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Abstract

This paper summarizes our experience on the design of network bandwidth allocation policies and distributed rate

calculation algorithms for packet-switched networks. In particular, we discuss two rate allocation policies: the gener-

alized max±min (GMM) and the weight-proportional max±min (WPMM) policies, both of which generalize the clas-

sical max±min rate allocation policy. For the design of distributed algorithms to achieve these two rate allocation

policies, we focus on rate-based distributed ¯ow control where special control packets are employed to achieve the

information exchange between a source and the network. We categorize two broad classes of distributed rate calcu-

lation algorithms in the literature using live algorithms as illustrations. To give insight, we compare the design tradeo�s

between these two classes of algorithms in terms of performance objectives and implementation complexities. Fur-

thermore, we discuss important extensions within each class of algorithms. Ó 2000 Elsevier Science B.V. All rights

reserved.
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1. Introduction

The available bit rate (ABR) service class de-
®ned by the ATM Forum supports applications
that allow the ATM source end system to adjust
the information transfer rate based on the band-
width availability in the network [4]. Our objective

in this paper is not to review the ABR details and
standards, which we refer to overview papers such
as [2,9,12,15,29], but rather, to share with the
readers our experience on some important princi-
ples of such rate-based feedback control. This
paper is targeted to readers who already have some
familiarity with rate-based ¯ow control and
therefore, are well-positioned to have a broader
and deeper understanding of such tra�c control
algorithms. In particular, we o�er a systematic
study on several network bandwidth allocation
policies and discuss the design methodologies of
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distributed rate calculation algorithms in the
broader context of packet-switched networks.

We would like to point out that the material
covered in this paper is very general and can be
applied to any ¯ow oriented packet-switched net-
works, although for convenience, we use ABR
terminology to illustrate a particular distributed
rate calculation algorithm.

We start with a brief review of the classical
max±min rate allocation policy [5], which has been
widely accepted as an optimal network bandwidth
sharing criterion among user tra�c ¯ows, including
for ATM ABR service. 1 The classical max±min
rate allocation policy cannot support a minimum
rate requirement and a peak rate constraint for
each ¯ow. To address this issue, we present two
network bandwidth sharing policies, each of which
is a generalization of the classical max±min. The
®rst policy, called the generalized max±min
(GMM) [22], makes a direct generalization of the
max±min by ®rst satisfying each ¯ow's minimum
rate requirement and then maximizes the rate of
the session that is the smallest among all sessions
while satisfying this session's peak rate constraint,
given the best smallest rate allocation, we continue
to maximize the rate of the connection with the
second smallest rate, and so forth. The second
policy, called the weight-proportional max±min
(WPMM) [23], associates a weight with each ses-
sion. It allocates each session its minimum rate
requirement and shares the remaining network
bandwidth among user ¯ows using a weight pro-
portional version of the max±min policy based on
each ¯ow's weight. We show that the classical
max±min rate allocation is a special case of both
the GMM and the WPMM policies.

Since a centralized algorithm for either the
GMM or the WPMM rate allocation requires
global network information, which is di�cult to
obtain, we are interested in the design of distrib-
uted algorithms to achieve the same rate allocation
objective in the absence of global knowledge about
the network and without synchronization of dif-
ferent network components. We consider a net-

work in which the switches maintain their own
controls and communicate these controls to the
source by feedback. In particular, we focus on the
end-to-end rate-based feedback control scheme,
where special control packets are used in both
forward and backward paths. The source uses
control packets in the forward path to inform the
switches about the source's rate information. The
switches perform rate calculations for each ¯ow
and use the control packets in the backward path
to advise the sources to adjust their rates. The goal
is to properly design this ¯ow control protocol so
that eventually each source's rate conforms to the
rate allocation objective (i.e., GMM or WPMM).

Since the objective of this paper is to share our
experience on the design methodologies of dis-
tributed rate calculation algorithms that can con-
verge to the GMM or WPMM rate allocation
policy, we will focus only the so-called explicit rate
feedback control algorithms and will not discuss
any binary feedback algorithm (e.g., [36,44]),
which has rate oscillations and strictly speaking,
cannot converge to a particular rate allocation
policy.

We classify the explicit rate calculation algo-
rithms into two broad classes based on how much
state information for each tra�c ¯ow is required at
the switch. Class 1 algorithms employ only a few
switch variables and use simple heuristics based on
congestion information (e.g., queue length, load)
to achieve the rate allocation objective. They do
not require the switch to maintain the state in-
formation of each traversing ¯ow (also called per
¯ow accounting for ABR). We show that such
algorithms provide satisfactory performance in a
local area network environment. Class 2 algo-
rithms use per ¯ow accounting at a switch's output
port for rate calculation. With this additional
complexity, such algorithms can provide guaran-
teed convergence to the particular rate allocation
objective under any network con®guration and any
set of link distances [10,22,24]. We compare these
two classes of algorithms in terms of convergence
property, sensitivity to system parameters, state
requirement, computational complexity, etc. and
show the design tradeo�s between these two
classes of algorithms in terms of performance ob-
jectives and implementation complexity. Both

1 We use the terms ``¯ow'', ``session'', ``connection'', and

``virtual connection'' interchangeably throughout the paper.
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Class 1 and Class 2 algorithms are rate calculation
algorithms and do not impose any special re-
quirements on bu�ering and scheduling schemes.
In fact, most of Class 1 and Class 2 algorithms
assume a simple shared bu�er and a FIFO
scheduling policy. We will discuss how sophisti-
cated bu�ering and scheduling policies can be
employed to further enhance the performance of
each class of algorithms.

The remainder of this paper is organized as
follows. Section 2 brie¯y reviews the classical max±
min rate allocation and shows how the GMM and
the WPMM policies can extend the classical max±
min policy with minimum rate and peak rate
support. In Section 3, we classify some well-known
distributed rate calculation algorithms into two
broad classes and Section 4 discusses the design
tradeo�s between these two classes of algorithms
in terms of performance objectives and imple-
mentation complexities. Some important exten-
sions within each class of algorithms are also
discussed. Section 5 concludes this paper.

2. Max±min rate allocation policy and extensions

We are interested in optimal allocation of net-
work bandwidth for each user ¯ow in packet-
switched networks. Speci®cally, we want to have a
rate allocation to be feasible in the sense that the
total throughput of all sessions crossing any link
does not exceed that link's capacity; we also want
the feasible rate allocation to be fair (in some
sense) to all sessions and the network to be utilized
as much as possible.

In this section, we ®rst brie¯y review the classical
max±min rate allocation policy, which has been
widely accepted as a fair and e�cient criterion to

allocate network bandwidth [5]. Then we move on
to generalize the classical max±min policy.

2.1. The classical max±min

We use the following simple example to illus-
trate the basic concept of max±min rate allocation.

Example 1 (Max±min rate allocation). As shown
in Fig. 1, one session (s1) traverses the tandem
connection of all links, and other sessions go
through only one link. It is plausible to limit ses-
sions 1, 2, and 3 to a rate of 1=3 each, since this
gives each of these sessions as much rate as the
others. It would be rather pointless, however, to
restrict session 4 to a rate of 1=3. Session 4 might
better be limited to 2=3, since any lower limit
would waste some of the capacity of Link23
without bene®ting sessions 1, 2, or 3, and any
higher limit would be unfair because it would
further reduce session 1.

This example leads to the idea of maximizing
the network use allocated to the sessions with the
minimum allocation, thus giving rise to the term
max±min ¯ow control. After these poorly treated
sessions are given the greatest possible allocation,
there might be considerable latitude left for
choosing allocations for the other sessions. It is
then reasonable to maximize the allocation for the
most poorly treated of these other sessions, and so
forth, until all allocations are speci®ed. An alter-
native way to express this intuition, which turns
out to be equivalent to the above, is to maximize
the allocation of each session subject to the con-
straint that an incremental increase in i's allocation
does not cause a decrease in some other session's
allocation that is already as small as i's or smaller.

Fig. 1. Four sessions sharing a three-node network.
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We use the following simple mathematical no-
tation to model max±min rate allocation in a
network. Assuming that a network N is charac-
terized by interconnecting switches with a set of
links L, a set of sessions S are using the network
and each session s 2S traverses one or more links
in L. Letting rs denote the allocated rate for ses-
sion s and S` the set of sessions traversing link `,
the aggregated ¯ow on link ` of the network is then
F` �

P
s2S`

rs.
Let C` be the capacity of link `, we have the

following constraints on the vector r � frsjs 2 Sg
of allocated rates: (1) rs P 0 for all s 2S; and (2)
F`6C` for all ` 2L. A vector satisfying these
constraints is said to be feasible.

A rate vector r is said to be max±min if it is
feasible and for each s 2 S, rs cannot be increased
while maintaining feasibility without decreasing rt

for some session t for which rt6 rs. More formally,
r is max±min if it is feasible, and for each s 2 S
and feasible r̂ for which rs < r̂s, there exists some
session t 2 S such that rs P rt and rt > r̂t.

Given a feasible rate vector r, we say that a link
` 2L is a bottleneck link with respect to r for a
session s traversing ` if F` � C` and rs P rt for all
sessions t traversing link `.

In Example 1, the bottleneck links of sessions 1,
2, 3, and 4 are Link12, Link12, Link12, and
Link23, respectively. Link23 is not a bottleneck
link for session 1 since sessions 1 and 4 share this
link and session 4 has a larger rate than session 1.

It turns out that in general, each session has a
bottleneck link and a feasible rate vector r is max±
min if and only if each session has a bottleneck
link with respect to r.

In the following, we give an algorithm for
computing max±min rate vector. The idea of the
algorithm is to start with all-zero rate vector and to
increase the rates on all sessions together until
F` � C` for one or more links `. At this point, each
session using a saturated link (i.e., a link with
F` � C`) has the same rate as every other session
using that link. Thus, these saturated links serves as
bottleneck links for all sessions using them. At the
next step of the algorithm, all sessions not using the
saturated links are incremented equally in rate until
one or more links become saturated. Note that the
sessions using the previously saturated links might

also be using these newly saturated links. The
newly saturated links serve as bottleneck link for
these sessions that pass through them but do not
use the previously saturated links. The algorithm
continues from step to step, always equally incre-
menting all sessions not passing through any sat-
urated link; when all sessions pass through at least
one saturated link, the algorithm stops.

Algorithm 1 (Max±min rate allocation).
1. Start the rate allocation of each session with

zero.
2. Increase the rate of each session with the small-

est rate such that some link becomes saturated.
3. Remove those sessions that traverse saturated

links and the capacity associated with such ses-
sions from the network.

4. If there is no session left, the algorithm termi-
nates; otherwise, go back to Step 2 for the re-
maining sessions and network capacity.

Applying the above algorithm for the four-
session three-node network in Example 1, it is easy
to show that sessions 1, 2, and 3 get a rate of 1=3
and session 4 gets a rate of 2=3.

It can be easily seen that the max±min rate al-
location is fair in the sense that all sessions con-
strained by a particular bottleneck link get an
equal share of this bottleneck capacity. It is also
e�cient in the sense that given the max±min rate
allocation, no session can push more ¯ow of data
through the network, since each session traverses
at least one fully saturated link.

An important limitation associated with the
classical max±min rate allocation is that it does not
address how to support minimum rate and peak
rate constraints from each session. For the re-
maining of this section, we show how to extend the
classical max±min with the GMM [22] and
WPMM [23].

2.2. Generalized max±min

Let MRs and PRs be the minimum rate re-
quirement and the peak rate constraint for each
session s 2S. We assume that the sum of all ses-
sions' minimum rate traversing any link does not
exceed the link's capacity, i.e.,

P
s2S`

MRs6C` for
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every ` 2L. This assumption can be enforced by
admission control at call setup time to determine
whether or not to accept a new connection.

We say that a rate vector r � frsjs 2 Sg is MP-
feasible if it satis®es the minimum rate and peak
rate constraints for each session and it is feasible,
i.e., (1) MRs6 rs6PRs for all s 2S; and (2)
F`6C` for all ` 2L.

The GMM rate allocation holds the same
fundamental concept as the classical max±min
policy, i.e., maximizing the minimum rate
among all sessions (while satisfying each ses-
sion's minimum rate requirement and peak rate
constraint), given the best smallest rate alloca-
tion, maximize the second smallest rate alloca-
tion, and so forth.

Algorithm 2 (GMM rate allocation).
1. Start the rate of each session with its MR.
2. Increase the rate of the session with the smallest

rate among all sessions until one of the follow-
ing events takes place: (a) The rate of such ses-
sion reaches the second smallest rate among the
sessions; or (b) Some link saturates; or (c) The
session's rate reaches its peak rate (PR).

3. If some link saturates or the session's rate
reaches its PR in Step 2, remove the sessions
that either traverse the saturated link or reach
their PRs, respectively, as well as the network
capacity associated with such sessions from
the network.

4. If there is no session left, the algorithm termi-
nates; otherwise, go back to Step 2 for the re-
maining sessions and network capacity.

Example 2 (GMM rate allocation). As an exam-
ple, we use the same four-session three-node net-
work shown in Fig. 1. The minimum rate
requirement and peak rate constraint for each
session are listed in Table 1.

The iterative steps to achieve the GMM rate
allocation are described below, with a graphical
display shown in Fig. 2.
· Step 1: As shown in Fig. 2, we start the rate of

each session with its MR (shown in the darkest
shaded areas in Fig. 2).

· Step 2: Since the rate of s3 (0.05) is the small-
est among all sessions, we increase it until it

reaches the second smallest rate, which is 0.1
(s2 and s4).

· Step 3: The rates of s2, s3 and s4 all being 0.1,
we increase them together until s2 reaches its
PR constraint of 0.25.

· Step 4: Remove s2 (with a rate of 0.25) from fu-
ture iterations and we now have the rates of
0.40, 0.25, and 0.25 for s1, s3 and s4, respective-
ly, with a remaining capacity of 0.10 and 0.35 on
Link12 and Link23, respectively.

· Step 5: Since s3 and s4 both have a smaller rate
(0.25) than s1 (0.4), we increase the rates of s3
and s4 to 0.35 and Link12 saturates.

· Step 6: Remove s1 (with a rate of 0.40) and s3
(with a rate of 0.35) from future iterations and
we now have s4 as the remaining session (with
a rate of 0.35) and remaining capacity on
Link23 is 0.25.

· Step 7: Increase the rate of s4 to 0.60 and Link23
saturates. The ®nal rates are 0.40, 0.25, 0.35,
and 0.60 for s1, s2, s3, and s4, respectively.

Formally, we say that a rate vector r is GMM if
it is MP-feasible, and for every s 2S and every
MP-feasible rate vector r̂ in which r̂s > rs, there
exists some session t 2 S such that rs P rt, and
rt > r̂t [22].

Given an MP-feasible rate vector r, a link ` 2L
is a GMM-bottleneck link with respect to r for a
session s traversing ` if F` � C` and rs P rt for ev-
ery session t traversing link ` for which rt > MCRt.

It can be shown that an MP-feasible rate vector
r is GMM if and only if each session has either a
GMM-bottleneck link with respect to r or a rate
allocation equal to its PR [22].

In Example 2, Link12 is a GMM-bottleneck
link for both s1 and s3. On the other hand, s1 and

Table 1

Minimum rate requirement, peak rate constraint, and GMM

rate allocation for each session in the three-node network

Session MR PR GMM rate

allocation

s1 0.40 1.00 0.40

s2 0.10 0.25 0.25

s3 0.05 0.50 0.35

s4 0.10 1.00 0.60
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s3 have di�erent rate allocation (0:4 for s1 and 0:35
for s3). Thus, it is essential to have a precise de®-
nition of GMM-bottleneck link rate here.

Let 1�fevent Ag be the indicator function with
the following de®nition:

1�fevent Ag � 1 if event A is true;
0 otherwise:

�
Given a GMM rate vector r, suppose that link

` 2L is a GMM-bottleneck link with respect to r
and let s` denote the GMM-bottleneck link rate at
link `. Then s` satis®es

s`
X
i2U`

1�fMRi6 s`g �
X
i2U`

MRi 1�fMRi > s`g

� C` ÿ
X
i2M`

ri
`; �1�

where U` denotes the set of sessions that are
GMM-bottlenecked at link `, and M` denotes the
set of sessions that are either GMM-bottlenecked
elsewhere or have a rate allocation equal to their
PRs and ri

` < s` for every i 2M`.
With the above clari®cation, it is easy to show

that in Example 2 the GMM-bottleneck link rates
are 0.35 at Link12 and 0.60 at Link23.

Note that in the special case when MRs � 0 for
every s 2S, the GMM-bottleneck link rate s` in
Eq. (1) becomes:

s` jU`j � C` ÿ
X
i2M`

ri
`; or s` �

C` ÿ
P

i2M`
ri
`

jU`j ;

where jU`j denotes the number of sessions bottle-
necked at link `. This is precisely the expression for
the classical max±min bottleneck link rate de®ni-
tion at a saturated link `.

It should be clear that by Algorithm 2 and the
GMM-bottleneck link rate de®nition in Eq. (1),
the GMM rate allocation for a session s 2 S can
only be one of the following: (1) A rate equal to its
MR; or (2) A rate equal to its PR; or (3) A rate
equal to its GMM-bottleneck link rate.

2.3. Weight-proportional max±min

This is another way (perhaps most popular in
terms of its many variants) to extend the classical
max±min rate allocation with minimum rate and
peak rate constraints. Under this policy, we asso-
ciate each connection s 2S with a weight (or

Fig. 2. Rate allocation for each session at each iteration for the GMM policy in the three-node network.
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priority) ws.
2 Informally, the WPMM policy ®rst

allocates to each connection its MR. Then from
the remaining network capacity, it allocates addi-
tional bandwidth for each connection using a
proportional version of the max±min policy based
on each connection's weight while satisfying its PR
constraint. The ®nal bandwidth for each connec-
tion is its MR plus an additional ``weighted'' rate
share [24].

The WPMM rate allocation policy presented
here generalizes the so-called MCRadd and
MCRprop policies [26,45], which are quite popu-
lar. Both MCRadd and MCRprop ®rst guarantee
the minimum rate of each connection. Under
MCRadd, the remaining network bandwidth is
shared among all connections using the max±min
policy, i.e., equal weight for all connections; while
under MCRprop, the remaining bandwidth is
shared among all connections using MCR-pro-
portional max±min policy. Both the MCRadd and
MCRprop policies are special cases of WPMM
policy since the weight for each connection under
WPMM can be arbitrary positive number and in-
dependent of (decoupled from) its MR or PR.

The following algorithm shows how to compute
rate allocation for each connection under the
WPMM policy.

Algorithm 3 (WPMM rate allocation).
1. Start the rate allocation of each connection

with its MR.
2. Increase the rate of each connection with an in-

crement proportional to its weight until either
some link becomes saturated or some connec-
tion reaches its PR, whichever comes ®rst.

3. Remove those connections that either traverse
saturated links or have reached their PRs and
the capacity associated with such connections
from the network.

4. If there is no connection left, the algorithm ter-
minates; otherwise, go back to Step 2 for the re-
maining connections and remaining network
capacity.

The following example illustrates how the
WPMM rate allocation works.

Example 3 (WPMM rate allocation). Again, we
use the four-session three-node network in Fig. 1.
The minimum rate requirement, peak rate con-
straint and weight for each session are listed in
Table 2, as well as the WPMM rate allocation for
each session. Table 3 shows the results of rate al-
location for each session at the end of each itera-
tion of Algorithm 3, which are described as
follows.
· Step 1: As shown in the initialization procedure

of Table 3, we start the rate of each session with
its MR.

· Step 2: We increase the rate of each session with
an increment proportional to its weight (1, 3, 4,
and 2 for s1, s2, s3 and s4, respectively) until ses-
sion s3 reaches its PR constraint (0.40).

· Step 3: Remove s3 (with a rate of 0.40) from fu-
ture iterations and we now have the rates of
0.10, 0.30, and 0.20 for s1, s2 and s4, respective-
ly, with a remaining capacity of 0.20 and 0.70 on
Link12 and Link23, respectively.

· Step 4: We increase the rates of the remaining
sessions (s1, s2, and s4), each with an increment
proportional to its weight until Link12 satu-
rates.

· Step 5: Remove s1 (with a rate of 0.15) and s2
(with a rate of 0.45) from future iterations and
we now have s4 as the remaining session (with
a rate of 0.30) and remaining capacity on
Link23 is 0.55.

· Step 6: Increase the rate of s4 to 0.85 and Link23
saturates. The ®nal rates are 0.15, 0.45, 0.40,
and 0.85 for s1, s2, s3, and s4, respectively.

Table 2

Minimum rate requirement, peak rate constraint, weight, and

rate allocation for each session for the WPMM policy in the

three-node network

Session MR PR Weight WPMM rate

allocation

s1 0.05 0.75 1 0.15

s2 0.15 0.90 3 0.45

s3 0.20 0.40 4 0.40

s4 0.10 1.00 2 0.85
2 We assume a positive weight assignment for each connec-

tion.
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Formally, we say that a rate vector r is WPMM
if it is MP-feasible, and for each s 2 S and every
MP-feasible rate vector r̂ in which r̂s > rs, there
exists some connection t 2S such that �rsÿ
MRs�=ws P �rt ÿMRt�=wt and rt > r̂t [24].

Given an MP-feasible rate vector r, a link ` 2L
is an WPMM-bottleneck link with respect to r for a
connection s traversing ` if

F` � C` and
rs ÿMRs

ws
P

rt ÿMRt

wt

for all connections t traversing link `.
It can be shown that an MP-feasible rate vector

r is WPMM if and only if each connection has
either an WPMM-bottleneck link with respect to r
or a rate assignment equal to its PR. In the special
case, when (1) each session's MR is zero; (2) there
is no PR constraint; and (3) each session has equal
weight, the WPMM rate allocation degenerates
into the classical max±min rate allocation.

Thus far, we have presented two rate allocation
polices that extend the classical max±min. In the
next section, we will focus on the design of dis-
tributed rate allocation algorithms to achieve these
policies in a fully distributed networking environ-
ment. In particular, we will study the explicit rate
feedback control algorithms.

3. Explicit rate feedback control algorithms

There have been extensive e�orts on the design
of distributed algorithms to achieve the classical
max±min rate allocation. The algorithms by
Hayden [20], Ja�e [27], Gafni [16], and Abraham
[1] required synchronization of all nodes for each
iteration, which is impractical in real world packet
networks. Mosely's work in [33] was the ®rst
asynchronous algorithm. Unfortunately, this al-

gorithm could not o�er satisfactory convergence
performance. The algorithms by Ramakrishnan
et al. [36] and Yin [44] relied on using a single bit
as feedback to indicate congestion. Due to the
binary nature of such algorithms, the source's rate
exhibited oscillations.

Recent interests in ABR service have led to
many contributions to the design of distributed
algorithms to achieve the classical max±min. In
this section, we ®rst brie¯y describe the rate-based
¯ow control mechanism, where special control
packets are employed to exchange the rate infor-
mation between a source and the network. Since
the purpose of this paper is to share our experience
on the design of distributed algorithms that have
good convergence property to either GMM or
WPMM rate allocation, we will focus only on the
so-called explicit rate feedback control algorithms.

We outline two broad classes of explicit rate
calculation algorithms. Both algorithms have the
common property that only a simple shared bu�er
and FIFO scheduling are required at the switch
output port. We will discuss the design tradeo�s
between these two classes of algorithms in terms of
performance objectives and implementation com-
plexity. After we show the fundamental properties
of each class of algorithms, it becomes straight-
forward for us to discuss how more sophisticated
bu�ering strategy (e.g., per ¯ow queuing) and
scheduling policies can be incorporated to further
improve the performance of each class of
algorithms.

3.1. Rate-based ¯ow control mechanism

It is clear that any distributed ¯ow control al-
gorithm achieving the GMM or WPMM policy
must employ some kind of cooperation between
the sources and the network. Such cooperation

Table 3

Rate allocation for each session after each iteration under WPMM algorithm in the three-node network

Iterations Session{(MR, PR), w} Remaining capacity

s1 {(0.05, 0.75), 1} s2 {(0.15, 0.90), 3} s3 {(0.20, 0.40), 4} s4 {(0.10, 1.00), 2} Link12 Link23

Initialization 0.05 0.15 0.20 0.10 0.60 0.85

First 0.10 0.30 0.40 0.20 0.20 0.70

Second 0.15 0.45 0.30 0 0.55

Third 0.85 0
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should include the following two key components:
(1) Information exchange between each source and
the network; and (2) Source rate adaptation upon
receiving feedback from the network.

Our design of distributed ¯ow control algo-
rithm maintains some link controls at each switch
and conveys information about these controls to
the source via feedback. Upon the receipt of the
feedback signal, the source adjusts its estimate of
the allowed transmission rate. Speci®cally, we
employ an end-to-end closed-loop feedback
scheme, where control packets are used in both
forward and backward paths. A source uses con-
trol packets in the forward path to inform the
switches about the source's rate information. The
switches perform calculations and use the control
packets in the backward path to advise the sources
on how to adjust their rates. The goal is to prop-
erly design this ¯ow control protocol so that
eventually each source's rate conforms to the
prede®ned rate allocation policy (i.e., GMM or
WPMM).

Since a major driving force behind recent re-
search e�orts on rate-based feedback control came
from the ATM forum, we will use ABR protocol
and terminology when we illustrate speci®c algo-
rithms. As we shall see, the design methodology
discussed here is very general and is applicable to
any ¯ow oriented packet-switched network. 3

A rate-based ¯ow control is shown in Fig. 3.
Special control packets (also called Resource
Management (RM) cells in ABR) are employed
and are inserted periodically among data packets
to exchange information between a source and
the network. Note that these control packets are
used once every, say Nrm, data packets, rather
once for every ®xed time interval. Such choice
will guarantee that the control overhead for each
session is ®xed at a marginal percentage (i.e.,
1=�Nrm � 1�) and thus is scalable with network
capacity as the number of sessions in the network
increases.

To achieve information exchange, the source
sets the ®elds in the forward RM cells to inform
the network about the source's rate information
(e.g., MCR, PCR, CCR) and weight assignment.
For each traversing RM cell at a switch, the switch
performs rate calculation based on the informa-
tion carried in this RM cell. We let the network
(switches) set the ®elds in the backward RM cells
to inform the source. To achieve source rate ad-
aptation, the source adjusts its transmission rate
upon receiving a backward RM cell.

3.2. A class of heuristic algorithms

Algorithms in this category are designed to
approximate the desired rate allocation for each
session by using congestion information (e.g.,
queue length, target queue threshold, load) in
conjunction with the CCR value available in the
RM cells [6,13,34,37,39]. A switch maintains a
running average variable to calculate the share rate

Fig. 3. Rate-based end-to-end ¯ow control mechanism for a session.

3 In IP networks, the path for a ¯ow may be set up and

maintained by multi-protocol label switching [38].
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for each session, based on the level of congestion
and CCR. This class of algorithms is based on
simple heuristic to achieve the desired rate allo-
cation and does not require the switch to maintain
a table and to keep track of the state information
of each traversing ¯ow.

The Intelligent Marking technique by Siu and
Tzeng, originally proposed in [39], and further
re®ned in [40,42] best represents the properties of
this class of algorithms. We use this simple scheme
to illustrate the one end of the spectrum (with the
other end taken by per-¯ow based schemes that
will be discussed in Section 3.3).

3.2.1. Intelligent marking for max±min
The key idea of Intelligent Marking technique is

to employ a small number of variables and use a
small number of computations at each switch
output port to estimate the max±min bottleneck
link rate. Using a simple feedback mechanism, the
ER ®eld of a returning RM cell is set to the min-
imum of all the estimated bottleneck link rates on
all its traversing links to approximate max±min
share.

Fig. 4 illustrates the switch behavior of the In-
telligent Marking technique [40,42]. Four variables
MCCR (Mean CCR), upper cell rate (UCR),
estimated bottleneck rate (EBR) and LOAD are
de®ned for the following purpose: (1) MCCR
contains an estimated average cell rate of all VCs
traversing this link; (2) UCR contains an estimated
upper limit of the cell rates of all VCs traversing
this link; (3) EBR contains an estimated bottleneck
link rate; and (4) LOAD corresponds to the ag-

gregated cell rate entering the queue normalized
with respect to the link capacity and is measured
over a period of time. Furthermore, two parame-
ters TLR and a are de®ned at each output port,
where the value of TLR is the desired or Targeted
Load Ratio (0 < TLR6 1) and 0 < a < 1.

The Intelligent Marking algorithm is a heuristic
algorithm. We can only give an intuitive explana-
tion on how it works. The RM cells from all
VCs participate in the exponential averaging
for MCCR with MCCR :�MCCR� a�CCR
ÿMCCR� while only those VCs with CCR greater
than MCCR (potentially VCs bottlenecked at this
link) participate in UCR averaging. EBR is used to
estimate the max±min bottleneck link rate and is
based on UCR and LOAD variables. Since (1)
there can be only one max±min bottleneck rate at
a link and it is greater than or equal to any of the
VC's rate traversing this link; and (2) the returning
RM cell's ER ®eld is set to the minimum of all the
bottleneck link rates along its path, the ®nal rate
allocation through the Intelligent Marking ap-
proximates max±min share rate for each ¯ow.

Another interesting fact is that the MCCR is
larger than the algebraic average of each VCs
CCR traversing this link. This is because MCCR is
updated more frequently by those VCs with rela-
tively larger CCR than those with relatively
smaller CCR traversing the same link.

The most attractive feature of the Intelligent
Marking technique is its low implementation
complexity. It does not require each output port of
a switch to keep track of each traversing ¯ow's
state information (so called per ¯ow accounting)

Fig. 4. Switch behavior of the Intelligent Marking protocol.
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and has O(1) storage requirements and computa-
tional complexity.

It has been shown that the Intelligent Marking
technique can be extended to support both GMM
and WPMM rate allocation policies in [21,23],
respectively. Due to paper length limitation, we
will illustrate here how to extend Intelligent
Marking for the WPMM rate allocation [23].

3.2.2. Extending intelligent marking for WPMM
We ®rst specify the source and destination's

behaviors of each connection.

Algorithm 4 (End system behavior).
Source behavior: 4

1. The source starts to transmit at ACR :� ICR,
which is greater than or equal to its MCR;

2. For every Nrm transmitted data cells, the source
sends a forward RM(CCR, MCR, ER, w) cell
with: CCR :� ACR; MCR :�MCR; ER :�
PCR; w :� w;

3. Upon the receipt of a backward RM(CCR,
MCR, ER, w) cell from the destination, the
ACR at the source is adjusted to: ACR :�
maxfminf�ACR�AIR�;ERg; MCRg.

Destination behavior: The destination end system
of a connection simply returns every RM cell back
towards the source upon receiving it.

Since the WPMM policy ®rst allocates each
session with its MCR, and then allocates the re-
maining network bandwidth to each session using
the w-proportional max±min policy (Algorithm 3),
this motivates us to let the CCR and ER ®elds of a
traversing RM cell be ®rst o�setted by its MCR,
and then normalized with respect to the connec-
tion's weight w (i.e., �CCRÿMCR�=w, �ERÿ
MCR�=w) to participate in the Intelligent Marking
algorithm.

Note that we let the source set the weight of a
connection into some unspeci®ed ®eld in the for-

ward RM cell. Therefore, in a manner similar to
the Intelligent Marking technique, there is no need
here to use per ¯ow accounting to keep track of
the weight information of each ¯ow at the switch
output port.

Fig. 5 illustrates a switch algorithm for the
WPMM policy. Four variables named LOAD,
normalized mean rate (NMR), normalized upper
rate (NUR) and normalized bottleneck rate
(NBR) are de®ned at each output port of a switch.
The value of LOAD corresponds to the aggregated
cell rate entering the output queue normalized with
respect to the link capacity. It is measured at the
switch output port over a period of time. The value
of NMR contains an exponential averaging of
�CCRÿMCR�=w for all VCs traversing this link;
the value of NUR contains an exponential aver-
aging of �CCRÿMCR�=w only for VCs with
�CCRÿMCR�=w > NMR; and NBR contains an
estimated normalized WPMM bottleneck link
rate. Here, NMR, NUR and NBR are all dimen-
sionless. TLR is the Targeted Load Ratio
(0 < TLR6 1) at the switch output port and
0 < a < 1.

Algorithm 5 (Switch behavior for WPMM rate
allocation).

Upon the receipt of RM (CCR, MCR, ER, w)
from the source of a VC

if �CCRÿMCR�=w > NMR, then
NUR :� NUR�
a��CCRÿ MCR�=wÿNUR�;

NMR :� NMR�
a��CCRÿMCR�=wÿNMR�;
Forward RM(CCR, MCR, ER, w) to its des-
tination;

Upon the receipt of RM(CCR, MCR, ER, w)
from the destination of a VC

NBR :� NUR � TLR=LOAD;
if �QS > QT�, 5 then NBR :� �QT=QS� �
NBR;

4 We use a simpli®ed version of source and destination

behavior, which does not include the use-it-or-lose-it option [4].

The AIR parameter is also denoted as PCR � RIF in [4].

5 This step is a ®ner adjustment of NBR calculation based on

bu�er occupancy information and is not shown in Fig. 5 due to

space limitation. QS is the Queue Size of the output link and

QT is a prede®ned Queue Threshold.
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if �ERÿMCR�=w > NBR, then ER :� w�
NBR�MCR;
Forward RM(CCR, MCR, ER, w) to its
source.

We use a set of simulation results to demon-
strate the performance of this distributed algo-
rithm for the WPMM rate allocation. The network
con®guration is the four-session three-node net-
work shown in Fig. 1, with the minimum rate re-
quirement and peak rate constraint for each
session listed in Table 2. Table 4 lists the param-
eters used in the simulation. The distance from an
end system (source or destination) to the switch is
100 m and the link distance between switches is 10
km (corresponding to a local area network) and
the propagation delay is assumed to be 5 ls per

km. The initial values of NMR and NUR at each
switch output port are set to 0.

Simulation results for the cell rate of each ses-
sion, the bottleneck link utilization and bu�er oc-
cupancy are shown in Fig. 6. We see that after the
initial transient period, the cell rate of each session
matches with the rate listed in Table 2. Also, the
bottleneck links are 100% utilized with reasonably
small bu�er occupancies.

For a wide area network (WAN), this simple
heuristic algorithm shown here for WPMM and
Class 1 algorithms in general require careful sys-
tem parameter tuning to minimize oscillations. On
the other hand, a more sophisticated algorithm
using per ¯ow accounting will be much more ef-
fective, as we will discuss in the next section. But in
a LAN environment, where implementation com-
plexity may well be the most important criterion in
the choice of a switch algorithm, Class 1 algo-
rithms o�er satisfactory performance with minimal
implementation complexity.

3.3. Using per ¯ow management

The distributed ¯ow control algorithms that fall
into this category, as the name implies, employ a
table at each output port of a switch to keep
track of the state information of each ¯ow
[3,8,10,17,28,30,35,41]. In particular, the algorithm
by Charny et al. [10] was one of the few algorithms
that were proven to converge to max±min through
distributed and asynchronous iterations. This al-
gorithm has been widely referred in the literature

Fig. 5. Switch behavior for the WPMM policy.

Table 4

Simulation parameters

End system PCR PCR

MCR MCR

ICR MCR

Nrm 32

AIR �� PCR �RIF� 3.39 Mbps

Link Speed 150 Mbps

Switch Cell switching delay 4 ls

TLR 1

a 0.125

Load/utilization

measurement interval

500 ls

Queue threshold for ER

adjustment

50 cells

Output bu�er size 2000 cells
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and is regarded as a major milestone in the design
of rate-based control algorithm for max±min. We
will use this algorithm as an example to show the
fundamental properties of this class of algorithms
that employ per ¯ow accounting.

In Charny's algorithm, each switch monitors its
tra�c by keeping track of the state information of
each traversing connection. Also, each output port
of a switch maintains a variable called the adver-
tised rate to calculate available bandwidth for each
connection. When an RM cell arrives at the
switch, the CCR value of the connection is stored
in a VC table. If this CCR value is less than or
equal to the current advertised rate, then the as-
sociated connection is assumed to be bottlenecked
either at this link or elsewhere and a corresponding
bit for this connection is marked at the VC table.
Then the following equation is used to update the
advertised rate:

advertised rate�C`ÿ
P

rates of marked connections

n`ÿ
P

marked connections
;

�2�

where C` and n` are the link capacity and the
number of connections at link `. Then the VC
table is examined again. For each marked session, if
its recorded CCR is larger than this newly calcu-
lated advertised rate, this session is then unmarked
and the advertised rate is calculated again. The ER
®eld of an RM cell is then set to the minimum of

all advertised rates along its traversing links. Upon
convergence, each session is allocated with a max±
min rate and is marked along every link it
traverses.

It has been shown that the above session
marking technique can be extended to design dis-
tributed ¯ow control algorithms for both the
GMM and WPMM policies in [22,24], respec-
tively. Due to paper length limitation, we will only
illustrate how to extend Charny's session marking
technique to achieve the GMM rate allocation
[22].

To extend Charny's algorithm for GMM, it is
obvious the advertised rate calculation in Eq. (2)
has to be modi®ed to re¯ect the GMM-bottleneck
link rate calculation in Section 2.2. However, with
such a GMM-bottleneck link rate de®nition, it is
not clear how to perform session marking for each
traversing session. If we mark a session when its
CCR is less than or equal to the advertised rate as
in Charny's technique, this may bring the adver-
tised rate into a state of oscillation that will never
converge (due to some session having a large
MCR)!

A deeper look at Charny's original algorithm
for max±min shows that a session traversing its
own max±min bottleneck link does not need to be
marked at this link. That is, at a saturated link,
only sessions bottlenecked elsewhere need to be
marked. A small modi®cation as it may appear
to be, this new marking criterion brings a whole

Fig. 6. The normalized cell rates of all connections, the link utilization and the queue size of the congested switches in the three-node

network con®guration.
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new marking property for sessions upon con-
vergence. In fact, this is the key to resolve the
di�culty of marking sessions that are GMM-
bottlenecked at the same link but with di�erent
rates. In conjunction with the GMM-bottleneck
link rate de®nition and advertised rate calcula-
tion, this new marking technique leads to a
fundamental generalization of Charny's Consis-
tent Marking technique [22].

We ®rst specify the end system behavior of the
protocol.

Algorithm 6 (End system behavior).
Source behavior:
1. The source starts to transmit at ACR :�

ICR, which is greater than or equal to its
MCR;

2. For every Nrm transmitted ATM data cells, the
source sends a forward RM(CCR, MCR, ER)
cell with: CCR :� ACR; MCR :�MCR;
ER :� PCR;

3. Upon the receipt a backward RM(CCR, MCR,
ER) cell from the destination, the ACR at
source is adjusted to: ACR :� ER.

Destination behavior: The destination returns every
RM cell back towards the source upon receiving it.

The switch maintains a table at each output
port to keep track of the state information of each
traversing ¯ow (so-called per ¯ow accounting) and
performs the switch algorithm (Algorithm 7) at
this output port.

The following are the link parameters and
variables used in the switch algorithm:

The following two algorithms show the switch
behavior for the GMM rate allocation, with each
output link ` 2L initialized with S` � ;; n` � 0;
l` � C`.

Algorithm 7 (Switch behavior for GMM rate allo-
cation).

Upon the receipt of a forward RM(CCR, MCR,
ER) cell from the source of session i {

if RM cell signals session exit 6 {
S` :� S` ÿ fig; n` :� n` ÿ 1;
table_update();
}

if RM cell signals session initiation {
MCRi :�MCR;
/* Insert a new record for this session in
the table (a linked list of records) such that
the MCR ®elds of the linked list of records
are in increasing order. */
S` :� S` [ fig; n` :� n` � 1;
ri
` :� CCR; bi

` :� 0;
table_update();
}

else /* i.e., RM cell belongs to an ongoing
session. */ {

ri
` :� CCR;

if (ri
` < l`) then bi

` :� 1;
table_update();
}

Forward RM(CCR, MCR, ER) towards its
destination;

}
Upon the receipt of a backward RM(CCR,
MCR, ER) cell from the destination of session
i {

ER :� maxfminfER; l`g; MCRg;
Forward RM(CCR, MCR, ER) towards its
source;

}

C` capacity of link `, ` 2L
RC` remaining capacity variable at link `

used for l` calculation in Algorithm 8
S` set of sessions traversing link `, ` 2L
n` number of sessions in S`, ` 2L, i.e.,

n` � jS`j
ri
` CCR value of session i 2S` at link `

MCRi MCR requirement of session i
bi
` bit used to mark session i 2S` at link

`. bi
` � 1 if session i 2S` is marked at

link `, or 0 otherwise
M` set of sessions marked at link `, i.e.,

M` � { iji 2 S` and bi
` � 1}

U` set of sessions unmarked at link `, i.e.,
U` � { iji 2S` and bi

` � 0}, and
M` [U` � S`

l` advertised rate at link `.

6 This information is conveyed through some unspeci®ed bits

in the RM cell, which can be set either at the source or the UNI.
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table_update()
{

rate_calculation_1: use Algorithm 8 to calcu-
late advertised rate l1

` ;
Unmark any marked session i 2 S` at link `
with ri

` P l1
` ;

rate_calculation_2: use Algorithm 8 to calcu-
late advertised rate l`;
if �l` < l1

`�, then {
Unmark any marked session i 2 S` at link
` with ri

` P l`;
rate_calculation_3: use Algorithm 8 to cal-
culate advertised rate l` again;
}

}

Algorithm 8 (l` Calculation).
if n` � 0, then l` :� C`;
else if n` � jM`j, then l` :� C` ÿ

P
i2S`

ri
`�

maxi2S`
ri
`;

else {
RC` :� C` ÿ

P
i2M`

ri
`;

if (RC` <
P

i2U`
MCRi) then l` :� 0;

else /* i.e., RC` P
P

i2U`
MCRi. */ {

/* Due to the particular VC table creation
scheme, the unmarked sessions i 2 U` are
already in increasing order of their MCRs,
i.e.,
MCR�1�6MCR�2�6 � � � 6MCR�jU`j�. */
k :� jU`j; l` :� RC`

k ;
while (l` < MCR�k�) {

RC` :� RC` ÿMCR�k�; k :� k ÿ 1;
l` :� RC`

k ;
}

} 7

}

It can be shown that after the number of active
sessions in the network stabilizes, the rate alloca-
tion for each session by this distributed rate cal-

culation algorithm converges to the GMM rate
allocation [22]. Furthermore, an upper bound for
the convergence time to the ®nal GMM rate allo-
cation by this distributed protocol from the time
when the number of active sessions in the network
stabilizes is given by 2:5KD, where K is the number
of levels of bottleneck link rates and D is an upper
bound for the round-trip delay among all sessions
[22]. Note that K is bounded by (usually substan-
tially less than) the number of sessions in the net-
work, N.

We use a set of simulation results to illustrate
the performance of the above distributed algo-
rithm. The network con®guration we use is the
same four-session three-node network shown in
Fig. 1, with the minimum rate requirement and
peak rate constraint for each session listed in
Table 1. The link speed is 150 Mbps. For sta-
bility, we set the target link utilization to be
0.95. That is, we set C` � 0:95� 150 �
142:5 Mbps at every link ` 2L for the ER
calculation. This will ensure that the potential
bu�er build up during transient period will be
eventually emptied upon convergence. The dis-
tance from source/destination to the switch is 1
km and the link distance between switches is
1000 km (corresponding to a wide area network)
and the propagation delay is assumed to be 5 ls
per km. The simulation results for the rate of
each session are shown in Fig. 7. We ®nd that
after the initial transient period, the rate of each
session converges to the GMM rate allocation
listed in Table 1 without any oscillations.

Thus far, we have used two speci®c ¯ow control
algorithms (described in Sections 3.2 and 3.3) to
illustrate two broad classes of distributed rate
calculation algorithms. They show the design
tradeo�s between performance objectives and im-
plementation complexity. In the next section, we
summarize our experience on the design of such
rate calculation algorithms.

4. Design space and tradeo�s

Table 5 summarizes important tradeo�s be-
tween two classes of algorithms discussed in this
paper. In the following, we elaborate each item

7 The combined steps in the bracket for ``else'' are equivalent

to ®nding the GMM-bottleneck link rate l` for the set of

unmarked sessions U` such that l`
P

i2U`
1�fMCRi6l`g�P

i2U`
MCRi 1�fMCRi > l`g� RC`. In the special case when

MCRi � 0 for every i 2 U`, l` � RC`=jU`j, i.e., the max±min

share rate.
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listed in Table 5 and discuss important extensions
within each class of algorithms.

4.1. Performance objectives

We compare the two classes of algorithms in
terms of convergence property, rate decoupling
property, sensitivity to system parameters, and
applicable networks as follows.

4.1.1. Convergence property
At steady state, the rate allocated to each ¯ow

through a distributed rate control algorithm
should match the intended rate allocation policy
(e.g., WPMM or GMM) from any initial network
conditions.

Class 1 heuristic algorithms, strictly speaking,
do not converge to the rate allocation policy. At

best, they only approximate to the particular rate
allocation objective. The accuracy of such ap-
proximation relies on the overall system parameter
tuning for the particular network con®guration
and the set of link distances. On the other hand,
Class 2 algorithms can provide guaranteed con-
vergence to the prede®ned rate allocation policy
under any network con®guration and any set of
link distances.

4.1.2. Rate decoupling property
For Class 2 algorithms discussed in Section 3.3,

note that in the source algorithm (Algorithm 6),
the ACR of a source is adjusted immediately upon
receiving a returning RM cell. A closer look at the
mechanics of the switch algorithm (Algorithm 7)
reveals that the ACR variable at a source (re-
corded as CCR in the forward RM cell) is used as

Fig. 7. The normalized cell rates of all connections in the three-node network under the distributed GMM rate calculation algorithm.

Table 5

Design tradeo�s between performance objectives and implementation complexity for the two classes of explicit feedback control

algorithms

Type of algorithms Class 1: exponential averaging

without per ¯ow accounting

Class 2: using per ¯ow

accounting

Performance features Convergence property Approximate Guaranteed convergence

Rate decoupling property No Yes

Sensitivity to system parameters Yes No

Applicable networks LAN LAN and WAN

Implementation

characteristics

State requirement O(1) O�N�
Computational complexity O(1) O�N�
Bu�ering and scheduling One shared queue FIFO One shared queue FIFO
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a variable solely for the purpose of distributed
protocol convergence iterations and a source's true
transmission rate does not a�ect the convergence
property. That is, a source's true transmission rate
does not have to be identical to its ACR at all
times. For example, as long as a source's true
transmission rate is between its MCR and ACR,
the overall feedback control protocol can still op-
erate properly (i.e., the ACR for each connection
will converge to the optimal rate allocation). This
rate decoupling property is a consequence of the
special design of the switch algorithm where a
table is employed to keep track of the traversing
connections and their rate information, and the
fact that the bu�er occupancy and the load at the
output port, and therefore the source's true
transmission rate, do not play any role in the ER
calculation.

Such rate decoupling property in Class 2 algo-
rithms has important applications in transporting
rate-adaptive compressed video using a feedback
control mechanism. In [25], we proposed a novel
source rate adaptation algorithm, which exploited
such decoupling property of a source's true
transmission rate and ACR variable used for
protocol convergence. We demonstrated that such
rate decoupling property, once employed by a
source, could make the source's transmission rate
converge smoothly to the ®nal optimal rate
allocation without undergoing frequent rate
¯uctuations during a transient period, which is
undesirable for video applications.

Class 1 algorithms are unable to o�er such a rate
decoupling property since the explicit rate calcu-
lation for each ¯ow relies on the congestion infor-
mation (e.g., bu�er occupancy, load), which are
determined by the source's true transmission rate.

4.1.3. Sensitivity to system parameters
There are many ad hoc system parameters in

Class 1 heuristic algorithms such as a for expo-
nential averaging, bu�er threshold for ER adjust-
ment and AIR. The performance of Class 1
algorithms under a particular network con®gura-
tion and the set of link distances are sensitive to
the settings of these parameters.

On the other hand, Class 2 algorithms (e.g.,
Algorithm 7) do not use such ad hoc parameters

and have guaranteed performance to the particular
rate allocation policy (GMM or WPMM) under
any network con®guration and any set of link
distances.

4.1.4. Applicable networks
Class 1 heuristic algorithms are shown to be a

viable solution to achieve the rate allocation in a
local area network environment, where the set of
link distances are small, and therefore, the systems
parameters are fairly easy to set. As the set of link
distances increase, the proper setting of system
parameters becomes increasingly di�cult and thus,
the performance of Class 1 algorithms also de-
grades (e.g., large oscillations in a source's rate).
The fundamental di�culty lies in the fact that we
use one common shared queue for all ¯ows at a
switch output port and it is not possible to isolate
¯ows and tune the system parameters for each
individual ¯ow. Later on, we will discuss how per
¯ow queuing may be employed to alleviate this
problem and help to improve the performance of
Class 1 algorithms in a wide area network.

Since Class 2 algorithms (e.g., Algorithm 7 for
GMM) provide guaranteed convergence to the
prede®ned rate allocation policy under any net-
work con®guration and any set of link distances,
they can be used for both LAN and WAN. The
only problem associated with such algorithms is
the scalability issue associated with the state table
at each output port, which we discuss as follows.

4.2. Implementation complexity

We compare the implementation complexity
between the two classes of algorithms in terms of
state requirement and scalability, computational
complexity, queuing and scheduling as follows.

4.2.1. State requirement and scalability issues
State requirement refers to the number of

variables required at each output port of a switch
for the purpose of explicit rate calculation. As
shown in Section 3.2, Class 1 algorithms such as
Algorithm 5 for WPMM require only a constant
number of variables at each switch output port
and are thus scalable to the number of traversing
¯ows. On the other hand, Class 2 algorithms in
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Section 3.3 (e.g., Algorithm 7 for GMM) have to
maintain a table for keeping track of the state in-
formation of each individual traversing ¯ow. Since
each ¯ow occupies one entry in the table, the table
size will grow as the number of traversing ¯ows
increases.

Such one ¯ow per entry requirement for Class 2
algorithms is driven by the fact that we allow the
rate of each ¯ow take any value from a continuous
real value interval (and thus in®nite states). In [11], a
scheme to reduce the state information was intro-
duced by restricting the set of supported rates to a
®xed and countable number of discrete states. Such
compromise enabled the switch to maintain a ®xed
size table (determined by the number of discrete rate
levels) instead of per ¯ow rates. This is analogous to
de®ning a discrete number of service classes instead
of having a continuous range of service class in the
broader context of service options in packet-swit-
ched networks. Note that such a ¯ow aggregation
technique is itself a tradeo� between performance
latitude and implementation complexity.

4.2.2. Computational complexity
Computational complexity refers to the number

of times and type of mathematical operations
required to perform explicit rate calculation for
each traversing control packet.

Class 1 exponential averaging based heuristic
algorithms have the attractive feature of O(1)
computation complexity since only a constant
small number of switch variables are used to cal-
culate explicit rate.

Class 2 algorithms such as Algorithm 7 for
GMM have O�N� computational complexity.
However, if we can compromise the in®nite rate
states for each ¯ow with a ®xed and countable
number in a discrete state space, the computational
complexity can be reduced to O�log�N�� [11].

4.2.3. Queuing and scheduling
We refer queuing as the bu�ering strategy for

the packets arriving at the same output port from
multiple input ¯ows and attribute scheduling to the
service discipline for the packets stored at the
output port.

The queuing (or bu�ering) strategy employed by
both Class 1 and Class 2 algorithms is one common

shared queue for all ¯ows and the scheduling policy
used is the simple ®rst-in-®rst-out (FIFO) service
discipline. It should be clear that since both classes
of algorithms are rate calculation algorithms and
are not concerned with rate enforcement, many
other scheduling policies can also be used. Fur-
thermore, it has been shown that the rate-based
feedback control mechanism is robust to occa-
sional loss of packets, i.e., some packets loss will
not alter the ®nal rate allocation for each ¯ow and
the stability of the algorithm [31].

We would like to point out that if we use a
sophisticated bu�ering strategy such as per flow
queuing in combination with an appropriate
scheduling mechanism, we may design a ¯ow
control algorithm to achieve the rate allocation
objective [7,14,19,32]. In particular, it has been
shown in [14] that by using per ¯ow queuing,
greater control can be exercised for each ¯ow and
an exponential averaging type heuristic algorithm
(Class 1) can be easily extended for rate calcula-
tions on each ¯ow for improved performance in a
wide area network. This is because per ¯ow
queuing enables us to set/tune system parameters
for each individual ¯ow. In [7], it has been shown
that once ¯ows are isolated with per ¯ow queuing,
a control theoretic approach may be employed for
rate calculation.

4.3. Other extensions

Even though the speci®c distributed ¯ow con-
trol algorithms that we presented used ABR ter-
minology, it should be clear that the general
methodology of this work is very general and is
applicable to network tra�c management for any
¯ow oriented packet-switched networks. For ex-
ample, the ®xed-sized packet requirement for
ATM can be relaxed in packet networks with
variable-sized packets without a�ecting the overall
rate convergence property. Also, it is not necessary
to have the returning control packets to follow the
same path as the forward path. Should the control
packets use a di�erent returning path, we can set
the explicit rate information in the forward control
packets.

Both the WPMM and GMM rate allocation
policies support a minimum rate requirement for
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each ¯ow. However, it is sometimes di�cult for
each ¯ow to have an accurate prior estimate of its
minimum required rate. Therefore, it will be very
useful that a user can renegotiate its minimum rate
requirement should he/she ®nd it necessary.
The distributed ¯ow control algorithms we present-
ed are capable of supporting such minimum rate
renegotiation options [25]. Since a minimum
rate guarantee provides some kind of constant
bit rate (CBR)-like service for each ¯ow, the
minimum rate renegotiation option is very similar
to the renegotiation CBR (RCBR) concept intro-
duced in [18]. Unlike RCBR, the distributed ¯ow
control algorithms we discussed in this paper are
capable of further exploring any additional net-
work bandwidth and can achieve a rate allocation
objective (i.e., WPMM or GMM) for each ¯ow.

The rate allocation policies discussed in this
paper supports point-to-point packet ¯ow from
one source to one destination. It is straightforward
to de®ne point-to-multipoint (or multicast) ver-
sions of WPMM or GMM rate allocation policies
using similar concepts in the centralized rate allo-
cation algorithms, i.e., Algorithm 3 for WPMM
and Algorithm 2 for GMM. For the design of
distributed ¯ow control algorithms for a multicast
rate allocation policy, it has been shown in [43]
that under very general settings, a unicast rate-
based ¯ow control algorithm can be extended to
support multicast rate allocation policy with
guaranteed performance and minimal additional
complexity in the control packets.

5. Concluding remarks

This paper summarized our experience in the
design of network bandwidth allocation policies
and distributed rate calculation algorithms for
packet-switched networks. A major motivation of
this work came from the intense research e�orts on
ATM ABR service over the past several years.
However, this paper is, by no means, an exhaustive
review of ABR, which can be found in many
overview papers in the literature, but rather, to
share with the readers our own experience on some
important principles behind such rate-based feed-
back control. This paper is intended to o�er the

readers, who already have some familiarity with
rate-based ¯ow control, a broader and deeper
perspective on such tra�c control algorithms.

We examined the classical max±min rate allo-
cation and showed how to extend the classical max±
min with two rate allocation policies that support
minimum rate and peak rate constraints from each
connection. We classi®ed the many well-known al-
gorithms into two broad classes based on how much
state information is required at the switch for
feedback rate calculation and discussed the trade-
o�s between these two classes of algorithms in terms
of convergence property, rate decoupling property,
sensitivity to system parameters, applications, state
requirement, computational complexity, and
queuing and scheduling disciplines. We showed that
the choice of a particular algorithm is largely a
tradeo� between performance objectives and im-
plementation complexities. Also, we discussed how
per ¯ow queuing and scheduling discipline may be
incorporated into both classes of algorithms for
improved performance.

As networking technologies keep advancing
and new user application requirements grow, re-
search on feedback-based congestion and ¯ow
control will continue to attract interests. We hope
the experience we summarized in this paper on rate
allocation policies and distributed rate calculation
algorithms will serve as a valuable reference for
both researchers and network planners when they
design or deploy a particular feedback control al-
gorithm for their network.
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