
Privacy-Preserving Keyword Search Over
Encrypted Data in Cloud Computing

Wenhai Sun, Wenjing Lou, Y. Thomas Hou, and Hui Li

Abstract Search over encrypted data is a technique of great interest in the cloud
computing era, because many believe that sensitive data has to be encrypted before
outsourcing to the cloud servers in order to ensure user data privacy. Devising an
efficient and secure search scheme over encrypted data involves techniques from
multiple domains – information retrieval for index representation, algorithms for
search efficiency, and proper design of cryptographic protocols to ensure the security
and privacy of the overall system. This chapter provides a basic introduction to
the problem definition, system model, and reviews the state-of-the-art mechanisms
for implementing privacy-preserving keyword search over encrypted data. We also
present one integrated solution, which hopefully offer more insights into this
important problem.

1 Introduction

We are in such an information-explosion era that constantly purchasing new hard-
ware, software and training IT personnel is becoming a nightmare for almost every
IT practitioner. Fortunately, we are witnessing an enterprise IT architecture shift

W. Sun (�)
The State Key Laboratory of Integrated Services Networks, Xidian University,
Xi’an, Shaanxi, China

Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
e-mail: whsun@xidian.edu.cn

W. Lou • Y.T. Hou
Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
e-mail: wjlou@vt.edu; thou@vt.edu

H. Li
The State Key Laboratory of Integrated Services Networks, Xidian University,
Xi’an, Shaanxi, China
e-mail: lihui@mail.xidian.edu.cn

S. Jajodia et al. (eds.), Secure Cloud Computing, DOI 10.1007/978-1-4614-9278-8__9,
© Springer Science+Business Media New York 2014

189

mailto:whsun@xidian.edu.cn
mailto:wjlou@vt.edu
mailto:thou@vt.edu
mailto:lihui@mail.xidian.edu.cn

190 W. Sun et al.

to a centralized, more powerful computing paradigm – Cloud Computing, in which
enterprise’s or individual’s databases and applications are moved to the servers in the
large data centers (i.e. the cloud) managed by the third-party cloud service providers
(CSPs) in the Internet. Cloud computing has been gradually recognized as the most
significant turning point in the development of information technology during the
past few years. People are fascinated by the benefits it offers, such as ubiquitous and
flexible access, on-demand computing resources configuration, considerable capital
expenditure savings, etc. Indeed, many companies, organizations, and individual
users have adopted the cloud platform to facilitate their business operations,
research, or everyday needs [35].

Despite the tremendous business and technical advantages, what we shall always
keep in mind is that cloud computing would not be our wonderland until users’
outsourced sensitive data could hide from the prying eyes. Privacy concern is one of
the primary hurdles that prevent the widespread adoption of the cloud by potential
users, especially if the private data of users used to reside in the local storage are
to be outsourced to and computed in the cloud. Imagine that CSPs host the services
looking into your personal emails, financial and medical records, and social network
profiles. Although these sensitive data could be protected by deploying intrusion
detection systems, firewalls, or even segmenting data in a virtualized environment,
CSP possesses full control of the cloud infrastructure including the system hardware
and lower levels of software stack. Privacy breach is still likely to occur owing to
the existence of disgruntled, profiteered or curious employees from CSP [25, 37].
Encrypting-then-outsourcing [28,48] provides us strong guarantee that no one could
mine any useful information from the ciphertext of users’ data. Many people argue
that sensitive data has to be encrypted before outsourcing in order to provide user
data privacy against the cloud service providers. However, encrypted data makes
data utilization a very challenging task. One example is keyword search functions
on the documents stored in the cloud. Without those usable data services, the cloud
will become merely a remote storage which provides limited value to all parties.

Computation over encrypted data is a challenging task and has drawn significant
attention due to the encrypting-then-outsourcing paradigm in cloud computing. It
will be remiss if we don’t mention fully homomorphic encryption [16], which
is considered the Holy Grail of cryptography. Fully homomorphic encryption
scheme will allow us to operate directly over ciphertext and generate results
matching the computation over plaintext. A theoretical break-through on fully
homomorphic encryption took place a few years ago [16]. However, the efficiency
of the construction is still far from being practical. Much research work has been
focusing on special classes of computation [2,3,19,44]. Search over encrypted data
is a fundamental and common form of data utilization service, enabling users to
quickly sort out information of interest from huge amount of data, and thus has
become a topic of great interest recently. Both public key cryptography (PKC) and
symmetric key cryptography (SKC) can be used to build encrypted data search
schemes. Generally speaking, PKC-based schemes [7,9,18,20] are more expressive,
support more flexible search functions, but more computationally intensive, while

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 191

SKC-based schemes [11,15,17,42] are more efficient in searching, but less flexible
in the types of search criteria supported.

This chapter aims to provide a general overview of search techniques over
encrypted data and their security and privacy objectives, and then elaborate on
a scheme that can achieve privacy-preserving multi-keyword search supporting
similarity-based ranking, based on [10] and [39]. The chapter is organized as
follows. In Sect. 2, we will introduce the encrypted data search problem in terms
of its problem formulation and review related works. We will delve into multi-
keyword ranked search in Sect. 3, and further improve search result accuracy and
search efficiency in Sect. 4. We will conclude this chapter in Sect. 5.

Data owner Data users

encrypted

data & index

search control(trapdoors)
access control(data decryption keys)

Semi-trusted
cloud server

search requestranked result

Fig. 1 Architecture of encrypted data search problem (From [10])

2 Overview of Search Over Encrypted Data

2.1 Problem Formulation

In this subsection, we will briefly introduce the general system model of the
encrypted data search problem, its threat model and search privacy related require-
ments in the following.

System Model

The typical participants of a secure search system in the cloud involve the cloud
server, the data owner, and the data user, as shown in Fig. 1. The data owner
outsources the encrypted dataset and the corresponding secure indexes to the cloud
server, where data can be encrypted using any secure encryption technique, such as
Advanced Encryption Standard (AES), while the secure index is generated by some
particular search-enabled encryption techniques. When a data user wants to query

192 W. Sun et al.

the outsourced dataset hosted on the cloud server, he/she first either generates a
trapdoor with the keyword of interest (applied to most PKC-based search schemes),
or requests such trapdoor by sending a set of intended keywords to the data owner
(in the case of SKC-based search schemes). In the latter case, upon receiving the
trapdoor generation request, the data owner constructs the trapdoor, and return it
to the user. Then the data user submits the trapdoor to the cloud server. The cloud
server will execute the search program with the trapdoor as the input, the search
results will be sent back to the user. Note that here we assume there is pre-existing
security context between each user and the data owner thus authentication between
user and data owner is already in place. The trapdoors can be requested and returned
through a secure channel. The management of the decryption keys of the returned
files is an orthogonal problem and has been studied separately [28, 48]. Search
can be based on certain search criteria and the results be ranked based on certain
ranking criteria so that the server returns all the matching documents or only the
top-k most relevant ones to the user so as to realise effective and efficient data
retrieval functionality, and mitigate the corresponding communication overhead,
where k could be predefined by the user at the trapdoor submission time.

Threat Model

The typical threat model that most secure search schemes adopt [6, 10, 27, 39, 43]
is to consider the cloud server to be “honest-but-curious”, that is the cloud server
“honestly” follows the designated protocol specification, but it is “curious” to infer
and analyze data (including indexes) in its storage and message flows received
during the protocol in order to learn additional information.

Search Privacy

In the literature, many privacy requirements are defined for PKC-based and SKC-
based search schemes. We briefly introduce these search privacy requirements as
follows.

1. Keyword Privacy: One of the major privacy concerns is how to protect the
keywords of interest in a user’s trapdoor against the cloud server. In other words,
cloud server is not able to infer what the data user is searching. This fundamental
privacy requirement should be satisfied for any valid encrypted data search
scheme. Although trapdoor generation can be performed in a cryptographic way
to protect the query keywords, the cloud server could identify the searched
keywords by other side channel attacks, such as frequency analysis attack [39,
40, 43, 49]. Given the keyword-specific document frequency information (the
number of documents containing the keyword) or the keyword frequency (the
occurrence count of a keyword in a document) distribution information in a
particular dataset, it is sufficient for an attacker to reverse-engineer the keyword
in a trapdoor. Notice that this privacy requirement is referred to as predicate

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 193

privacy in the PKC-based search scenario and it cannot be protected inherently
for any asymmetric secure search scheme [34].

2. Trapdoor Unlinkability: It is required that the trapdoor should be generated in
a random manner. Otherwise, given any two trapdoors, the attacker can easily
determine the relationship of them, such as whether they contain the same set
of keywords. Therefore, sufficient nondeterminacy should be introduced into the
trapdoor generation algorithm. It is worth noting that violation of this privacy
requirement can further compromise the keyword privacy in that it allows the
cloud server to accumulate frequencies of different search requests with respect
to different keyword(s).

3. Access Pattern: It is defined to be the sequence of returned documents. Note that
protecting access pattern by using private information retrieval technique [12,21]
is extremely expensive since the algorithm has to “touch” the whole dataset
outsourced on the cloud server which is inefficient in the large scale cloud
system. Thus for efficiency concerns, most of the search over encrypted data
schemes do not aim to protect it.

2.2 PKC-Based Search vs. SKC-Based Search

In PKC-based search schemes, different keys are used to generate index and
trapdoor, such that a data user is usually free to produce a trapdoor by his/her
keywords of interest without interacting with a data owner. Thus, this technique
is much more suitable for some dynamic environment, e.g., when multiple data
contributors and multiple data users exist in one search system. Otherwise, in SKC-
based search, to search datasets from multiple data owners, a data user has to
obtain these trapdoors from each individual data owner. This communication cost
is definitely cumbersome to the user in such a multi-user and multi-data-contributor
scenario. In addition, PKC-based search schemes can achieve more flexible and
expressive queries compared with SKC-based schemes in general. For example,
range query, subset query, etc., can be easily realised by PKC-based search schemes.
In symmetric setting, how to generate trapdoors with similar functionalities is still
a challenging problem.

It is worth noting that multi-keyword search can be achieved in both symmetric
and asymmetric settings. By incorporating some ranking criteria, a data user is able
to enjoy ranked search results by the relevance of documents to the query. Although
conjunctive keyword search over encrypted data schemes in public-key setting
also provide multi-keyword search function, it often lacks ranking functionality.
Moreover, another unparalleled advantage of SKC-based search over PKC-based
one is that the overall search process is much more efficient, since asymmetric
search usually incurs a lot of time-consumed paring operations. Thus, there has
been significant interest in developing efficient SKC-based encrypted data search
mechanisms.

194 W. Sun et al.

In what follows, we review some important related works built from either PKC
or SKC technique.

PKC-Based Search

Inspired by identity-based encryption [8], Boneh et al. [7] propose the first PKC-
based keyword search scheme with single keyword query, where anyone with public
key can write to the data stored on server but only data users with private key
can search. Following this work, a lot of PKC-based search schemes have been
proposed to enrich the search functionalities. The scheme from [18] supports search
queries with conjunctive keywords by explicitly indicating the number of encrypted
keywords in an index, that is each keyword within a document is transformed to be
a part of the index for this document. When doing query, the server should know
which randomized keywords in the index need to be used for match evaluation.
This information leakage may raise some privacy concerns. The authors in [20]
also present a conjunctive keyword search over encrypted data scheme. They group
the queried keywords together in an index to mitigate keyword privacy breach. But
this is not flexible, since the data owner has to generate all the possible keyword
combinations in one index. In addition, they extend the proposed secure keyword
search to multi-user setting, where an encrypted index can be searched by various
users holding different private keys. Predicate encryption (PE) [4,9,23,36] is another
promising technique to fulfill the expressive search functionality over encrypted
data. For example, the proposed scheme in [9] supports conjunctive, subset and
range queries, and disjunctions, polynomial equations, and inner products could be
realised in [23]. Li et al. [27] use the hierarchical predicate encryption technique
to build an authorized keyword search scheme in the cloud. In their design, only
authorized data users can be granted search capability, and unauthorized users
are not allowed to search the dataset on the cloud server. Nevertheless, these PE-
based secure search schemes are generally too computationally intensive to be
implemented for practical use.

SKC-Based Search

Curtmola et al. design a symmetric secure search scheme supporting single keyword
queries with security guarantees under rigorous definitions [15]. Owing to the
adoption of inverted index [31] as the underlying index structure in their scheme, the
search process can be extremely efficient. In [40, 43, 49], the order-preserving tech-
niques are utilized to protect the rank order. By incorporating keyword frequency
information and inverted index structure, they can achieve accurate and efficient
search at the same time, but only single keyword query is supported. In addition,
Kamara et al. [22] propose a dynamic version of [15] with the ability to add and
delete files efficiently. In multi-user setting [6,47], the authors separately present an
encrypted data search schemes in the enterprise environment. Specifically, the data

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 195

user must be authorized before he/she can search the dataset, where authorization
is enforced by a user list stored and managed by enterprise servers. Note that
they differ from the PKC-based work [20] in terms of the allowed number of
data contributors. Under the symmetric-key setting, merely one data contributor
(enterprise) is allowed in their designs. In [17], the author formulates an IND-
CKA security model for indexes, i.e., indistinguishability against chosen keyword
attack, and a stronger model IND2-CKA. He also exploits pseudo-random functions
and bloom filter to generate a secure index for each file, and its search time is
proportional to the number of files in the dataset. The main problem of this scheme is
that the final search results inevitably contain false positive due to bloom filter being
the underlying index construction technique. Chang et al. [11] present a similar
security model to IND2-CKA, and propose a secure search scheme with the index
built from pseudo-random functions. Cao et al. [10] propose the first SKC-based
encrypted data search scheme supporting multi-keyword ranked search where an
index is generated using secure inner product technique. The ranking is realised by
similarity measure of coordinate matching. Later, Sun et al. [39] present another
secure multi-keyword search scheme in the cloud enabling more accurate search
result ranking by using the state-of-the-art similarity measure, i.e., cosine measure
in the vector space model, and design a search algorithm over the proposed tree-
based index structure to fulfill more efficient search complexity in practice.

2.3 Exact Keyword Search vs. Fuzzy Keyword Search

Unlike the exact keyword search schemes above, it is common that keywords may
be entered by a user which contain typos, but the search engine (e.g., Google search)
is still capable of tolerating them and returning what the user intends. Thus, fuzzy
keyword search technique is often used to rectify the mistakes. For the search
algorithm to better understand the difference between a correct keyword and its
typo, we need a similarity measurement to be supported in the underlying encrypted
data search scheme, such that the matching files will be returned when the user’s
search request exactly matches the keyword in the index or the difference is within
some predefined tolerance range.

Li et al. [26] propose a fuzzy keyword search over encrypted data scheme in the
cloud. For each keyword, they first construct a wildcard keyword set containing all
the variants of the keyword. Upon receipt of the trapdoor, they exploit edit distance
to quantify keyword similarity. If the intended keyword is within the fuzzy keyword
set, it will be considered a keyword match. By the similar techniques, Liu et al. [29]
present another fuzzy keyword search scheme with a size-reduced index. In [13],
the authors use a B-tree [14] based index structure to construct a fuzzy keyword
search scheme, where although they claim the support of multiple keyword search
capability, they only group several keywords together to form a phrase. This is
analog to some conjunctive keyword search schemes [20] in public-key setting,

196 W. Sun et al.

which is apparently not flexible in the sense that a data user is not able to query
any combination of keywords of his/her choice if this keyword combination is not
considered by the data owner at the index generation phase.

2.4 Secure Index-Based Search

Since Song et al.’s seminal work [38], searchable encryption has drawn a lot of
attention. Their work enables in-line text search within an encrypted document.
Specifically, their scheme encrypts each document word by word and performs
full-domain search such that it takes linear operations to cover all the documents.
Later, to improve the search efficiency, many secure search schemes have been
proposed, where queries can be executed over encrypted indexes (rather than
encrypted data themselves) by users who possess proper “trapdoors”. This applies to
all the encrypted data search schemes mentioned above. To design a keyword search
over encrypted data scheme, a series of important factors should be considered as
follows.

Index Structure

In general, there are three kinds of index structures often used to construct encrypted
data search schemes:

• Index organized by keywords: Such index data structure is usually called
inverted index, or inverted file [31]. In this data structure, each keyword is
followed by a file list which consists of all the files in the dataset containing this
keyword. The advantage of this index structure is to allow significantly efficient
text search instead of the full domain text search. But when a file is added to
the dataset, it needs increased processing since all the indexes containing the
keywords in this file have to be updated. This kind of index structure is widely
used in encrypted data search schemes [15,22,40,43,49] due to its extremely fast
search process. Note that search schemes with this keyword-based index structure
can only realise single keyword query.

• Index constructed per document: Another popular index structure adopted by
many secure search schemes [10, 11, 17, 20] is to construct an index for each file
in the dataset such that one file update usually affects only one corresponding
index. The index structure is specific to each document and is generated by all
the keywords contained in the target document.

• Tree-based index structure: Index structure can also be constructed based on
some well-developed tree structures, such as B-tree [14], MDB-tree [33], etc. A
few existing works [30,39] exploit tree-based structures to design efficient secure
search schemes in different scenarios.

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 197

Secure Search Algorithm

According to different data structures, search over encrypted data schemes may
use different secure search algorithm to do the match. The inverted index structure
allows fast direct intended file retrieval, so the search complexity is constant there.
For example, the indexed keywords can be hashed and then store the associated file
list at a table with its address being the hash value . When a user wants to search a
keyword of interest, he/she first hashes it and submits the hash value to the server.
Therefore, the server is able to find out the intended files efficiently.

For schemes with index built from each document, the most efficient search
algorithm merely enables linear search, i.e., the time for search is linear to the
number of documents in the dataset, since the returned search results could not
be determined until the search process goes through all the indexes within the
document set. This is not desirable when a huge amount of data are present on
the server.

By utilizing tree-based structures to construct indexes for encrypted data search
schemes, the corresponding secure search algorithm could be devised to achieve
more efficient search than the linear search schemes. At the meantime, the same
expressive queries as the schemes with index built per document could be realised
under this index structure, such as range queries in database scenario [30] and multi-
keyword text search with similarity-based ranking [39].

Similarity-Based Ranking

To enhance user searching experience and meet more effective data retrieval need,
two fundamental aspects have to be considered when designing a practical encrypted
data search scheme. On one hand, most of today’s search engines on the Internet
(e.g., Google search) allow users to query multiple keywords in one search request
instead of only one as the indicator of their search interest. Compared with single
keyword query, the main advantage of this multi-keyword search is that it can
yield more relevant search results efficiently. On the other hand, ranked search
functionality is preferable in the “pay-as-you-go” cloud paradigm. The reason is
that cloud server could conduct relevance ranking operation for data user and return
the most relevant set of files, rather than directly sending back the undifferentiated
search results to data user. As such, the network traffic between cloud server and
data user could be dramatically reduced.

By securely incorporating advanced similarity measures into the design of
encrypted data search schemes, ranking functionality could be realised during
search process with a multi-keyword trapdoor. These adopted similarity measures
are borrowed from plaintext information retrieval community, such as coordinate
matching, cosine measure in the vector space model [45]. As a result, the con-
structed encrypted data search schemes enjoys the same flexibility and search result
accuracy as the existing multi-keyword search over plaintext.

198 W. Sun et al.

3 Privacy-Preserving Multi-keyword Ranked Search

Cao et al. [10], for the first time, explore the problem of multi-keyword ranked
search over encrypted cloud data (MRSE), and establish a set of strict privacy
requirements for such a secure cloud data utilization system. They propose two
MRSE schemes based on the similarity measure of coordinate matching while
meeting different privacy requirements in two different threat models. One is known
ciphertext model, where the cloud server is supposed to only know encrypted
dataset and searchable index, both of which are outsourced from the data owner.
The other is known background model, in which the cloud server could possess
more knowledge than what can be accessed in the known ciphertext model, such as
document frequency information. At the meantime, they execute thorough security
analysis and experiment evaluation on the real world dataset to demonstrate the
privacy and efficiency guarantees of their proposed schemes. In the remaining of
this section, we will discuss this work.

3.1 Technical Overview for MRSE

Coordinate Matching

To support multi-keyword ranked search, the similarity measure, coordinate match-
ing [45], is incorporated into the MRSE schemes. This similarity measure counts
the number of query keywords appearing in the documents to quantify the relevance
of that document to the query. The more query keywords that appear in a document,
the more relevant the document to the query. This similarity measure is thought of
as a hybrid intermediate between conjunctive and disjunctive search. Any document
with all or partial keywords matching is considered a part of the search results.
To formalize such similarity measure in practice, they use inner products of the
query vector and a set of document index vectors to reflect the predilection of
the data user for documents. For example, assume that a dictionary is defined as
{search,cloud, privacy,network,security}. There are two documents A,B in the
dataset. Therefore, set the index vector as a binary vector DA = (1,0,0,1,1) for
document A if it only contains keywords {search,network,security}, where 1 is
used to indicate the existence of some keyword in the document and 0 otherwise. If
the keywords {search,cloud,security} appears in the document B, the binary index
vector DB is defined to be (1,1,0,0,1). Suppose that the data user has a query with
the intended keywords {seach,cloud, privacy}. Thus the binary query vector Q is
represented as (1,1,1,0,0). We can calculate the inner products of the query vector
Q and the index vectors DA,DB as the similarity scores of documents A and B:

SimilarityScoreA = Q ·DA = (1,1,1,0,0) · (1,0,0,1,1) = 1,

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 199

and

SimilarityScoreB = Q ·DB = (1,1,1,0,0) · (1,1,0,0,1) = 2.

Therefore, we can deduce that the data user would prefer document B to document
A since the similarity score of B is greater than that of A. Also, it yields a ranking
B > A.

By using the coordinate matching similarity measure, effective multi-keyword
ranked search functionality could be realised. Nevertheless, such measure is orig-
inally designed for plaintext information retrieval purpose. How to apply it to
the encrypted data search without breaching search privacy is a very challenging
problem.

Search with Secure Inner Product Evaluation

To use the above mentioned similarity measure in a privacy-preserving way, index
vector Dd for each document d, query vector Q and their inner product Dd · Q
should not be exposed to the cloud server. In MRSE, the authors propose a secure
inner product scheme which is adapted from a secure k-nearest neighbor (kNN)
technique [46] to hide these sensitive information.

In database scenario, secure kNN technique can be exploited to select k nearest
database records to the query by comparing the Euclidean distance between them.
Specifically, each record in the database and the query can be represented by an
n-dimensional vectors pi and q respectively. The secret key consists of one (n+ 1)-
dimensional vector S and two (n+1)× (n+1) invertible matrices M1 and M2. Then
after vector extension, a new pi is set as (pi,−0.5||p2

i ||) and a new query vector q
is (rq,r), where r > 0 is a random number. As per the splitting indicator S, pi is
split into two vectors as {p′i, p′′i } and q is also split into two vectors {q′,q′′} such
that pi and q can be recovered given S, {p′i, p′′i } and {q′,q′′}. Eventually, the vector
pairs {p′i, p′′i } and {q′,q′′} are encrypted as {MT

1 p′i,MT
2 p′′i } and {M−1

1 q′,M−1
2 q′′}

respectively. At the database search phase, the product of encrypted record vector
pair and encrypted query vector pair, i.e., −0.5r(||pi||2 − 2pi · q), is serving as the
indicator of Euclidean distance (||pi||2−2pi ·q+ ||q||2) to select k nearest neighbors.
Without prior knowledge of secret key, neither record vector nor query vector,
after such a series of processes, can be recovered by analyzing their corresponding
ciphertext.

Cao et al. modify this secure kNN technique to measure the inner product
similarity instead of the Euclidean distance. In particular, trapdoor vector Q is
extended to be (rQ,r, t), where r, t are two random numbers and r > 0, such that it is
difficult for the cloud server to infer the relationship among the received trapdoors.
To obfuscate the document frequency and diminish the chances for re-identifying
the keywords, the final similarity scores should be further randomized. Thus some
randomness εd is introduced into the index vector Dd , and Dd is extended into

200 W. Sun et al.

(Dd ,εd ,1). The encrypted index vector pair Id = {MT
1 D′

d ,M
T
2 Dd

′′} and trapdoor
vector pair T = {M−1

1 Q′,M−1
2 Q′′} are generated after applying the vector splitting

and matrix multiplication. The final similarity score for document d to the query
vector would be:

Id ·T = {MT
1 D′

d ,M
T
2 D′′

d} · {M−1
1 Q′,M−1

2 Q′′}
= D′

d ·Q′+D′′
d ·Q′′

= (Dd ,εd ,1) · (rQ,r, t)

= r(Dd ·Q+ εd)+ t.

By using this equation, the ranked search result can be produced.
This vector encryption method has been proved to be secure in the known

ciphertext model [46]. As long as the secret key is kept confidential, the underlying
plaintext information in the index vector and trapdoor vector cannot be revealed.

50 70 90 110 130 150
50

60

70

80

90

100

of retrieved documents

P
re

ci
si

on
 (

%
)

σ = 1
σ = 0.5

50 70 90 110 130 150
0

10

20

30

40

50

of retrieved documents

R
an

k
P

riv
ac

y
(%

) σ = 1
σ = 0.5

a b

Fig. 2 Tradeoff between (a) precision, and (b) rank privacy by selecting different standard
deviation σ (From [10])

Note that, let εd follow a Normal distribution N(μ ,σ2), where the standard deviation
σ functions as a flexible trade-off parameter between search accuracy and security.
To protect keyword privacy, a large σ is selected to introduce more obfuscation
into the final similarity score, from which it is difficult for the cloud server to
gain statistical information about the original similarity score, but the search result
could be less accurate. Thus from the viewpoint of the effective search, small σ is
preferable. This is shown in Fig. 2.1 Due to the splitting process and the random

1Precision is defined to be the fraction of returned top-k documents that are included in the real top-
k list, while rank privacy measures the rank order variation between the returned top-k documents
and real top-k documents.

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 201

numbers r, t, the trapdoor generation algorithm can output two different trapdoors
even for the same search request to guarantee trapdoor unlinkability.

To further protect search privacy in the known background model, an enhanced
MRSE scheme is proposed. The main modification is to insert more dummy
keywords ∑εd instead of only one fixed εd into the index vector for each document.
The level of search accuracy remains the same with the previous basic MRSE
scheme if let ∑εd follow a Normal distribution as well.

Cao et al. for the first time, define and solve the problem of multi-keyword
ranked search over encrypted cloud data by combining the efficient similarity
measure “coordinate matching” with the adapted secure inner product technique.
The proposed schemes can meet various stringent privacy requirements while
retaining effective search functionalities.

4 Improvement on Search Accuracy and Efficiency

4.1 Background

Although MRSE can achieve multi-keyword ranked search, there exists a gap
between MRSE and the state-of-the-art plaintext information retrieval techniques in
terms of search accuracy and search efficiency. On one hand, the similarity measure
“coordinate matching” in MRSE has some drawbacks when used to evaluate the
document ranking order. First, it takes no account of term2 frequency such that any
keyword appearing in a document will present in the index vector as binary value
1 for that document, irrespective of the number of its appearance. Obviously, it
fails to reflect the importance of a frequently appeared keyword to the document.
Second, it takes no account of term scarcity. Usually a keyword appearing in only
one document is more important than a keyword appearing in several ones. In
addition, long documents with many terms will be favored by the ranking process
because they are likely to contain more terms than short documents. Hence, due to
these limitations, the heuristic ranking function, “coordinate matching”, is not able
to produce more accurate search results. More advanced similarity measure should
be adopted from plaintext information retrieval community, such as cosine measure
in the vector space model [45]. On the other hand, the search complexity of MRSE
is linear to the number of documents in the dataset, which becomes undesirable and
inefficient when a huge amount of documents are present, while many efficient index
structures exist in the plaintext information retrieval techniques, e.g., B-tree [14],
inverted index [31], etc.

Sun et al. [39] present a privacy-preserving multi-keyword text search (MTS)
scheme in the cloud supporting similarity-based ranking to address the challenge of

2We do not differentiate term and keyword hereafter.

202 W. Sun et al.

constructing more accurate, practically efficient and flexible encrypted data search
functionalities. Specifically, the index vector for each document is generated based
on the cosine measure in the vector space model to support multi-keyword query
and search result ranking functionality, and utilize the “term frequency (TF) ×
inverse document frequency (IDF)” weight to achieve high search result accuracy.
By incorporating the state-of-the-art information retrieval technique, the proposed
MTS schemes enjoy the same flexibility and search result accuracy as the existing
state-of-the-art multi-keyword ranked search over plaintext. In order to improve
the search efficiency, they propose a tree-based index structure, where each value
in a node is a vector of term frequency related information. Furthermore, an
efficient search algorithm is presented to realise more efficient search functionality
compared with [10]. To satisfy various search privacy requirements, two secure
index schemes for multi-keyword text search with similarity-based ranking are
devised. The basic scheme (BMTS) is secure under the known ciphertext model,
and the other enhanced secure index scheme (EMTS) is constructed against sensitive
frequency information leakage to meet more stringent privacy requirements under
the stronger threat model, i.e., known background model.

Data user

...

Fig. 3 Framework of MTS (From [39])

4.2 Technical Overview of MTS

The system framework in [39] is analog to [10] as shown in Fig. 3, wherein three
participants, i.e., the data owner, the data user and the cloud server, are defined. Note
that the index vectors are organized as a secure index tree instead of each individual
vector before outsourced to the cloud server. Assume the cloud server still acts in an

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 203

“honest-but-curious” manner. Since the term frequency information is incorporated
into the ranking function, in the known background model the attacker may extract
such statistical information from a known comparable dataset of the similar nature to
the target dataset, e.g., the TF distribution information of a specific keyword. Given
such statistical information, the cloud server is able to launch statistical attack to
deduce/identify particular keywords in the query [40, 43, 49].

Vector Space Model

Vector space model is one of the most popular similarity measures in the plain-
text information retrieval community, supporting both conjunctive and disjunctive
search. The ranking order for a particular document set is determined by comparing
the deviation of angles, i.e., cosine values, between each document vector and the
query vector. The cosine measure allows accurate ranking due to the “TF×IDF
rule”, where TF denotes the occurrence count of a term within a document,3 and
IDF is obtained by dividing the total number of documents in the collection by the
number of documents containing the term.4 Thus, unlike the coordinate matching,
each dimension of an index vector in MTS is a TF weight wd,t , and a query vector is
comprised of IDF weights wq,t , where d, t denote a specific document in the dataset
and a term in the dictionary respectively. The ranked search functionality can be
achieved by the following similarity function:

Cos(Dd ,Q) =
1

WdWq
∑

t∈Q∩Dd

wd,t ·wq,t ,

where Wd =
√

∑t∈Q∩Dd
w2

d,t , Wq =
√

∑t∈Q∩Dd
w2

q,t . Thus, the index vector Dd and

query vector Q are both unit vectors.

Secure index tree

D1 Dd,1

Dd,2

Dd,h

...

GenIndex

Search
request

 ...

GenIndex

GenIndex

...

Dm

Documents Index vectors

Dd

Tree-based
search algorithm

Q

Qh

Q1

Q2

Query

Query vector

GenQuery

GenQuery

GenQuery

...... ...

Ranked top k
search result

...

Fig. 4 Overview of secure index scheme (From [39])

3It is used to measure how important a specific term is to a particular document.
4It implies that this frequency of a term tends to be inversely proportional to its ranking.

204 W. Sun et al.

Secure Index Scheme

To construct the index tree structure, the original long document index vector Dd

has to be divided into multiple sub-vectors such that each sub-vector Dd,i represents
a subset of keywords, and becomes a part of the i-th level of the index tree, as shown
in Fig. 4. Similarly, let Qi be the query sub-vector at the i-th level. As such, the final
similarity score for document d can be obtained by summing up the scores from each
level. Based on these similarity scores, the cloud server determines the relevance of
document d to the query Q and sends the top-k most relevant documents back to
the user. The similar secure inner product scheme [10] is adopted here but applied
to each level of the index tree. In addition, they do not use the dimension extension
technique for BMTS in the known ciphertext model. The similarity score at the i-th
level is computed as follows:

Cos(D̃d,i, Q̃i) = {MT
1,iDd,i

′,MT
2,iDd,i

′′} · {M−1
1,i Qi

′,M−1
2,i Qi

′′}
= Dd,i

′ ·Qi
′+Dd,i

′′ ·Qi
′′

= Dd,i ·Qi,

where D̃d,i and Q̃i represent the encrypted forms of index vector and query vector
at the i-th level respectively. Hence, the final similarity score for document d is
∑h

i=1 Dd,i ·Qi = Dd ·Q by assuming that the index tree has h levels in total.

0 0.02 0.04 0.06 0.08 0.1
0

20

40

60

80

100

120

140

Similarity Score

N
um

be
r

of
 d

oc
um

en
ts

0 0.02 0.04 0.06 0.08
0

100

200

300

400

500

Similarity Score

N
um

be
r

of
 d

oc
um

en
ts

a b

Fig. 5 Distribution of similarity score when a single keyword in a query vector with BMTS.
(a) For keyword “network”. (b) For keyword “search” (From [39])

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 205

−0.2 −0.1 0 0.1 0.2
0

20

40

60

80

100
a b

Similarity score

N
um

be
r

of
 d

oc
um

en
ts

−0.1 −0.05 0 0.05 0.1 0.15
0

20

40

60

80

100

Similarity score

N
um

be
r

of
 d

oc
um

en
ts

Fig. 6 Obfuscation to distribution of similarity score for keyword “network” with different
standard deviations in EMTS. (a) σ = 0.05. (b) σ = 0.03 (From [39])

In BMTS, index and query confidentiality can be well protected by the secure
inner product technique. Due to the non-deterministic property of the encryption
method, the trapdoor unlinkability can be preserved similar to [10]. As assumed in
the defined known background model, the cloud server may have the knowledge
of the TF distributions, or normalized ones of some sensitive keywords from a
known comparable dataset. It is worth noting that these distributions are keyword
specific, as shown in Fig. 5.5 Therefore, to further prevent this sensitive information
from being disclosed to the server, the authors insert phantom terms into the query
vector in EMTS so as to obfuscate the final similarity scores while maintaining
effective search functionalities, as shown in Fig. 6. The larger σ is selected, the
better the TF distribution can be protected. This technique can achieve the same
privacy preserving functionality as MRSE, and the selection of σ reflects the user’s
preference for privacy preservation or search accuracy. On the other hand, this
query-side randomization technique significantly differs from [10] in the sense
that randomization in [10] is applied to the index vector and is not possible to be
calibrated by users as an effective privacy-preserving parameter.

Efficient Tree-Based Search Algorithm

In database community, query process could complete in logarithmic time by using
B-tree, B+-tree, etc. These tree-based structures are not only used in the plaintext
database search, but also can be used in the encrypted database scenario [30] to
realise efficient range query. Nevertheless, they are not applicable to text search. The
similarity score is a dynamic value depending on the query and has to be evaluated

5The background dataset is collected from the recent 10 years’ IEEE INFOCOM publications.

206 W. Sun et al.

in the runtime, which makes the fixed tree structure, such as B-tree or B+-tree, not
suitable here. Inverted index [31] is the most efficient and well-developed index
structure which is widely used in the plaintext information retrieval community.
In the literature, however, a few works [15, 40, 43, 49] employ this technique to
design efficient search algorithm but only for single keyword query. Sun et al.
propose a tree-based search algorithm, which is adapted from multi-dimensional
B-tree (MDB-tree) [33] based multi-dimensional algorithm (MD-algorithm) [32],
to enable efficient multi-keyword ranked search.

The MD-algorithm is used to find the k-best matches in a database that is
structured as an MDB-tree, as shown in Fig. 7. Each attribute domain in the database
constitutes one level of the MDB-tree and each attribute in that domain is assigned
an attribute value. All the attributes sharing the same value in the upper domain
forms a child node. As such, a set of objects is allowed to be indexed in one data
structure. An important search parameter, the prediction threshold value P̂i for each
level i, is obtained from the maximum attribute value Pi at each level, for example,
in Fig. 7, P̂i = Pi = 1.0.

In a depth-first manner, MD-algorithm starts from the root node with a recursive
procedure upon this tree. Specifically, search process selects the unused maximum
attribute value when it enters a node, and based on P̂i’s below this level, predicts
the maximum possible final score to be obtained. The criteria for node selection
is that if this predicted final score is less than or equal to the minimum score of
the top-k objects which have been selected, search process returns to the parent

0.50.4

0.3 0.40.0 0.7

A

1.0 0.9

B

C E F H I J K

G

0.0 0.5 1.0

0.5 1.0 0.0 0.7 0.7 0.4 0.6

D

Level 1

Level 2

Level 3

Fig. 7 Illustration of MD-algorithm on MDB-tree (From [39])

node, otherwise, it goes down to the child node at the next level. This procedure is
executed recursively until the objects with top-k scores are selected.

The search can be done very efficiently due to the relatively accurate final score
prediction, and thus only part of the objects in the tree are accessed. Figure 7 shows

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 207

an example that, when k = 3, the set of objects, E, K, and J, are returned to the user
and the cross signs in the figure indicate that it is not necessary to access the nodes
below. More details of the MD-algorithm and MDB-tree can be found in [32].

The MD-algorithm is originally designed for plaintext database search. In the
case of privacy-preserving similarity-based multi-keyword ranked text search, it
cannot be applied in a straightforward manner. Instead of a numerical “attribute
value” for each attribute in the MDB-tree, the index tree structure has to be built on
vectors. Another remarkable difference between the proposed search algorithm and
MD-algorithm is that it is not possible to set P̂i to Pi as running the MD-algorithm
in database scenario, since Pi varies for queries and has to be securely evaluated in
the runtime.

Search Efficiency Improvements

During the evaluation of the MD-algorithm on the proposed secure index tree, three
important efficiency-improving factors are identified by the authors. Next, we will
briefly elaborate on those observations.

1. Impact of Prediction Threshold Value: By observation, they found that the
smaller the predication threshold value, the faster the search algorithm is
terminated, which means the search process can be terminated earlier without
going into unnecessary nodes. As such, at each level, P̂i should decreasingly
approach Pi as close as possible.

5 10 15 20 25 30 35
0

20

40

60

80

100

120

Number of documents (× 102)

S
ea

rc
h

tim
e

(m
s)

Baseline
Strategy 1
Strategy 1 + Strategy 2
Strategy 1 + Strategy 2 + Strategy 3

Fig. 8 Comparison of search efficiency with different efficiency-improving strategies (From [39])

208 W. Sun et al.

2. Impact of Intended Keyword Position: Another observed efficiency-improving
factor is that the search efficiency is significantly dependent on the position of the
intended keywords on the index tree. Indeed, people usually complete a search
with a query only consisting of a few keywords [1], which is different from
using the MD-algorithm in database scenario. Typically, to find out the object
of interest, all the attributes are utilized to query the database. It is apparently
inefficient since the search process needs to go to the bottom level of the index
tree where the intended attribute resides.

3. Impact of Index Vector Clustering: The last search efficiency related obser-
vation is that “similar” vector index could be clustered together to reduce the
number of accessed nodes in the index tree at the expense of lower search
precision.

Based the these key observations, the authors propose the corresponding effective
strategies to improve the practical search efficiency with vector indexes while not
introducing new privacy vulnerabilities. Compared with the original MD-algorithm,
the experimental result6 shows the much more improved search efficiency in
Fig. 8.7 Furthermore, Fig. 9a shows the search time for BMTS and EMTS with the
proposed efficiency-improving strategies, compared with [10] and baseline search
with respect to the size of document set. Due to the proposed search algorithm and
tree-based index structure, the baseline search is far efficient than [10]. Note that the
time cost of BMTS and EMTS is more efficient than [10] and the baseline search.
Besides, the two proposed schemes enjoy almost the same and nearly constant
search time. Figure 9b shows that the proposed secure search schemes are still
extremely efficient in the case of more documents are required to be returned.

5 10 15 20 25 30 35
0

50

100

150

200

250

300

a b
350

S
ea

rc
h

tim
e

(m
s)

Cao et al.
Baseline
BMTS
EMTS

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

Number of retrieved documents

S
ea

rc
h

tim
e

(m
s) Cao et al.

Baseline
BMTS
EMTS

Number of documents (× 102)

Fig. 9 Comparison of search efficiency with the same 10 keywords of interest. (a) For the different
size of document set. (b) For the different number of retrieved documents (From [39])

6All the experimental results in [39] are obtained from implementation of the proposed secure
search system using JAVA on a Linux Server with Intel Core i3 Processor 3.3 GHz.
7The baseline search is with respect to the original MD-algorithm. The strategies 1 is proposed
from the observation 1. Likewise, the strategy 2 is from the observation 2 and the strategy 3 from
the observation 3.

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 209

5 Conclusion

With the advent of cloud computing, more and more sensitive data are outsourced
to the cloud server to reduce the management cost and enjoy the ubiquitous access.
However, this novel computing paradigm introduces serious privacy challenges in
that users’ data are no longer locally possessed but stored on the remote server
which belongs to a different trust domain compared with the data users’. In this
chapter, we focus on the privacy concerns in the secure search function performed
over encrypted cloud data. We first provide a brief introduction to the background
knowledge of encrypted data search techniques that have been proposed in the
literature and dedicated to address the secure search problem in the computation
outsourcing model. Then we elaborate on a state-of-the-art secure search scheme in
the text search scenario, and show that they can achieve flexible/expressive search
functionalities, i.e., multi-keyword ranked search. In addition, the same search
accuracy as the plaintext information retrieval can be realised using the state-of-
the-art similarity measure while search privacy is well protected. Finally, with the
proposed search algorithm, the discussed secure search system is efficient enough
to be deployed in practice.

While continued research is necessary to further enrich the search function-
ality and improve the efficiency and scalability of search schemes, another very
interesting direction is on virtualization security that tries to secure the execution
environment (i.e., virtual machines) in the cloud server. This will require a slight
change in the security model – instead of an honest-but-curious server model
which does not trust the server, we may choose to place minimum trust on the
server, for example, trust the bare hardware on the server, and design the secure
operating system to protect the virtual machine against the software-based attacks,
be it from other virtual machines running on the same physical machine or the
hosting machine’s operating system. We argue that the data should be stored in
the cloud in the encrypted form. However, after they are loaded to the users’ secure
execution environment, they can be in the plaintext form in order to enable effective
computation, such as search. Research along this line includes [5, 24, 41, 50] and it
aims to provide a more general solution to the secure computation on the untrusted
cloud server problem. We believe both research directions are interesting and call
for more effort from the research community.

Acknowledgments This work was supported in part by the NSFC 61272457, the FRFCU
K50511010001, the PCSIRT 1078, the National 111 Project B08038, and the U.S. NSF grant
CNS-1217889.

210 W. Sun et al.

References

1. Keyword and search engines statistics. http://www.keyworddiscovery.com/keyword-stats.
html?date=2013-01-01 (2013)

2. Atallah, M.J., Frikken, K.B.: Securely outsourcing linear algebra computations. In: Proceed-
ings of the 5th ACM Symposium on Information, Computer and Communications Security,
pp. 48–59. ACM (2010)

3. Atallah, M.J., Li, J.: Secure outsourcing of sequence comparisons. International Journal of
Information Security 4(4), 277–287 (2005)

4. Attrapadung, N., Libert, B.: Functional encryption for inner product: Achieving constant-size
ciphertexts with adaptive security or support for negation. In: Public Key Cryptography–PKC
2010, pp. 384–402. Springer (2010)

5. Azab, A.M., Ning, P., Zhang, X.: Sice: a hardware-level strongly isolated computing environ-
ment for x86 multi-core platforms. In: Proceedings of the 18th ACM conference on Computer
and communications security, pp. 375–388. ACM (2011)

6. Bao, F., Deng, R.H., Ding, X., Yang, Y.: Private query on encrypted data in multi-user settings.
In: Information Security Practice and Experience, pp. 71–85. Springer (2008)

7. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword
search. In: Advances in Cryptology-Eurocrypt 2004, pp. 506–522. Springer (2004)

8. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Advances in
Cryptology – CRYPTO 2001, pp. 213–229. Springer (2001)

9. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Proceed-
ings of the 4th conference on Theory of cryptography, pp. 535–554. Springer-Verlag (2007)

10. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword ranked search
over encrypted cloud data. In: Proceedings of IEEE INFOCOM, pp. 829–837 (2011)

11. Chang, Y.C., Mitzenmacher, M.: Privacy preserving keyword searches on remote encrypted
data. In: Applied Cryptography and Network Security, pp. 442–455. Springer (2005)

12. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. Journal of
the ACM 45(6), 965–981 (1998)

13. Chuah, M., Hu, W.: Privacy-aware bedtree based solution for fuzzy multi-keyword search
over encrypted data. In: Distributed Computing Systems Workshops (ICDCSW), 2011 31st
International Conference on, pp. 273–281. IEEE (2011)

14. Comer, D.: Ubiquitous b-tree. ACM computing surveys 11(2), 121–137 (1979)
15. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption:

improved definitions and efficient constructions. In: Proceedings of the 13th ACM conference
on Computer and communications security, pp. 79–88. ACM (2006)

16. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009)
17. Goh, E.J.: Secure indexes. Cryptology ePrint Archive. http://eprint.iacr.org/2003/216 (2003)
18. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over encrypted data.

In: ACNS 04: 2nd International Conference on Applied Cryptography and Network Security,
pp. 31–45. Springer-Verlag (2004)

19. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic computations. In:
Theory of Cryptography, pp. 264–282. Springer (2005)

20. Hwang, Y.H., Lee, P.J.: Public key encryption with conjunctive keyword search and its
extension to a multi-user system. In: Pairing-Based Cryptography–Pairing 2007, pp. 2–22.
Springer (2007)

21. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography from anonymity. In: the 47th
Annual IEEE Symposium on Foundations of Computer Science, pp. 239–248. IEEE (2006)

22. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In:
Proceedings of the 2012 ACM conference on Computer and communications security,
pp. 965–976. ACM (2012)

23. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In: Advances in Cryptology–EUROCRYPT 2008, pp. 146–162.
Springer (2008)

http://www.keyworddiscovery.com/keyword-stats.html?date=2013-01-01
http://www.keyworddiscovery.com/keyword-stats.html?date=2013-01-01
http://eprint.iacr.org/2003/216

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 211

24. Keller, E., Szefer, J., Rexford, J., Lee, R.B.: Nohype: virtualized cloud infrastructure without
the virtualization. In: ACM SIGARCH Computer Architecture News, vol. 38, pp. 350–361.
ACM (2010)

25. Krebs, B.: Payment processor breach may be largest ever. http://voices.washingtonpost.com/
securityfix/2009/01/payment_processor_breach_may_b.html (2009)

26. Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search over encrypted
data in cloud computing. In: INFOCOM, 2010 Proceedings IEEE, pp. 1–5. IEEE (2010)

27. Li, M., Yu, S., Cao, N., Lou, W.: Authorized private keyword search over encrypted data
in cloud computing. In: Distributed Computing Systems (ICDCS), 2011 31st International
Conference on, pp. 383–392. IEEE (2011)

28. Li, M., Yu, S., Zheng, Y., Ren, K., Lou, W.: Scalable and secure sharing of personal health
records in cloud computing using attribute-based encryption. IEEE Transactions on Parallel
and Distributed Systems 24(1), 131–143 (2013)

29. Liu, C., Zhu, L., Li, L., Tan, Y.: Fuzzy keyword search on encrypted cloud storage data with
small index. In: Cloud Computing and Intelligence Systems (CCIS), 2011 IEEE International
Conference on, pp. 269–273. IEEE (2011)

30. Lu, Y.: Privacy-preserving logarithmic-time search on encrypted data in cloud. In: 19th Annual
Network and Distributed System Security Symposium (NDSS Symposium’12) (2012)

31. NIST: NIST’s dictionary of algorithms and data structures: inverted index. http://xlinux.nist.
gov/dads/HTML/invertedIndex.html

32. Ondreička, M., Pokornỳ, J.: Extending fagin’s algorithm for more users based on multidi-
mensional b-tree. In: Advances in Databases and Information Systems, pp. 199–214. Springer
(2008)

33. Scheuermann, P., Ouksel, M.: Multidimensional b-trees for associative searching in database
systems. Information systems 7(2), 123–137 (1982)

34. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Theory of
Cryptography, pp. 457–473. Springer (2009)

35. Sheridan, J., Cooper, C.: Defending the cloud. http://www.reactionpenetrationtesting.co.uk/
Defending%20the%20Cloud%20v1.0.pdf (2012)

36. Shi, E., Bethencourt, J., Chan, H., Song, D., Perrig, A.: Multi-dimensional range query over
encrypted data. In: Proceedings of IEEE Symposium on Security and Privacy, pp. 350–364
(2007)

37. Slocum, Z.: Your google docs: Soon in search results? http://news.cnet.com/8301-17939_109-
1035713%207-2.html (2009)

38. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In:
Proceedings of IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

39. Sun, W., Wang, B., Cao, N., Li, M., Lou, W., Hou, Y.T., Li, H.: Privacy-preserving multi-
keyword text search in the cloud supporting similarity-based ranking. In: Proceedings of the 8th
ACM SIGSAC symposium on Information, computer and communications security, pp. 71–82.
ACM (2013)

40. Swaminathan, A., Mao, Y., Su, G.M., Gou, H., Varna, A.L., He, S., Wu, M., Oard, D.W.:
Confidentiality-preserving rank-ordered search. In: Proceedings of the 2007 ACM Workshop
on Storage Security and Survivability, pp. 7–12 (2007)

41. Szefer, J., Keller, E., Lee, R.B., Rexford, J.: Eliminating the hypervisor attack surface
for a more secure cloud. In: Proceedings of the 18th ACM conference on Computer and
communications security, pp. 401–412. ACM (2011)

42. Van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computationally efficient
searchable symmetric encryption. In: Secure Data Management, pp. 87–100. Springer (2010)

43. Wang, C., Cao, N., Ren, K., Lou, W.: Enabling secure and efficient ranked keyword search
over outsourced cloud data. IEEE Transactions on Parallel and Distributed Systems 23(8),
1467–1479 (2012)

44. Wang, C., Ren, K., Wang, J.: Secure and practical outsourcing of linear programming in cloud
computing. In: INFOCOM, 2011 Proceedings IEEE, pp. 820–828. IEEE (2011)

http://voices.washingtonpost.com/securityfix/2009/01/payment_processor_breach_may_b.html
http://voices.washingtonpost.com/securityfix/2009/01/payment_processor_breach_may_b.html
http://xlinux.nist.gov/dads/HTML/invertedIndex.html
http://xlinux.nist.gov/dads/HTML/invertedIndex.html
http://www.reactionpenetrationtesting.co.uk/Defending%20the%20Cloud%20v1.0.pdf
http://www.reactionpenetrationtesting.co.uk/Defending%20the%20Cloud%20v1.0.pdf
http://news.cnet.com/8301-17939_109-1035713%207-2.html
http://news.cnet.com/8301-17939_109-1035713%207-2.html

212 W. Sun et al.

45. Witten, I.H., Moffat, A., Bell, T.C.: Managing gigabytes: Compressing and indexing docu-
ments and images. Morgan Kaufmann Publishing, San Francisco, May 1999

46. Wong, W.K., Cheung, D.W.l., Kao, B., Mamoulis, N.: Secure knn computation on encrypted
databases. In: Proceedings of the 2009 ACM SIGMOD International Conference on Manage-
ment of data, pp. 139–152. ACM (2009)

47. Yang, Y., Lu, H., Weng, J.: Multi-user private keyword search for cloud computing. In: Cloud
Computing Technology and Science (CloudCom), 2011 IEEE Third International Conference
on, pp. 264–271. IEEE (2011)

48. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained data access
control in cloud computing. In: Proceedings of IEEE INFOCOM, pp. 1–9 (2010)

49. Zerr, S., Olmedilla, D., Nejdl, W., Siberski, W.: Zerber+ r: Top-k retrieval from a confidential
index. In: Proceedings of the 12th International Conference on Extending Database Technol-
ogy: Advances in Database Technology, pp. 439–449. ACM (2009)

50. Zhang, N., Li, M., Lou, W., Hou, Y.T.: Mushi: Toward multiple level security cloud with
strong hardware level isolation. In: MILITARY COMMUNICATIONS CONFERENCE, 2012-
MILCOM 2012, pp. 1–6. IEEE (2012)

	Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing
	1 Introduction
	2 Overview of Search Over Encrypted Data
	2.1 Problem Formulation
	System Model
	Threat Model
	Search Privacy

	2.2 PKC-Based Search vs. SKC-Based Search
	PKC-Based Search
	SKC-Based Search

	2.3 Exact Keyword Search vs. Fuzzy Keyword Search
	2.4 Secure Index-Based Search
	Index Structure
	Secure Search Algorithm
	Similarity-Based Ranking

	3 Privacy-Preserving Multi-keyword Ranked Search
	3.1 Technical Overview for MRSE
	Coordinate Matching
	Search with Secure Inner Product Evaluation

	4 Improvement on Search Accuracy and Efficiency
	4.1 Background
	4.2 Technical Overview of MTS
	Vector Space Model
	Secure Index Scheme
	Efficient Tree-Based Search Algorithm

	5 Conclusion
	References

