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Abstract—Search over encrypted data is a critically important
enabling technique in cloud computing, where encryption-before-
outsourcing is a fundamental solution to protecting user data
privacy in the untrusted cloud server environment. Many secure
search schemes have been focusing on the single-contributor
scenario, where the outsourced dataset or the secure searchable
index of the dataset are encrypted and managed by a single
owner, typically based on symmetric cryptography. In this paper,
we focus on a different yet more challenging scenario where
the outsourced dataset can be contributed from multiple owners
and are searchable by multiple users, i.e. multi-user multi-
contributor case. Inspired by attribute-based encryption (ABE),
we present the first attribute-based keyword search scheme
with efficient user revocation (ABKS-UR) that enables scalable
fine-grained (i.e. file-level) search authorization. Our scheme
allows multiple owners to encrypt and outsource their data to
the cloud server independently. Users can generate their own
search capabilities without relying on an always online trusted
authority. Fine-grained search authorization is also implemented
by the owner-enforced access policy on the index of each file.
Further, by incorporating proxy re-encryption and lazy re-
encryption techniques, we are able to delegate heavy system
update workload during user revocation to the resourceful semi-
trusted cloud server. We formalize the security definition and
prove the proposed ABKS-UR scheme selectively secure against
chosen-keyword attack. Finally, performance evaluation shows
the efficiency of our scheme.

I. I NTRODUCTION

Cloud computing has emerged as a new enterprise IT
architecture. Many companies are moving their applications
and databases into the cloud and start to enjoy many un-
paralleled advantages brought by cloud computing, such as
on-demand computing resource configuration, ubiquitous and
flexible access, considerable capital expenditure savings, etc.
However, privacy concern has remained a primary barrier
preventing the adoption of cloud computing by a broader range
of users/applications. When sensitive data are outsourcedto
the cloud, data owners naturally become concerned with the
privacy of their data in the cloud and beyond. Encryption-
before-outsourcing has been regarded as a fundamental means
of protecting user data privacy against the cloud server [1],
[2], [3]. However, how the encrypted data can be effective-

ly utilized then becomes another new challenge. Significant
attention has been given and much effort has been made to
address this issue, from secure search over encrypted data
[4], secure function evaluation [5], to fully homeomorphic
encryption systems [6] that provide generic solution to the
problem in theory but are still too far from being practical
due to the extremely high complexity.

This paper focuses on the problem of search over encrypt-
ed data, which is an important enabling technique for the
encryption-before-outsourcing privacy protection paradigm in
cloud computing, or in general in any networked information
system where servers are not fully trusted. Much work has
been done, with majority focusing on the single-contributor
scenario, i.e. the dataset to be searched is encrypted and
managed by a single entity, which we callowner or contrib-
utor in this paper. Under this setting, to enable search over
encrypted data, the owner has to either share the secret key
with authorized users [4], [7], [8], or stay online to generate
the searchtrapdoors, i.e. the “encrypted” form of keywords
to be searched, for the users upon request [9], [10]. The same
symmetric key will be used to encrypt the dataset (or the
searchable index of the dataset) and to generate the trapdoors.
These schemes seriously limit the users’ search flexibility.

Consider a file sharing system that hosts a large number
of files, contributed from multiple owners and to be shared
among multiple users (e.g. 4shared.com, mymedwall.com).
This is a more challenging multi-owner multi-user scenario.
How to enable multiple owners to encrypt and add their data
to the system and make it searchable by other users? Moreover,
data owners may desire fine-grained search authorization that
only allows their authorized users to search their contributed
data. By fine-grained, we mean the search authorization is
controlled at the granularity of per file level. Symmetric cryp-
tography based schemes [4], [7], [8] are clearly not suitable
for this setting due to the high complexity of secret key man-
agement. Although authorized keyword search can be realized
in single-owner setting by explicitly defining a server-enforced
user list that takes the responsibility to control legitimate users’
search capabilities [11], [12], i.e. search can only be carried
out by the server with the assistance of legitimate users’
complementary keys on the user list, these schemes did not978-1-4799-3360-0/14/$31.00c© 2014 IEEE



realize fine-grained owner-enforced search authorizationand
thus are unable to provide differentiated access privileges for
different users within a dataset. Asymmetric cryptographyis
better suited to this dynamic setting by encrypting individual
contribution with different public keys. For example, Hwang et
al. [13] implicitly defined a user list for each file by encrypting
the index of the file with all the public keys of the intended
users. However, extending such user list approach to the multi-
owner setting and on a per file basis is not trivial as it would
impose significant scalability issue considering a potential
large number of users and files supported by the system.
Additional challenges include how to handle the updates of
the user lists in the case of user enrollment, revocation, etc.,
under the dynamic cloud environment.

In this paper, we address these open issues and present
an authorized keyword search scheme over encrypted cloud
data with efficient user revocation in the multi-user multi-data-
contributor scenario. We realizefine-grained owner-enforced
search authorizationby exploiting ciphertext policy attribute-
based encryption (CP-ABE) technique. Specifically, the data
owner encrypts the index of each file with an access policy cre-
ated by him/her, which defines what type of users can search
this index. The data user generates the trapdoor independently
without relying on an always online trusted authority (TA).
The cloud server (CS) can search over the encrypted indexes
with the trapdoor on a user’s behalf, and then returns matching
results if and only if the user’s attributes associated withthe
trapdoor satisfy the access policies embedded in the encrypted
indexes. We differentiateattributesand keywordsin our de-
sign. Keywords are actual content of the files while attributes
refer to the properties of users. The system only maintains a
limited number of attributes for search authorization purpose.
Data owners create the index consisting of all keywords in
the file but encrypt the index with an access structure only
based on the attributes of authorized users, which makes the
proposed scheme more scalable and suitable for the large
scale file sharing system. In order to further release the data
owner from the burdensome user membership management,
we use proxy re-encryption [14] and lazy re-encryption [15]
techniques to shift the workload as much as possible to the
CS, by which our proposed scheme enjoys efficient user
revocation. Formal security analysis shows that the proposed
scheme is provably secure and meets various search privacy
requirements. Performance evaluation also demonstrates its
efficiency and practicality.

Our contributions can be summarized as follows:
1) We design a novel and scalable authorized keyword

search over encrypted data scheme supporting multiple
data users and multiple data contributors. Compared
with existing works, our scheme supports fine-grained
owner-enforced search authorization at the file level with
better scalability for large scale system in that the search
complexity is linear to the number of attributes in the
system, instead of the number of authorized users.

2) Data owner can delegate most of computationally inten-
sive tasks to the CS, which makes the user revocation

process efficient and is more suitable for cloud outsourc-
ing model.

3) We formally prove our proposed scheme selectively
secure against chosen-keyword attack.

II. RELATED WORK

A. Keyword Search over Encrypted Data

1) Secret key vs. Public key:Encrypted data search has
been studied extensively in the literature. Song et al. [4]
designed the first searchable encryption scheme to enable a
full text search over encrypted files. Since this seminal work,
many secure search schemes have been proposed to boost the
efficiency and enrich the search functionalities based on either
secret-key cryptography (SKC) [7], [8], [9], [10] or public-
key cryptography (PKC) [16], [17], [18]. Curtmola et al. [7]
presented an efficient single keyword encrypted data search
scheme by adopting inverted index structure. The authors in[8]
designed a dynamic version of [7] with the ability to add
and delete files efficiently. To enrich search functionalities,
Cao et al. [9] proposed the first privacy-preserving multi-
keyword ranked search scheme over encrypted cloud data us-
ing “coordinate matching” similarity measure. Later on, Sun et
al. [10] presented a secure multi-keyword text search scheme
in the cloud enjoying more accurate search results by “cosine
similarity measure” in the vector space model and practically
efficient search process using a tree-based secure index struc-
ture. Compared with symmetric search techniques, PKC-based
search schemes are able to generate more flexible and more
expressive search queries. In [16], Boneh et al. devised thefirst
PKC-based encrypted data search scheme supporting single
keyword query. The scheme from [17] supports search queries
with conjunctive keywords by explicitly indicating the number
of encrypted keywords in an index. Predicate encryption [18],
[19] is another promising technique to fulfill the expressive
secure search functionality. For example, the proposed scheme
in [18] supports conjunctive, subset, and range queries, and
disjunctions, polynomial equations, and inner products could
be realized in [19].

2) Authorized keyword search:To grant multiple users the
search capabilities, user authorization should be enforced.
In [11], [12], the authors adopt a server-enforced user list
containing all the legitimate users’ complementary keys that
are used to help complete the search in the enterprise scenario
to realize search authorization. But these SKC-based schemes
only allow one data contributor in the system. Hwang et
al. [13] in the public-key setting presented a conjunctive
keyword search scheme in multi-user multi-owner scenario.
But this scheme is not scalable under the dynamic cloud envi-
ronment because the size of the encrypted index and the search
complexity is proportional to the number of the authorized
users, and to add a new user, the data owner has to rewrite all
the corresponding indexes. By exploiting hierarchical predicate
encryption, Li et al. [20] proposed a file-level authorized
private keyword search (APKS) scheme over encrypted cloud
data. However, it incurs additional communication cost, since



whenever users want to search, they have to resort to the
attribute authority to acquire the search capabilities. Moreover,
this scheme is more suitable for the structured database that
contains only limited number of keywords. The search time
there is proportional to the total number of keywords in the
system, which would be inefficient for arbitrarily-structured
data search, e.g., free text search, in the case of dynamic file
sharing system.

B. Attribute-based Encryption

There has been a great interest in developing attribute-
based encryption [21], [22], [23], [24] due to its fine-grained
access control property. Goyal et al. [21] designed the firstkey
policy attribute-based encryption (KP-ABE) scheme, where
ciphertext can be decrypted only if the attributes that are
used for encryption satisfy the access structure on the user
private key. Under the reverse situation, CP-ABE allows user
private key to be associated with a set of attributes and
ciphertext associated with an access structure. CP-ABE is a
preferred choice when designing an access control mechanism
in a broadcast environment. Since the first construction of
CP-ABE [22], many works have been proposed for more
expressive, flexible and practical versions of this technique.
Cheung et al. [23] proposed a selectively secure CP-ABE
construction in the standard model using the simple boolean
function, i.e.AND gate. By adopting proxy re-encryption and
lazy re-encryption techniques, Yu et al. [24] also devised a
selectively secure CP-ABE scheme with the ability of attribute
revocation, which is perfectly suitable for the data-outsourced
cloud model.

III. PROBLEM FORMULATION

A. System Model

The system framework of our proposed ABKS-UR scheme
involves three entities:cloud server, many data owners, and
manydata users, as shown in Fig. 1. In addition, a trusted au-
thority is implicitly assumed to be in charge of generating and
distributing public keys, private keys and re-encryption keys.
To enforce fine-grained authorized keyword search, the data
owner generates the secure indexes with attribute-based access
policies before outsourcing them along with the encrypted data
into the CS. Note that we can encrypt data by any secure
encryption technique, such as AES, which is outside the scope
of this paper. To search the datasets contributed from various
data owners, a data user generates a trapdoor of keyword of
interest using his/her private key and submits it to the CS. We
adopt theper-datasetuser list to enforce the coarse-grained
dataset search authorization. Thus, our scheme benefits from
search process acceleration as search does not need to go to a
particular dataset if the user is not on the corresponding user
list. Notably, even with the per-dataset user list in place,the
enforcement of the search authorization is still controlled by
the owner-defined access policy, i.e. the CS will search the
corresponding datasets and return the valid search resultsto
the user if and only if the attributes of the user on the trapdoor

Data user 1Data owner 1

Data owner 2

Data owner n

...

Cloud Server
Data user 2

Data user m

...

Access structure for an index: 
attr1 AND attr2 AND  ...

User attribute set:
{attr1, attr3, attr8,  ...}

Encrypted files & secure indexes Trapdoor

Access policies 
& user list

... ...

Fig. 1. Framework of authorized keyword search over encrypted cloud data.

satisfy the access policies of the secure indexes of the returned
files, and the intended keyword is found in these files.

B. Threat Model

We consider the CS honest-but-curious, which is also em-
ployed by related works on secure search over encrypted data
[9], [10], [20]. We assume that the CS honestly follows the
designated protocol, but curiously infers additional privacy
information based on the data available to him. Furthermore,
malicious data users may collude to access files beyond their
access privileges by using their secret keys. Analogue to
[24], as we delegate most of the system update workload
to the CS, we assume that the CS will not collude with the
revoked malicious users to help them gain unauthorized access
privileges.

C. Design Goals

Our proposed ABKS-UR scheme in the cloud aims to
achieve the following functions and security goals:
Authorized Keyword Search: The secure search system
should enable data-owner-enforced search authorization,i.e.
only users that meet the owner-defined access policy can
obtain the valid search results. Besides achieving fine-grained
authorization, another challenge is to make the scheme scal-
able for dynamic cloud environment.
Supporting Multiple Data Contributors and Data Users:
The designed scheme should accommodate many data con-
tributors and data users. Each user is able to search over the
encrypted data contributed from multiple data owners.
Efficient User Revocation: Another important design goal
is to efficiently revoke users from the current system while
minimizing the impact on the remaining legitimate users.
Security Goals: In this paper, we are mainly concerned with
secure search related privacy requirements, and define themas
follows. 1) Keyword semantic security:as a novel attribute-
based keyword search technique, we will formally prove our
proposed ABKS-UR scheme issemantically secureagainst
chosen keyword attackunderselective ciphertext policy model
(IND-sCP-CKA). The related security definition and semantic
security game used in the proof are presented in Appendix.A.
2) Trapdoor unlinkability: this security property makes the
CS unable to visually distinguish two or more trapdoors even



containing the same keyword. Note that we do not intend to
protect predicate privacyas the attacker may collude with
malicious users or use public key to generate valid secure
indexes so as to infer the keyword in a trapdoor from legitimate
users, and this privacy breach cannot be protected inherently
for any public key based encrypted data search scheme [25].
Moreover, we do not aim to protectaccess patternin this
paper due to the extremely high complexity, i.e. to protect it,
algorithm has to “touch” the whole dataset [26].

IV. T HE PROPOSEDAUTHORIZED KEYWORD SEARCH

We exploit the CP-ABE [23], [24] technique to achieve s-
calable fine-grained authorized keyword search over encrypted
cloud data supporting multiple data owners and data users.
Specifically, for each file, the data owner generates an access-
policy-protected secure index, where the access structureis
expressed as a series ofAND gates. Only authorized users with
attributes satisfying the access policies can obtain matching
results. Otherwise, they have no means to tell whether the
search failure comes from a keyword mismatch or an autho-
rization failure. Moreover, we should consider user member-
ship management carefully in the multi-user setting. A naı̈ve
solution is to impose the burden on each data owner. As a
result, data owner is required to be always online to promptly
respond the membership update request, which is impractical
and inefficient. By using proxy re-encryption [14], the data
owner can delegate most of the workload to the cloud without
infringing search privacy.

A. Algorithm Definition

Let N denote the universal attribute set{1, ..., n} for some
nature numbern. We refer to attributesi and their negations¬i
as literals.I ⊆ N is the attribute set used for access structure
on encrypted index and here we consider a series ofAND gates∧

i∈I i (literal i is either positivei or negative¬i). S ⊆ N is
the attribute set for user secret key.

Definition 1: An attribute-based keyword search with effi-
cient user revocation scheme for keyword spaceW and access
structure spaceG consists of nine fundamental algorithms as
follows:

• Setup(λ,N ) → (PK,MK): The setup algorithm takes
as input the security parameterλ and an attribute universe
descriptionN . It defines a bilinear groupG of prime
order p with a generatorg. Thus, a bilinear map is
defined ase : G×G→ G1, which has the properties of
bilinearity, computabilityandnon-degeneracy. It outputs
the public parametersPK and the master secret key
MK. The version numberver is initialized as 1.

• CreateUL(PK, ID) → UL: The user list generation
algorithm takes as input the public parametersPK and
the user identityID. It outputs the user listUL for a
dataset.

• EncIndex(PK,GT,w) → D: The index encryption
algorithm takes as input the current public parameters
PK, the access structureGT ∈ G, a keywordw ∈ W
and outputs the encrypted indexD.

• KeyGen(PK,MK,S)→ SK: The key generation algo-
rithm takes as input the current public parametersPK,
the current master secret keyMK, and the attribute set
S associated with a particular user. It outputs the user’s
secret keySK.

• ReKeyGen(Φ,MK) → (rk,MK ′, PK ′): The re-
encryption key generation algorithm takes as input the
attribute setΦ that contains the attributes to be updated,
and the current system master keyMK. It outputs a set
of proxy re-encryption keysrk for all the attributes in
N , the updatedMK ′ and PK ′, where all the version
numbers are increased by 1. For the attributes not inΦ,
set their proxy re-encryption keys as 1 inrk.

• ReEncIndex(∆, rk,D) → D′: It takes as input an
encrypted indexD, the re-encryption key setrk and the
attribute set∆ that includes all the attributes inD’s access
structure with the re-encryption keys not being 1 inrk.
Then it outputs a new re-encrypted indexD′.

• ReKey(Ω, rk, PSK)→ PSK ′: It takes as input a user’s
partial secret keyPSK, the re-encryption key setrk and
the attribute setΩ that contains all the attributes inPSK
with the re-encryption keys not being 1 inrk. Finally, it
outputs a newPSK ′ for that user.

• GenTrapdoor(PK,SK,w′)→ Q: The trapdoor genera-
tion algorithm takes as input the current public keyPK,
the user’s private keySK, a keyword of interestw′ ∈ W
and outputs the trapdoorQ for the keywordw′.

• Search(UL,D,Q)→ search results or ⊥: The search
algorithm takes as input the user listUL, the indexD
and the user’s trapdoorQ. It outputs valid search results
or returns a search failure indicator⊥.

B. Construction for ABKS-UR

In this subsection, we will describe the concrete ABKS-UR
construction from the viewpoint of system level based on the
above defined algorithms. The system level operations include
System Setup, New User Enrollment, Secure Index Generation,
Trapdoor Generation, Search, and User Revocation. Notice
that each individual system level operation may invoke one or
more low level algorithms.

System SetupThe TA calls theSetup algorithm to gener-
ate PK and MK. Specifically, it selects random elements
t1, ..., t3n. Define a collision-resistant keyed hash function
H : {0, 1}∗ → Zp, and its key is selected randomly and
securely shared between owners and users (for simplicity,
we use it without mentioning the secret key hereafter). Let
Tk = gtk for eachk ∈ {1, ..., 3n} such that for1 ≤ i ≤ n, Ti

are referred to aspositive attributes,Tn+i are for negative
ones, andT2n+i are thought of asdon’t care. Let Y be
e(g, g)y. The public key isPK := 〈e, g, Y, T1, ..., T3n〉 and
the master key isMK := 〈y, t1, ..., t3n〉. The initial version
number ver is 1. The TA publishes(ver, PK) with the
signature of each component ofPK, and retains(ver,MK).

New User Enrollment When receiving a registration request
from a new legitimate userf , the TA first selects a random



xf ∈ Zp as a newMK component. Then, the TA generates a
newPK componentY ′

f = Y xf and publishes it with its signa-
ture. After that, theKeyGen algorithm is called to create secret
keySK for this user. For everyi ∈ N , the TA selects random
ri from Zp hencer =

∑n
i=1 ri. K̂ is set asgy−r. For i ∈ S,

setKi = g
ri
ti andKi = g

ri
tn+i otherwise. Finally, letFi be

g
ri

t2n+i . The secret key isSK := 〈ver, xf , K̂, {Ki, Fi}i∈N 〉.
In addition, the server maintains a user listUL containing

all the legitimate users’ identity information for each dataset.
Specifically, the data owner first selects a random elements
fromZp. When a new userf joins in the system and is allowed
to search the dataset, the data owner callsCreateUL algorithm
to setD̄f = Y ′

f
−s and asks the CS to add the tuple(IDf , D̄f )

into the user list, whereIDf is the identity of the userf .
Secure Index GenerationBefore outsourcing a file to the CS,
the data owner callsEncIndex algorithm to generate a secure
index D for this file. In particular, set̂D = gs and D̃ to be
Y s. Given an access policyGT =

∧
i∈I i, for eachi ∈ I,

let Di = T s
i if i = i and Di = T s

n+i if i = ¬i. For each
i ∈ N\I, let Di = T s

2n+i. For some attributei′ ∈ N (this
fixed position can be seen as part of public parameter) and a

keywordw ∈ W , the data owner setsDi′ to beT
s

H(w)

i′ with
without loss of generality, attributei′ is assumed to be positive.
The encrypted indexD := 〈ver,GT, D̂, D̃, {Di}i∈N 〉.
Trapdoor Generation Every legitimate user in the system
is able to generate a trapdoor for any keyword of interest
by calling the algorithmGenTrapdoor. Specifically, userf
selects randomu ∈ Zp. Let Q̂ = K̂u and Q̃ = u+ xf . Qi is
denoted asKu

i andQfi = Fu
i . Thus, for the samei′ in secure

index generation phase,Qi′ is set to beKH(w′)·u
i′ , wherew′

is the keyword of interest andQfi′ = F
H(w′)·u
i′ . The trapdoor

Q := 〈ver, Q̂, Q̃, {Qi, Qfi}i∈N 〉, where ver is the version
number ofSK used for generating this trapdoor.
Search Upon receipt of a trapdoorQ and the user identity
IDf , 1) the CS finds out ifIDf exists on the user list of
the target dataset. If not, the user is not allowed to search
over the dataset; 2) otherwise, the CS continues theSearch
algorithm with the input of trapdoorQ, encrypted indexD
andD̄f from the user list. We call this processdataset search
authorization. Then, we move onto the fine-grainedfile-level
search authorization, which includes three cases:

• If ver of Q is less thanver of D, it outputs⊥.
• If ver of Q is greater thanver of D, the algorithm

ReEncIndex is called to update the index first.
• If ver of Q is equal tover of D, the search process is

performed as follows. For each attributei ∈ I, if i = i
and i ∈ S, then

e(Di, Qi) = e(gti·s, g
ri·u

ti ) = e(g, g)s·u·ri .

If i = ¬i and i /∈ S, then

e(Di, Qi) = e(gtn+i·s, g
ri·u

tn+i ) = e(g, g)s·u·ri .

For eachi /∈ I,

e(Di, Qfi) = e(gt2n+i·s, g
ri·u

t2n+i ) = e(g, g)s·u·ri.

For the attribute i′ ∈ N , e(Di′ , Qi′) is equal to
e(g, g)s·u·ri′ as well.

If the following equation holds, the user’s attributes satisfy the
access structure embedded in the index andw′ = w,

D̃Q̃ · D̄f
?
= e(D̂, Q̂) ·

n∏

i=1

e(Di, Q
∗
i ),

whereQ∗
i = Qi if i ∈ I andQ∗

i = Qf i otherwise.
CorrectnessProvided that the user is authorized to access the
file andw′ = w, then

e(D̂, Q̂) ·
n∏

i=1

e(Di, Q
∗
i ) = e(gs, gu·y−u·r) ·

n∏

i=1

e(g, g)s·u·ri

= e(g, g)s·u·y−s·u·r · e(g, g)s·u·r

= e(g, g)s·u·y

= Y s·u

= Y s·(xf+u) · Y −s·xf = D̃Q̃ · D̄f .

DiscussionWe can achieve scalable fine-grained file-level
search authorization by data-owner-enforced attribute-based
access structure on the index of each file. The search com-
plexity is linear to the number of attributes in the system
rather than the number of authorized users. Hence, this one-
to-many authorization mechanism is more suitable for a large
scale system, such as cloud. Moreover, the dataset search
authorization by using a per-dataset user list may accelerate
the search process, since the CS can decide whether it should
go into a particular dataset or not. Otherwise, the CS has to
search every file at rest.

User RevocationTo revoke a user from current system, we
re-encrypt the secure indexes stored on the server and update
the remaining legitimate users’ secret keys. Note that these
tasks can be delegated to the CS using proxy re-encryption
technique so that user revocation is very efficient. In particular,
the TA adopts theReKeyGen algorithm to generate the re-
encryption key setrk := 〈ver, {rki,val}i∈N ,val∈{+,−}〉. Let
attribute setΦ consist of the attributes that need to be updated,
without which the leaving user’s attributes will never satisfy
the access policy. If an attributei ∈ Φ, rki,+ =

t′i
ti

is for
the positiveattributei, and for thenegativerki,− is set to be
t′n+i

tn+i
, where botht′i andt′n+i are randomly selected fromZp.

If i ∈ N\Φ, setrki,val = 1, whereval ∈ {+,−}. Then the
TA refines the corresponding components inMK andPK,
and publishes the newPK ′ with the signatures. The TA also
sendsrk and its signature to the CS.

After receivingrk from the TA, the server checks whether
the version numberver in rk is equal to currentver of the
system (or it can be greater than the current systemver in the
case of lazy re-encryption, seeDiscussionbelow). If not, it
discards this re-encryption key set. Otherwise, the CS verifies
rk. Then, the server calls theReEncIndex algorithm to re-
encrypt the secure indexes in its storage with validrk. Let ∆
be the set including all the attributes in the access structures of
secure indexes with the re-encryption keys not being 1 inrk.



For each positivei ∈ ∆, D′
i is set asDrki,+

i , or D′
i = D

rki,−

i

for negative ones. Fori /∈ ∆, let D′
i be equal toDi. Finally,

the index is updated asD′ := 〈ver+1, GT, D̂, D̃, {D′
i}i∈N 〉.

Furthermore, the server is able to update the remaining
legitimate users’ secret keys by theReKey algorithm. Suppose
that SKL is a list stored on the CS containing all the
partial secret keysPSK ’s of all the legitimate users in the
system.PSK is defined as(ver, {Ki}i∈N ). Note that the CS
cannot generate a valid trapdoor withPSK. Let Ω be the set
including all the attributes inPSK with the re-encryption keys
not being 1 inrk. For each attributei in Ω, denoteK ′

i to be

K
rk

−1
i,+

i if i is positive andK
rk

−1
i,−

i otherwise. For eachi /∈ Ω,
set K ′

i = Ki. The updatedPSK ′ = (ver + 1, {K ′
i}i∈N ),

which is returned to the legitimate user. User can also verify
whether his/her secret key is the latest version by checking
e(Ti,Ki) = (T ′

i ,K
′
i), whereT ′

i is the attribute component
in the latestPK ′. Here we suppose all the attributesi are
positive. Otherwise, useTn+i andT ′

n+i instead in the equation.
Finally, the server may eliminate ID information of the

revoked userf , i.e. the tuple(IDf , D̄f), from all the cor-
responding user lists.

DiscussionTo handle file index update efficiently, we could
adopt the lazy re-encryption technique [15]. The CS stores the
re-encryption key setsrk’s and will not re-encrypt indexes
until they are being accessed. Specifically, the CS could
“aggregate” multiplerk’s and deal with the index update in
a batch manner. For instance,ver = k in D, ver = j in the
latestrk andk < j, to re-encrypt the index, the CS just calls
ReEncIndex once with

∏j
ρ=k rk

(ρ)
i,val.

C. Conjunctive Keyword Search

Data user may prefer the returned files containing several
intended keywords with one search request, which is referred
to as conjunctive keyword search. Similar to [12], [13], our
proposed ABKS-UR scheme is able to provide conjunctive
keyword search functionality readily as follows.Di′ is defined

as g

s·t
i′∏

wj∈W H(wj) or g

s·t
i′

⊗wj∈WH(wj ) , where⊗ denotesXOR
operation. The componentsQi′ andQfi′ in the trapdoor are
generated accordingly. It is worth noting that this method has
almost the same efficiency as the single-keyword ABKS-UR
scheme, regardless of the number of simultaneous keywords.

V. SECURITY ANALYSIS AND PERFORMANCEEVALUATION

In this section, we analyze security properties of the pro-
posed ABKS-UR scheme, and show that it achieves the de-
fined security design goals. We then provide the performance
evaluation on our proposed scheme.

A. Security Analysis

1) Keyword semantic security:In this paper, we for-
mally define a semantic security game for ABKS-UR (see
Appendix.A). We first give the following theorem, and then
prove our ABKS-UR construction IND-sCP-CKA secure.

Theorem 1:If a probabilistic polynomial-time adversary
wins the IND-sCP-CKA game with non-negligible advantage

ǫ, then we can construct a simulatorB to solve the DBDH
problem with non-negligible advantageǫ2 .

Proof: See Appendix.B.
As per the above theorem, we can conclude that our

proposed scheme is semantically secure in the selective model.
Note that malicious users cannot launch collusion attack to
generate a new valid secret key or trapdoor, which has been
implicitly proved because the adversaryA in our security
game has the same capability as the malicious users, i.e. he
can query different secret keys.

2) Trapdoor unlinkability:To generate a trapdoor, the user
chooses a different random numberu to obfuscate the trapdoor
such that the CS is visually unable to differentiate two or more
trapdoors even produced with the same keyword. Thus, the
ABKS-UR can provide trapdoor unlinkability property.

B. Performance Evaluation

In this subsection, we will evaluate the performance of our
proposed ABKS-UR scheme by real-world dataset and asymp-
totic computation complexity in terms of the pairing operation
P, the group exponentiationE and the group multiplicationM
in G, the group exponentiationE1 and the group multiplication
M1 in G1. Note that we can realize the signature operation by
any secure signature technique, e.g., RSA signature, which
incurs fixed computation overhead, and here we only focus on
evaluating the proposed ABKS-UR scheme, such that we do
not consider the computation overhead for signature. We also
ignore the hash operation as it is much more efficient than the
above mentioned operations. Suppose there existn attributes in
the proposed scheme. The numerical performance evaluation
is shown in Tab. I. Moreover, to evaluate the key operations
of the proposed scheme, we use the real-world dataset, i.e.
the Enron Email Dataset [27], which contains about half
million files contributed from 150 users approximately. In the
literature, there are few existing works on attribute-structure
based authorized keyword search with experimental results.
We will compare our ABKS-UR scheme with the predicate
encryption based APKS scheme [20] in terms of search
efficiency. We conduct our experiment using C and the Paring-
Based Cryptography (PBC) Library [28] on a Linux Server
with Intel Core i3 Processor 3.3GHz. We adopt the type A
elliptic curve of 160-bit group order, which provides 1024-bit
discrete log security equivalently.

1) System Setup:At this initial phase, the TA defines the
public parameter, and generatesPK and MK. The main
computation overhead is3n exponentiations inG, one ex-
ponentiation inG1 and one pairing operation on the TA side.
As shown in Fig.2 (a), the time cost for system setup is very
efficient and is linear to the number of attributes in the system.

2) New User Enrollment:When a new legitimate user
wants to join in the system, he/she has to request the TA to
generate the secret keySK, which needs2n + 1 exponenti-
ations inG. The TA also needs one exponentiation inG1 to
generate a newPK component for the user. A data owner may
also allow the user to access the dataset by adding him/her onto
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Fig. 2. Performance evaluation on ABKS-UR. (a) Time cost forsystem setup. (b) Secure index generation time for 10000 files. (c) Trapdoor generation
time. (d) Time cost for search over a single index.

TABLE I
NUMERICAL EVALUATION OF ABKS-UR

Operation Computation complexity
System Setup 3nE + E1 + P

New User Enrollment (2n+ 1)E + 2E1

Secure Index Generation (n+ 1)E + E1

Trapdoor Generation (2n+ 1)E
Per-index Search (n+ 1)P + (n+ 2)M1 + E1

ReKeyGen x(M + E), 1 ≤ x ≤ n

ReEncIndex yE, 1 ≤ y ≤ n

ReKey zE, 1 ≤ z ≤ n

the corresponding user list, which incurs one exponentiation
in G1. It is obvious that the time cost to enroll a new user is
proportional to the number of attributes in the system.

3) Secure Index Generation:The data owner approximately
needs(n + 1)E + E1 to generate a secure index for a file.
Furthermore, we evaluate the practical efficiency of creating
secure indexes for 10000 files, as shown in Fig.2 (b). It exhibits
the expected linearity with the number of attributes in the
system. When there exist 30 attributes in the system, the data
owner would spend about 8 minutes encrypting the indexes for
10000 files. Note that this computational burden on the data
owner is a one-time cost. After all the indexes outsourced
to the CS, the following index re-encryption operation is
also delegated to the server. Thus, the overall efficiency for
encrypting index is totally acceptable in practice.

4) Trapdoor Generation:With the secret key, data user
is free to produce the trapdoor of any keyword of interest,
which requires about2n + 1 group exponentiations inG.
Moreover, the experimental result in Fig.2 (c) shows that
our proposed authorized keyword search scheme enjoys very
efficient trapdoor generation. In accordance with the numerical
computation complexity analysis, the trapdoor generationwill
need more time with the increased number of attributes.

5) Search: To search over a single encrypted index, the
dominant computation of ABKS-UR isn + 1 pairing opera-
tions, while APKS [20] needsn+3 pairing operations. Fig.2
(d) shows the practical search time of ABKS-UR and APKS
on a single secure index with different number of attributes
respectively. With the same number of system attributes,

ABKS-UR is slightly faster than APKS. Moreover, compared
with APKS, ABKS-UR allows users to generate trapdoors
independently without resorting to an always online attribute
authority, and it has a broader range of applications due to
the arbitrarily-structured data search capability. Notice that
the search complexity of our scheme will varies a lot for
different data users, since thedataset search authorization
only allows users on the user lists to further access the
corresponding datasets. Assume that there exist 10000 filesand
30 system attributes. In the worse case of search over every
file in the storage, the CS, with the same hardware/softwore
specifications as our experiment, requires less than 5 minutes
to complete the search operation. Thus, with a more powerful
cloud, our proposed ABKS-UR scheme would be efficient
enough for practical use.

6) User Revocation:As the server can efficiently eliminate
the revoked user’s identity information from the corresponding
user lists, we do not show it in Tab.I. Instead, we calculate the
main computation complexity ofReKeyGen, ReEncIndex
andReKey. To update the system, the TA uses the algorithm
ReKeyGen to produce the new version ofMK ′ andPK ′,
and the re-encryption key setrk. Depending on the number
of attributes to be updated, generatingrk requires minimum
M to maximumnM operations. Likewise, the computation
overhead forPK ′ is within the range fromE to nE. Moreover,
the CS calls theReEncIndex algorithm to re-encrypt the
secure indexes at its storage. Each index update needsE to
nE operations inG, which is also the computation overhead
range for the CS to update a legitimate user’s secret key by
algorithmReKey.

VI. CONCLUSION

In this paper, we design the first attribute-based key-
word search scheme in the cloud environment, which en-
ables scalable and fine-grained owner-enforced encrypted data
search supporting multiple data owners and data users. Com-
pared with existing public key authorized keyword search
scheme [13], our scheme could achieve system scalability
and fine-grainedness at the same time. Different from search
scheme [20] with predicate encryption, our scheme enables a
flexible authorized keyword search over arbitrarily-structured



data. In addition, by using proxy re-encryption and lazy re-
encryption techniques, the proposed scheme is better suited
to the cloud outsourcing model and enjoys efficient user
revocation. Moreover, we formally prove the proposed scheme
semantically secure in the selective model.
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APPENDIX

A. Security Definition for ABKS-UR

We first give the cryptographic assumption that our scheme
relies on.

Definition 2 (The DBDH Assumption [29]):Let a, b, c, z ∈
Zp be chosen at random andg be a generator ofG. The
DBDH assumption is that no probabilistic polynomial-time
adversaryB can distinguish the tupleA = ga, B = gb, C =
gc, e(g, g)abc from the tupleA = ga, B = gb, C = gc, e(g, g)z

with non-negligible advantage. The advantage ofB is defined
as follows,

|Pr[B(A,B,C, e(g, g)abc) = 0]−Pr[B(A,B,C, e(g, g)z) = 0]|

where the probability is taken over the random choice of the
generatorg, the random choice ofa, b, c, z in Zp, and the
random bits consumed byB.

The semantic security game between an adversaryA and a
challengerB is defined as follows.
Init. The adversaryA submits a challenge access policy
GT , a version numberver∗ and ver∗ − 1 attribute sets
{Φ(ρ)}1≤ρ≤ver∗−1 to the challengerB.
Setup. The challenger B runs Setup(λ,N ) to obtain
PK and MK for version 1. For each versionρ ∈
{1, ..., ver∗ − 1}, B runs ReKeyGen(Φ,MK). Then he pub-
lishes{rk(ρ)}1≤ρ≤ver∗−1 to A, whererk(ρ) is defined as the
re-encryption key set of versionρ. Given{rk(ρ)}1≤ρ≤ver∗−1,
the adversaryA is able to computePK for the corresponding
versionρ+ 1.
Phase 1.By submitting any keywordw ∈ W , the adversary
A is allowed to request the challengerB to generate trapdoors
of any version from 1 tover∗ polynomial times (inλ). The
only restriction is that the attribute set associated with each
trapdoor query submitted byA does not satisfy the challenge
access structureGT .
Challenge.Upon receipt of challenge keywordw0, w1 ∈ W
of the same length from the adversaryA, B flips a ran-
dom coin µ ∈ {0, 1} and get a challenge indexDµ ←
EncIndex(PK,GT,wµ), whereGT is the challenge access
structure andPK is of versionver∗. B returnsDµ to A.



Phase 2.Same as phase 1.
Guess.AdversaryA submits his guessµ′ of µ.

Definition 3 (IND-sCP-CKA Security):The proposed
ABKS-UR scheme is IND-sCP-CKA secure if for all
probabilistic polynomial-time adversaryA, the advantage
AdvIND−sCP−CKA

A in winning the semantic security game
is negligible.

AdvIND−sCP−CKA
A = Pr[µ′ = µ]−

1

2
.

Notice that the trapdoor query oracle in Phase 1 implicitly
includes the secret key query oracle, which may send the
partial secret key (see section IV) back to the adversary. Since
the adversaryA is allowed to obtain all the re-encryption keys,
he is able to update indexes, secret keys and trapdoors on his
own such that we do not let challenger answer these queries
in Phase 1 and Phase 2. Moreover, in the selective model,
our semantic security game allows the adversary to query any
keywords at Phase 1 and Phase 2 as long as the attribute
sets associated with the queried trapdoors do not satisfy the
challenge access policyGT .

B. Security Proof for ABKS-UR

In what follows, we will prove ABKS-UR construction
IND-sCP-CKA secure.

Proof: The DBDH challenger first randomly chooses
a, b, c, z ∈ Zp and a fair coinν ∈ {0, 1}. It definesZ to be
e(g, g)abc if v = 0, ande(g, g)z otherwise. Then the simulator
B is given a tuple(A,B,C, Z) = (ga, gb, gc, Z) and asked to
outputν. The simulatorB now plays the role of challenger in
the following game.
Init. In this phase, simulatorB receives the challenge access
structureGT =

∧
i∈I i, a version numberver∗ andver∗ − 1

attribute sets{Φ(ρ)}1≤ρ≤ver∗−1 from adversaryA.
Setup. For PK of version 1, SimulatorB sets Y to be
e(A,B) = e(g, g)a·b, which implicitly definesy = a · b.
Choose randomx = θ ∈ Zp and defineY ′ to bee(A,B)θ =
e(g, g)a·b·θ. For eachi ∈ N , B selects randomαi, βi, γi ∈ Zp,
and outputs the following public parameters.

For i ∈ I, Ti = gαi , Tn+i = Bβi , T2n+i = Bγi if i = i;
Ti = Bαi , Tn+i = gβi , T2n+i = Bγi if i = ¬i.

For i /∈ I, Ti = Bαi , Tn+i = Bβi , T2n+i = gγi .
For each attribute setΦ(ρ), 1 ≤ ρ ≤ ver∗ − 1, B

generates the re-encryption keyrk(ρ) and thePK of that
version. For each attributei ∈ Φ(ρ), rk

(ρ)
i,val where val ∈

{+,−}, is randomly selected fromZp. T (ρ+1)
i = (T

(ρ)
i )rk

(ρ)
i,+ ,

T
(ρ+1)
n+i = T

(ρ)
n+i, and T

(ρ+1)
2n+i = T

(ρ)
2n+i if attribute i is

positive. Otherwise,T (ρ+1)
i = T

(ρ)
i , T

(ρ+1)
n+i = (T

(ρ)
n+i)

rk
(ρ)
i,− ,

andT (ρ+1)
2n+i = T

(ρ)
2n+i. Then, for eachi /∈ Φ(ρ), setrk(ρ)i,val = 1

and the remaining public parameters of versionρ+ 1 are the
same with those of versionρ. Finally, simulatorB publishes
rk(ρ) = 〈ρ, {rk

(ρ)
i,val}i∈Φ(ρ),val∈{+,−}〉 to A.

Phase 1.Without loss of generality, assume that adversaryA
submits a keywordwl and a setS ⊆ N to B for versionρ,
where1 ≤ ρ ≤ ver∗ andS does not satisfyGT . B uses the
collision-resistant hash function to outputH(wl) = hl. Since

S does not satisfyGT , a witness attributej ∈ I must exist.
Thus, eitherj ∈ S and j = ¬j, or j /∈ S andj = j. Without
loss of generality, we assumej /∈ S andj = j.

SimulatorB chooses random{r′i}1≤i≤n ∈ Zp. Set rj =
a·b+r′j ·b andri = r′i ·b if i 6= j. Denoter =

∑n
i=1 ri = a·b+∑n

i=1 r
′
i ·b. B definesu to be a random nubmerλ selected from

Zp. As such,Q̂ is defined to begy·u−r·u = g−
∑n

i=1 r′i·b·λ =
B−

∑n
i=1 r′i·λ. The Q̃ component of the trapdoor is defined to

bex+ u = θ + λ.
By defining rk

(ρ)
i,val = 1 whereval ∈ {+,−} if i /∈ Φ(ρ),

B could compute the followings for eachi ∈ N : for 2 ≤ ρ ≤

ver∗, T
(ρ)
i = (T

(1)
i )rk

(1)
i,+·rk

(2)
i,+···rk

(ρ−1)
i,+ = (T

(1)
i )

∏ρ−1
o=1 rk

(o)
i,+ ,

andT (ρ)
n+i = (T

(1)
n+i)

rk
(1)
i,−·rk

(2)
i,−···rk

(ρ−1)
i,− = (T

(1)
n+i)

∏ρ−1
o=1 rk

(o)
i,− .

B denotesR(ρ)
i =

∏ρ−1
o=1 rk

(o)
i,+ andR(ρ)

n+i =
∏ρ−1

o=1 rk
(o)
i,−.

SimulatorB setsQj = A

λ

βj ·R
(ρ)
j+1 ·g

r′j ·λ

βj ·R
(ρ)
j+1 = g

a·b+r′j ·b

b·βj ·R
(ρ)
j+1

·λ

=

g

rj ·u

b·βj ·R
(ρ)
j+1 .

For i 6= j, 1) i ∈ S. Qi = B

r′i·λ

αi·R
(ρ)
i = g

ri·u

αi·R
(ρ)
i if i ∈ I∧i =

i; Qi = g

r′i·λ

αi·R
(ρ)
i = g

ri·u

b·αi·R
(ρ)
i if (i ∈ I ∧ i = ¬i) ∨ i /∈ I.

2) i /∈ S. Qi = B

r′i·λ

βi·R
(ρ)
n+i = g

ri·u

βi·R
(ρ)
n+i if i ∈ I ∧ i = ¬i;

Qi = g

r′i·λ

βi·R
(ρ)
n+i = g

ri·u

b·βi·R
(ρ)
n+i if (i ∈ I ∧ i = i) ∨ i /∈ I.

Similarly, letQfj = A
λ
γj · g

r′j ·λ

γj = g
a·b+r′j ·b

b·γj
·λ

= g
rj·u

b·γj . For

{Qfi}i6=j , we have 1)i ∈ I. Qfi = g
r′i·λ

γi = g
ri·u

b·γi . 2) i /∈ I.

Qfi = B
r′i·λ

γi = g
ri·u

γi .
Without loss of generality, assumei′ ∈ S ∩ I and i′ = i′.

SimulatorB setsQi′ = B

r′
i′

·λ·hl

α
i′

·R
(ρ)

i′ = g

r
i′

·u·H(wl)

α
i′

·R
(ρ)

i′ .
Challenge. Upon receiving the challenge keywordsw0, w1

from adversaryA, simulatorB flips a random coinµ ∈ {0, 1}
and then encryptswµ with the challenge gateGT . From
the collision-resistant hash functionH , simulatorB obtains
H(wµ) = hµ. For versionver∗ and i ∈ I, Di is defined

to be Cαi·R
(ver∗)
i if i = i and Cβi·R

(ver∗)
n+i if i = ¬i. For

i /∈ I, let Di = Cγi . Without loss of generality, assume

i′ ∈ I and i′ = i′ such thatDi′ = C
α
i′

·R
(ver∗)

i′

hµ . Finally,
B setsD̂ = C, D̃ = Z andD̄ = Z−θ.
Phase 2.Same as phase 1.
Guess.AdversaryA submitsµ′ of µ. If ν = 1, adversaryA
cannot acquire any advantage in this semantic security game
but a random guess. Therefore, we havePr[µ 6= µ′|ν = 1] =
1
2 . When µ 6= µ′, simulatorB outputsν′ = 1, such that
Pr[ν′ = ν|ν = 1] = Pr[ν′ = 1|ν = 1] = 1

2 . If ν = 0, a
valid D is given to adversaryA. He can win this game with
non-negligible advantageǫ. Hence,Pr[µ = µ′|ν = 0] = 1

2+ǫ.
When µ = µ′, simulator B outputs ν′ = 0, we have
Pr[ν′ = ν|ν = 0] = Pr[ν′ = 0|ν = 0] = 1

2 + ǫ. The
advantageAdvDBDH

A of simulatorB in the DBDH game is
Pr[ν′ = ν] − 1

2 = Pr[ν′ = ν|ν = 1]Pr[ν = 1] + Pr[ν′ =
ν|ν = 0]Pr[ν = 0]− 1

2 = 1
2 ·

1
2 + (12 + ǫ) · 12 −

1
2 = ǫ

2


