of the
resulting estimates and the amount of time required to learn
the estimates.

To compute regret, an interferer would regret interfering
on any channel that wound up being idle and could evaluate
various alternative strategies easily in retrospect. There is
one aspect of the regret minimization strategy that might
inspire interferers. Namely, always choosing the best j chan-
nels to interfere with may be too predictable for PUs and
SUs. Instead, an interferer should likely map its estimates of
channel occupancy probability into a probability distribution
over channels selected for interfering. In the game solution,
this mapping would randomize interferer between channels
offering “similar” likelihood of interfering success, adding
some unpredictability to an interferer’s behavior.

IV. PERFORMANCE EVALUATION
A. Setting for Performance Evaluation

For numerical results, we consider a general GEO receiver
system at an altitude of 35,900 km operating at X-band or
Ka-band. We assume channels each with 2.6 MHz bandwidth.
Based on these properties, we can compute noise, path loss,
antenna gain and general received power characteristics of the
ground node-satellite communications [9].

Noise. The noise power P, is given by
P, =ETW, (10)

where & is Boltzmann’s constant (k = 1.39 x 10723 J/K =
—228.6 dBW/K/Hz), T is the physical temperature of source
in kelvin degrees, W is the noise bandwidth in which the noise
power is measured in Hz.

Path loss. The free space path loss is given by
L, =10log [(47R/\)?], (11)

where R is the distance between the ground transmitter and the
receiver and \ is the wavelength (in meters) at the frequency of
operation. We assume R = 35,900km (by ignoring elevation
angle effects) and wavelength \ is approximately 0.0375m for
X-band and 0.01m for Ka-band. Therefore, the free space path
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Fig. 2. Throughput performance of game solution.

loss becomes L,, = 201.6dB for X-band and L, = 213dB for
Ka-band. In addition, there will be some atmospheric loss (e.g.,
2 dB), clear air attenuation (e.g., 0.7dB), and rain attenuation
(e.g., 6dB for 0.01% of the year). Suppose all these losses are
summed to L,, which needs to be learned in the process of
channel estimation.

Antenna gain. The antenna gain can be expressed as
Gy = 10log [Ea(mD/N)?], (12)

where D is the antenna diameter (assumed to be 2m for re-
ceiver and Sm for earth station), A is the wavelength (in meters)
at the frequency of operation (0.0375m for X-band and 0.01m
for Ka-band) and E4 is the efficiency of antenna aperture
(e.g., 68%). The transmit antenna gain is then computed as
Gy = 50.8 dB for X-band and as G; = 62.3 dB for Ka-
band. Receiver antenna gain can be computed similarly. The
receive antenna gain is then G, = 42.8dB for X-band and
as GG, = 54.3 dB for Ka-band. We assume 2m and 5m for
antenna diameters of receiver and ground station, respectively,
and 68% for the aperture efficiency.

Received signal power. The received signal power (in dB)
is

Po=P —L,— Lo+ Gy +G,. (13)

where transmit power at earth station is P;. The total signal
received at receive antenna is then P, + P,. In addition,
there will be interference coming from other users (SUs and
interferers), with total received interference power P;.

B. Performance Results

Suppose there are one receiver (satellite), two PUs, two
SUs and two interferers (ground stations). Each PU has five
assigned channels while SU/interferer can access all 10 chan-
nels. An interferer can interfere with at most three channels
at the same time. The RTT, 0.239s, is divided into four slots.
We assume that one channel can support transmission rate up
to 100kb/s. The expected PU data arrival rate is 100kb/s.

In addition to our game solution, we also consider the
following two cases. The ideal case means that each PU uses
enough number of channels for its traffic, SUs share remaining
channels, and each interferer can interfere with certain number
of channels. The random case means that PUs and SUs have
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no knowledge on channel availability and thus both PUs and
SUs transmit on randomly selected channels.

Fig. 2, Fig. 3, and Table I show that a PU achieves the
throughput value similar to its arrival rate under both the
game solution and the ideal case. That is, PUs’ performance
is optimized under both solutions (achieving close values
under numerical results shown in Table I). On the other hand,
SUs’ throughput under the game solution is much less than
that under the ideal case, since the ideal case assumes no
collision between SUs. This can be interpreted as a defense
mechanism where the performance of SUs that face two levels
of uncertainty (PU and jammer dynamics) is sacrificed to
sustain the performance of PUs.

Fig. 2, Fig. 4, and Table I show that PUs achieve larger
throughput values with the game solution than the random
case while SUs achieve smaller throughput values with the
game solution than the random case. This is mainly caused
by random channel selection, i.e., SUs have more freedom to
access channels but there is no protection for PU transmissions.

Table II shows similar delay performance for the game
solution, the ideal case, and the random case. The ideal case
has a slightly larger delay due to limited number of channels
allocated to each user. Both PUs have a smaller delay with
the game solution than the random case because SUs may
interfere with PU transmissions in the random case. SUs have
a much smaller delay with the game solution than the random
case because SUs transmit more aggressively in the random

TABLE 1. THROUGHPUT PERFORMANCE (IN KB/S) UNDER VARIOUS

SCENARIOS.

PUI PU2 SU1L SU2
Game solution 98.7 100 23 22.6

Ideal case 92.2 94 177.6 176.6
Random case 64.4 62.3 63.8 62.5

TABLE II. DELAY PERFORMANCE (IN MS) UNDER VARIOUS

SCENARIOS.

PUL PU2 SuUl Su2
Game solution 128.9 132.7 128.7 129.2
Ideal case 80 82.4 135.1 137
Random case 207.9 209.6 524.5 537.4

case but many of these SU transmissions fail (and thus are
retransmitted with large delay).

V. CONCLUSION

We developed a game engine for spectrum access of PUs
and SUs in the presence of cognitive interferers. The game
engine is based regret minimization for channel selection
and power control. There exist several forms of uncertainty,
including channel conditions, packet traffic and availability of
users across channels, further aggravated by the receiver link
delays (such as in a SATCOM system) that make spectrum
efficient communication a challenging task. To better capture
the dynamic nature of random utility functions, we applied
regret minimization that provides low complexity and fast
solution comparing to traditional game solutions based on
expected utility maximization. A separate game engine was run
at each node independently and a suitable policy was selected.
This approach has low complexity and fast convergence speed.
Effects of spectrum sensing on throughput and delay were
studied. Results were also compared to the ideal case and the
random case where users have perfect or no knowledge on
channel availability, respectively.
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