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Abstract—Among all types of computations, the polynomial
function evaluation is a fundamental, yet an important one due
to its wide usage in the engineering and scientific problems. In
this paper, we investigate publicly verifiable outsourced compu-
tation for polynomial evaluation with the support of multiple
data sources. Our proposed verification scheme is universally
applicable to all types of polynomial computations and allows
the clients to outsource new data at any time. While the existing
solutions only support the verification for polynomial evaluation
over a single data source, i.e., all the inputs of the polynomial
function are outsourced and signed by a single entity, our solution
supports polynomial evaluations over multiple different data
sources, which are more common and have wider applications,
e.g., to assess the city air pollution, one needs to evaluate the
environmental data uploaded from the multiple environmental
monitor sites. In our proposed scheme, the verification cost
for the client is independent with either the input size or the
polynomial size so that it scales well in practice. We formally
prove the correctness and soundness of our scheme and conduct
numerical analysis and evaluation study to validate its high
efficiency and scalability. The experimental results show that the
data contributor signing 1,000 new data only takes 2.1 seconds,
and the verification of the delegated polynomial function takes
only 22 milliseconds, which is practically efficient for real-world
applications.

Index Terms—Verifiable polynomial, arithmetic circuit, homo-
morphic verifiable tags.

I. INTRODUCTION

As cloud computing provides affordable and scalable com-
putation and storage resources, outsourcing computation to the
cloud becomes an unavoidable trend nowadays. Among differ-
ent types of computations, the polynomial evaluation is consid-
ered to be a fundamental, yet an important one, and it has been
widely used in the engineering and scientific problems. For
example, the company utilizes the financial software to analyze
its economic performance by executing polynomial functions
over the past sales data. In cloud computing, the cloud server
executes polynomials over the personal health data uploaded
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from various wearable devices to evaluate the personal health
and make suggestion for people to keep healthy. Also, every
year the government needs to execute polynomials over the
statistical data to evaluate the social development situation and
make the plan for the next year. However, while enjoying all
the benefits of the cloud, the users also lose the control of
their computation in the cloud. Due to the cloud’s possible
misbehaviors motivated by the monetary reasons (e.g., to save
the computing resources) or caused by the hacking and the
system failures, the client would like to verify the correctness
of the computation result output by the cloud. According to
[1], a verifiable computation scheme for the delegated polyno-
mials should satisfy the following requirements: (1) security,
meaning that the cloud server can prove the correctness of
the delegated computation for the polynomial function f , and
the client can correctly verify the result of the function f by
checking the proof message; (2) efficiency, meaning that the
client should be able to verify the result with communication
and computation costs significantly lower than the cost of
computing f locally; (3) input-independent efficiency, meaning
that the verifying time is independent of the size of the inputs
of the delegated polynomial function; (4) unbound storage,
meaning that the client is able to outsource new input data to
the cloud for polynomial evaluations; (5) not fixed polynomial
functions, meaning that neither the delegated functions should
be fixed nor the client is required to know the functions before
outsourcing the data.

To the best of our knowledge, the authors in [1] proposed
the first protocol which satisfies the above requirements. From
the practical perspective, however, it still has some limitations
which make it not practical in real-world application scenarios.
First of all, the scheme of [1] does not support public verifi-
cation. It has an implicit assumption that the data contributor
and the computation requestor are the same entity (or the
data owner has to share the private key with the computation
requestor). But, it is not always true in practice, where the
computation requestor is most likely to be a third-party entity.
The second limitation is that the inputs of the polynomial must
come from one single data source. In real-world applications,
however, the input data of the polynomial may come from
multiple contributors. Finally, the communication cost of the
solution in [1] depends on the polynomial size, which raises
the scalability concern in practice. Take the computation of the
air pollution level as an example, there are many air quality
monitor sites collecting the environmental pollution data and
uploading these data to the cloud in the fixed time interval.
Thus, the computation is expected to be conducted by a third-
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party agency over the environmental pollution data uploaded
from multiple monitors (different data sources). At last, the
air pollution information will be released to the public by the
agency.

To verify the correctness of the result of the delegated
computation over the outsourced data from multiple contribu-
tors, a publicly verifiable computation scheme for polynomial
functions is highly required. To address this problem, we
define three key requirements for a practically verifiable
computation design, which are lacking in existing solutions:
1) Public verification. It means that any entity can verify the
correctness of the result of the delegated polynomial function
even if the inputs are not uploaded or signed by itself; 2) The
Support of multiple data sources. It means that the inputs of
the polynomial can be contributed by multiple independent
data sources; 3) Function-independent bandwidth efficiency. It
means that the communication cost should be independent of
the complexity of the delegated function, i.e., the overhead of
communication for a verification task is constant.

In this paper, we propose a novel and efficient publicly
verifiable computation scheme for the delegated polynomial
evaluation. The key characteristic of our design is that the
proposed scheme is homomorphically verifiable for any gen-
eral polynomial function. We formally prove the security
of our scheme based on the Computational Diffie-Hellman
(CDH) assumption and evaluate its efficiency in terms of the
computation and the communication costs through extensive
experiments. The main contributions in this paper can be
summarized as follows.

• We, for the first time, model the problem of publicly veri-
fiable delegated computation for the polynomial functions
and identify three new practical requirements: public
verification, the support of multiple data contributors, and
function-independent efficiency. We propose an efficient
and publicly verifiable outsourcing computation scheme
to meet the above key requirements.

• To achieve the high bandwidth efficiency, we design a
homomorphic verifiable computation tag structure for the
delegated polynomial function, by which our verifiable
computation scheme can achieve the constant communi-
cation cost and scales well in practice.

• We formally prove the correctness and the soundness of
our scheme under the well-defined CDH assumption. We
also implement a prototype and carry out a series of
evaluation studies. The evaluation results further validate
the effectiveness and efficiency of our scheme.

The rest of our paper is organized as follows. In the next
section, we discuss the related work. Then, we introduce
several cryptographic primitives used in this paper in Section
III. We setup up the system model and formulate the prob-
lem in Section IV. Section V details our publicly verifiable
computation scheme for the polynomial functions, which is
followed by the performance analysis in Section VII. Section
VIII shows the results of our simulation study. Finally, we
conclude our paper in Section IX.

II. RELATED WORK

The idea of designing authenticated data structures [2] can
be considered as the first research stream related to our work.
The follow-ups [3], [4], [5], [6], [7] extended the concept of
authenticated data structure by enabling the clients to securely
delegate special operations, such as the range search queries
[3], [4], the authenticated dictionaries [5], [6], and the set
operations [7] over the outsourced data to the cloud. However,
none of the authenticated data structures can support the
secure outsourcing of arbitrary polynomial computation over
the remotely outsourced data.

Gennaro et al. proposed the verifiable computation model
[8]. In this verifiable computation model, the client outsources
data and a function evaluation to the remote server. The client
computes a one-time encoding of the function and stores it
at the server. This enables the server to not only evaluate
the function, but also provide a proof that the evaluation
has been correctly done. However, this model requires the
client to know the delegated polynomial function in advance.
To provide verifiable computation for not fixed polynomial
functions, Parno et al. proposed the concept of ‘multi-function
verifiable computation’ [9], by which a client can delegate the
computation of many functions on the same input D while
being able to efficiently verify the results. However, in the
multi-function verifiable computation, the client has to store
additional information for every input D. Furthermore, it is
impossible to update the local meta data without locally storing
the previous data. As a result, all the outsourced data D has to
be sent out at once. Thus, the scheme cannot apply to scenarios
where the input data is continually growing. Benabbas et al.
[10] proposed a practical verifiable computation model for
high degree polynomial functions. In [10], the client stores
the polynomial in the clear with the server as a vector of the
coefficients. It also has the problem of only supporting fixed
polynomial evaluations and high computation overheads.

Other researchers have proposed the verifiable computation
schemes based on the homomorphic signature. Boneh et
al. [11] proposed a realization of homomorphic signatures
for the bounded constant-degree polynomials. Gennaro et al.
[12] introduced homomorphic MACs to design a delegation
scheme for arbitrary computation which is proven secure in
a weaker model. Catalano et al. [13] proposed the practical
homomorphic MACs for the arithmetic circuits to support
the verifiable polynomial functions with the bounded degree.
But their scheme does not support the public verification
due to the use of a symmetric encryption algorithm. Backes
et al. [1] reduced the verification communication overhead,
however, it shares the same limitation with [13]. Fiore et
al. [14] presented protocols for publicly verifiable secure
outsourcing of evaluation of polynomials and matrix multi-
plication. However, this solution cannot support the scenario
of multiple data contributors. Zhang et al. [15] constructed
the batch verifiable computation model to efficiently compute
the same function over multiple data sets. Backes et al. [16]
proposed ADSNARK, a practical system for proving arbitrary
computations over authenticated data, and it can be extended
to support the scenario of multiple data contributors.
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Chung et al. [17] proposed a solution for memory delega-
tion, in which the client uploads its memory to the server, and
he can later ask the server to update the outsourced memory
and compute a function on the entire memory. However, to
prove the correctness of the delegated computation, the client
needs to store approximate log(n) data at local, where n is the
scale of entirely outsourced data. Chen et al. [18] proposed the
concept of the verifiable database with incremental updates,
which is highly efficient for the database with frequent and
small modifications. Zhang et al. [19] measured the trade-
off between the storage and the verification time and reduce
the storage overhead by slightly increasing the verification
time. Lai et al. [20] proposed a verifiable homomorphic
encryption (VHE), which enables verifiable computation on
the outsourced encrypted data. Other solutions [21], [22], [23],
[24] were proposed under a different model where the client
needs to know the input of the computation.

Comparisons between the verification of polynomial com-
putation and the verification of SQL range queries: In this
paper, we design a new and novel verification scheme for
the delegated computation of polynomial evaluation over the
outsourced data, while our previous work [25] was designed
to achieve the integrity verification for SQL range query. We
list the main differences and challenges from three aspects as
follows.

First, for the integrity verification of SQL range queries, the
client has obtained the result before verification. Unlike this
type of verification, the verification for polynomial evaluation
requires the verifier to verify the result without knowing the
inputs. Besides, for the range query, the tuples in a range are
continuous. Based on this property, in [25], we designed the
signature chain to verify the integrity of result, and the chain
is built with the tuple identifiers of the previous tuple and the
successive tuple (Readers can refer to Section 5 of [25] for the
details). However, the delegated polynomial does not have this
property. Therefore, in this paper we tackle the challenge of
expressing any type of delegated polynomials and enable the
server to generate proof messages to prove the correctness of
the result without knowing the inputs. Because theoretically
any polynomial can be computed by an arithmetic circuit,
we utilize the arithmetic circuits to express the delegated
polynomials and design the verification scheme (Please refer to
Section III-A for the design details). On top of the arithmetic
circuits, we let the server process the polynomial in a gate-
by-gate mannner (Readers may refer to GateEval algorithm in
Section V-B for the details). In comparison, the scheme in [25]
does not have this construction design.

Second, in this paper we have to tackle the challenge of
designing a verifying data structure to enable the verification
based on the arithmetic circuits. Specifically, we design the
Homomorphic Verifiable Computation Tags (HVCTs) as the
verifying tags while we proposed Homomorphic Verifying
Tags (HVTs) in [25]. However, these two tags are quite
different. Actually, for the range query verification, the client
only needs to verify the tuples in the result which are
continuous outsourced data. Thus, we designed the verifying
data structure in [25] based on HVTs, which is only additive
homomorphic. Note that the polynomials not only have the

addition operations but also the multiplication operations,
so the functionality of HVTs are not sufficient to support
the polynomial computation. Therefore, we designed HVCTs
which is both additive and multiplicative homomorphic. In
addition, our design of HVCTs allows the client to verify
the result without knowing the inputs. That is, the client can
use some public information ρ to verify the proof message.
In comparison, the scheme in [25] does not have these nice
properties and powerful functionalities, which are the key
difference between the two designs. Readers may refer to
GateEval algorithm in Section V-B of this paper and Section
6 of [25] for the details.

Third, we need to address the challenge of supporting
multiple data sources. In this paper, the server processes the
polynomial gate by gate based on the arithmetic circuits. How-
ever, it is difficult to have a unified verification data structure
to support both the addition and multiplication operations
when two inputs are signed by different keys (from different
data contributors). To address this problem, our general idea
is to put all the sum gates behind the product gates to
express the delegated polynomial function. Then, based on
this structure, we further design 1-level verifying tags and 2-
level verifying tags. By leveraging these designs, the server
is able to output the homomorphic verifying tag for every
gate even if the verifying tags of two inputs are signed by
different keys (Readers may refer to GateEval algorithm in
Section V-B for the details). Although the scheme in [25] also
supports multiple data contributors, the case is much simpler
and the resulting solution is quite different. In [25], the server
only needs to group the signatures from different signers,
and then the client can verify the data integrity in a batch.
However, in this paper, we have to carefully design the 1-
level verifying tags and the 2-level verifying tags to address the
multi-sourced data verification challenge so as to achieve the
same functionality. Readers may refer to GateEval algorithm
in Section V-B of this paper and Section 6 of [25] for the
details.

To the best of our knowledge, there is no practical solution
of publicly verifiable computation over polynomial functions
on a large scale of outsourced data so far, which meets all of
our previously-defined three requirements.

III. PRELIMINARIES

A. Arithmetic Circuits

In this paper, we focus on the problem of verifiable del-
egated computation for the polynomial functions. Note that,
we investigate the problem from the perspective of ensuring
the integrity of computation results, instead of protecting the
input privacy. This is also the key difference of our work
from the existing privacy-preserving outsourcing computation
protocols, most of which neglect the result verification and
assume that the cloud will honestly follow the protocols to
execute the delegated computations.

Because any polynomial f ∈ F[X] can be computed by an
arithmetic circuit [26], we first give a brief overview of the
arithmetic circuits.
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Definition 1. An arithmetic circuit Φ over the field F and
the set of variables X = {x1, . . . , xn} is a directed acyclic
graph. The vertices of Φ are called ‘gates’. Every gate in Φ
with in-degree 0 is called an input gate, which is labeled by
either a variable from X or a field element from F. Every
other gate in Φ is labeled by either ‘×’ or ‘+’ and has in-
degree 2. Every gate labeled by ‘×’ is called a product gate
and every gate labeled by ‘+’ is called a sum gate. Every gate
in Φ with out-degree 0 is called an output gate.

An arithmetic circuit computes a polynomial function in
a nature way. The gates compute the polynomial defined by
their labels. A product gate computes the product of the
polynomials on its incoming wires. A sum gate computes the
sum of the polynomial on its incoming wires. The output of
the circuit is the value contained on the outgoing wire of the
output gate.

B. Bilinear Maps

We say a map e : G1×G1 → G2 is a bilinear map [27] if:

1) G1 and G2 are the groups of the same prime order p;
2) g, h are generators of G1;
3) for all a, b ∈ Zp(Zp stands for the set of integer numbers

from 0 to p − 1), ga, gb, ha, hb ∈ G1, then e(ga, hb) =
e(g, h)ab is efficiently computable;

4) the map is non-degenerate, i.e., e(g, g) 6= 1.

The bilinear maps have the following security property,
which is also the security basis of our scheme.

Assumption 1 (Computational Diffie-Hellman (CDH) as-
sumption [27]). For x, y ∈ Zp, given g, gx, gy ∈ G1, it is
hard to compute gxy .

C. Homomorphic Verifiable Computation Tags

Ateniese et al. [28] proposed the concept of Homomorphic
Verifiable Tags (HVTs), which allows a public verifier to
verify the integrity of the data stored on a remote untrusted
server. We extend this concept to Homomorphic Verifiable
Computation Tags (HVCTs) to verify the delegated polyno-
mial computation. First of all, whether the value x is an
original input or an intermediate computational result of a
polynomial, the HVCTs δ of the value x must be unforgeable.
Then the HVCTs also should have the following important
properties: 1) Verification without knowing the inputs. The
cloud server can use the HVCTs to generate a proof message
which allows a verifier to verify result correctness of the
delegated computation for the polynomial function without
knowing the inputs; 2) Additive homomorphism. Given a sum
gate with the incoming wires x1 and x2, anyone can combine
their homomorphic verifiable computation tags δ1 and δ2 into
a new HVCT δx1+x2 for the output (x1 + x2) of the sum
gate; 3) Multiplicative homomorphism. Given a product gate
with the incoming wires x1 and x2, anyone can combine their
homomorphic verifiable computation tags δ1 and δ2 into a new
HVCT δx1×x2

for the output (x1 × x2) of the product gate.

IV. PROBLEM STATEMENT

A. System Model

In this work, we consider a cloud-based data service system
composed of three entities as shown in Fig. 1, i.e., the cloud
server, the clients, and the agency. The cloud server offers
the storage service to the clients and executes the polynomial
computations over the outsourced data for the agency. It is
not a fully trusted entity. In our system model, the client
and the agency are trusted entities. All the clients are able to
create and upload data to the cloud server. To enable verifiable
polynomial function over the outsourced data, the client signs
the outsourced data. The agency asks the cloud server to
execute the polynomial function f over the outsourced data
from multiple clients. Besides executing the delegated function
f , the cloud server generates the proof message P with which
it proves that f has been correctly executed. To guarantee the
correct execution of delegated polynomial function, the agency
can also play as a verifier to verify the result R of f returned
from the cloud server by checking the proof message P .

agency (verifier)

clients

outsourced data

Cloud

outsourced data

Data Signatures

m1 σ1

m2 σ2

... ...

mn σn

Label

τ1

τ2

...

τn

R= f(x1, x2, , xn)

+

××

proof message(P)

Fig. 1: System model

B. Threat Model and Security Definitions

In our system model, the cloud server stores and manages
the outsourced data and executes the polynomial functions
over the outsourced data for the agency. However, it is not fully
trusted. It might misbehave due to the monetary reasons (e.g.,
for computation resource savings), the hacking or the system
failures. For example, assuming there are 10,000 clients (air
quality monitor sites) collecting the environmental pollution
data all over the city. The client uploads the pollution data
to the cloud every day. The agency asks the cloud to analyze
the air pollution data by executing some polynomial functions
such as average function and deviation function over the
pollution data. But, the cloud may execute the polynomial
function over a subset of daily pollution data rather than the
whole data set for saving its computation resources. Even
worse, the cloud server returns a random result or the history
result to the agency. The main motivation of this work is to
provide a verifiable polynomial evaluation scheme by which
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the agency is able to validate whether the cloud server has
correctly executed the delegated polynomial function. In this
work, we consider the following potential security threatens
in this work.
Data corruption. In this type of security threat, the outsourced
data is corrupted. The corrupted data used as the input of dele-
gated computation can lead to a wrong result. The adversaries
could be the outside attackers or the cloud server.
Incorrect results. The cloud server may not fully perform
the delegated computations over the entire inputs or randomly
output a result to save the computation resources for the
monetary reasons.
Forgery attack. Following the above two types of attacks, the
adversary (e.g., the cloud server or the external attackers) may
deliberately forge the signature or the proof message to cheat
the agency to pass the verification.

The security of the result verification scheme is twofold: the
correctness and the soundness. In our scheme, the correctness
means that as long as the cloud server correctly performs
the computation, the corresponding proof message will always
pass the result integrity check, i.e., there is no false negative.
The soundness means that the proof message corresponding to
any false computation answer will be detected and cannot pass
the integrity check, i.e., there is no false positive. Note that
in the game between the adversary and the agency (verifier),
the adversary has full access to the information stored in the
cloud server, and the objective of the adversary is to pass the
verification with the forged proof message.

C. Design Objectives
The main motivation of this work is to develop a practically

verifiable computation scheme for the delegated polynomial
functions over the outsourced data from multiple data sources.
To this end, besides five requirements for a practical verifiable
computation scheme mentioned in [1], this work proposes to
achieve the following additional goals: (1) Correctness: for
three types of security threats, the agency is able to verify the
correctness of the delegated polynomial executed at the remote
cloud server; (2) Supporting public verification: any entity
should be able to act as the agency to verify the correctness
of the result of the delegated computation over the outsourced
data as long as the entity can access the public keys; (3) Sup-
porting multiple data contributors: the verifier is able to verify
the result from the cloud, even if the inputs of the delegated
polynomial function are uploaded and signed by the multiple
independent clients; (4) Efficiency: the verification overheads
of the computation and the communication are significantly
lower than the costs of the agency to download the data and
execute the delegated function f locally. The agency should
be able to verify the correctness of the result without knowing
the inputs, storing any meta data, or sharing the information
with the clients. Moreover, the verification efficiency meets the
requirements of ‘input-independent efficiency’ and ‘function-
independent efficiency’.

D. An Example of Application Scenarios
In this paper, we use an air pollution data collection and

analysis system as the example to illustrate the problem and

to motivate our design. There are many environment monitor
sites in this system. These sites act like the clients in the
system model have an unbound collection of the air pollution
data D = {D1, D2, . . . , Dn}. Then, every site uploads the
data to the cloud server at the fixed intervals (e.g., every
hour or every day). A data item Di(m, τ, σ) uploaded by the
site includes the data m, the label τ , and the signature σ.
The label τ of a data m is a binary string τ to describe the
physical meaning of m such as ‘air pollution in Washington
DC on 2016-07-15 at 9 am’. The environment ministry, which
acts like the agency in our system model, analyzes the air
pollution data and releases the result to the public. It requests
the cloud server to execute the delegated computation over
the environment pollution data even the data are uploaded and
signed by the multiple independent monitor sites. After getting
the computation result from the cloud server, the agency
verifies the correctness of the result. If the result passes the
verification, the agency releases the air pollution information
(e.g., air pollution level, PM2.5 level) to the public.

V. PUBLICLY VERIFIABLE COMPUTATION FOR
POLYNOMIAL EVALUATIONS

A. Overview

In the cloud-based data service system, there are n clients,
i.e., ui(1 ≤ i ≤ n). Every client ui has a key pair (a public key
and a private key). To enable the publicly verifiable computa-
tion, ui signs the data using its private key before uploading
it. While the cloud server performs the delegated computation
of the polynomial function f , it also outputs a proof message
to prove that f has been correctly executed. The agency is
able to verify the correctness of the result by checking the
proof message. Specifically, the publicly verifiable compu-
tation scheme in this paper consists of six polynomial-time
algorithms, i.e., SetUp, KeyGen, Sign, GateEval, ProofGen
and VerifyProof. We introduce the verifiable computation
scheme through detailing these algorithms. Table I summarizes
the notations used in this paper.

TABLE I: Notations used in this paper

Symbols Descriptions
G1,G2 two groups of the same prime order p

e a bilinear map e : G1 × G1 → G2

g, h the generators of G1

H H : {0, 1}∗ → Zp is a one way hash function which
maps the arbitrary strings to the elements in Zp

sk, pk sk = α is the user’s private key.
pk = (gα, hα, h1/α) is user’s public key.

τ the label for the outsourced data
tτ tτ = H(τ)
m the outsourced data

δ(pk, σ) the verifying tag for the polynomial
σm σm = (r, s) is the signature of m.
P P = δR(pk, σ) is the proof message for the result R

of the delegated polynomial function f .

B. Publicly Verifiable Computation

In this subsection, we detail the algorithms of the publicly
verifiable computation for the polynomial functions.
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SetUp(1λ) → (e, p,G1,G2, g, h,H) is run by the cloud
server to initialize the system. It takes a security parameter
λ as input and outputs the global security parameters for the
system. Let G1 and G2 be two groups of prime order p,
and g, h be the generators of G1, and e : G1 × G1 → G2

be a bilinear map. The global parameters of our scheme are
(e, p,G1,G2, g, h,H), where H : {0, 1}∗ → Zp is the one-
way hash function which maps arbitrary strings to the elements
in Zp.
KeyGen(1κ) → (pk, sk) is run by a new client. It takes the
security parameter κ as input and returns the public key pk
and private key sk for the new client. When a new client
u joins the cloud data service system, u selects a random
α ∈ Zp as its private key, and outputs its public key as pk =
(gα, hα, h1/α). Then, u stores its private key locally and sends
its public key pk to the cloud server. The cloud server stores
u’s identification and its public key in the table as shown in
table II.

No. UserID PK
1 u1 (gα1 , hα1 , h1/α1 )

2 u2 (gα2 , hα2 , h1/α2 )

3 u3 (gα3 , hα3 , h1/α3 )
... ... ...

TABLE II: The client’s identification is unique in the system.
The private key is used to sign the data, and the public key is
used to verify the result.

Sign(m, sk) → σm is run by the client to generate the
signature for the new outsourced data m, while the client
creates or modifies m. The Sign algorithm takes m and the
client’s private key sk as inputs and outputs the signature
σm. To support the publicly verifiable computation for the
polynomials, the client u signs the data m ∈ Zp which has
the label τ when u adds or modifies m. u first computes
tτ = H(τ) and selects a random k ∈ Zp, and then sets r = hk,
s = α(tτ + m + k)mod p, in which α is u’s private key.
The Sign algorithm generates the signature σm as Eq. (1). u
uploads m, m’s label τ and the signature σm to the cloud.

σm = (r, s) = (hk, α(tτ +m+ k)mod p). (1)

The signature in our scheme is an El Gamal-type algorithm
over bilinear map, it is also a type of unidirectional proxy re-
signature scheme [29]. It is correct and secure under the CDH
and 2-DL assumptions in bilinear map [29].

After the cloud server receives m and the corresponding
signature σm(r, s), it verifies the signature by Eq. (2), where
pk(1) = gα is the first component of u’s public key. If the
verification fails, the cloud server outputs ⊥; otherwise, the
cloud server stores m, the label τ , and the signature σm.

e(g, hs)
?
= e(gα, r × hH(τ)+m) = e(pk(1), rhtτ+m). (2)

GateEval(x1, x2, δ1, δ2) → δ′ is run by the cloud server to
generate the verifying tag δ′ for the output of a gate in the
arithmetic circuits. For a gate G, whether G is a sum gate or a
product gate, the GateEval algorithm takes the input wires x1
and x2, and their verifying tags δ1 and δ2 as inputs, and returns
the verifying tag δ′ for G’s output. Let f(x1, x2, . . . , xn) be

the delegated polynomial function, where xi(1 ≤ i ≤ n)
denotes an outsourced data item used as one of f ’s inputs.
Generally, any polynomial function f can be expressed as Eq.
(3), where ci is the constant coefficient and ej is the exponent
of xj , e.g., f = x1(2x2x3 +x34) = 2x1x2x3 +x1x

3
4. Then, the

cloud server uses the arithmetic circuit to express the delegated
polynomial function in Fig. 2. When the cloud server executes
a polynomial function f , it calls the GateEval algorithm to
process f ’s arithmetic circuit gate-by-gate.

+

×

x1

x2

×

x3

×

x1 x4

×

x4

×

x4

output

×

2

proof message

Gate 1 Gate 2

Gate 3 Gate 4

Gate 5 Gate 6

Gate 7

Fig. 2: The polynomial function is expressed by an arithmetic
circuit, e.g., x1(2x2x3+x34) = 2x1x2x3+x1x

3
4. In our scheme,

the sum gate is always after the product gate.

f(x1, x2, . . . , xn) =
∑

(ci ×
∏

j∈[1,n]

x
ej
j ). (3)

By the GateEval algorithm, the cloud server generates the
verifying tag for the output of each gate. In our scheme, the
inputs of a gate can be the original outsourced data, a constant
c ∈ Zp, or the output of other gate. For a polynomial function
expressed by Eq. (3), the two inputs of a gate will not both
be the constants.

In our scheme, we utilize the verifying tag to verify the
result of the delegated computation. As the polynomial ex-
pressed in Eq. (3), all the product gates are executed before the
sum gates. Based on the structure of the arithmetic circuit for
polynomials, we divide the verifying tags into two categories:
the 1-level verifying tag and the 2-level verifying tag. The
verifying tag δ(pk, σ) in this paper consists of two parts: the
user’s public key pk and σ.

Definition 2. The 1-level verifying tag includes: the raw data’s
verifying tag, the verifying tag for the output of product gate,
and the verifying tag for the output of a sum gate G if two
inputs of G have the 1-level verifying tags signed by the same
private key. The structure of 1-level verifying tag δ(pk, σ) can
be defined as

pk = (gα, hα, h
1
α ),

σ = (r, s) = (hk, α(tτ +m+ k)mod p).
(4)

Definition 3. The 2-level verifying tag refers to the verifying
tag for the output of sum gate, except two inputs of the sum
gate both have the 1-level verifying tags and they are signed
by the same private key. In our scheme, a 1-level verifying
tag can be transformed to a 2-level verifying tag but a 2-level
verifying tag will no longer be transformed back to a 1-level



1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2705628, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 7

verifying tag. The structure of 2-level verifying tag δ(pk, σ)
can be defined in Eq. (5).

pk = (gα, hα, h
1
α ), σ = (r, s) = (hk, hα(tτ+m+k)). (5)

For an original outsourced data m, its verifying tag
δ(pk, σ(r, s)) is the 1-level verifying tag, in which pk is the
public key and σ(r, s) is the signature σm. At each gate G,
given two inputs x1, x2 having the verifying tags δ1, δ2, the
cloud server runs the algorithm δ′ ←GateEval(x1, x2, δ1, δ2)
described below to generate a new verifying tag δ′ for the
output of G, which is in turn passed on as an input to the next
gate in the circuit.
If G is a product gate, then
• Two inputs of the gate G are a constant c ∈ Zp and a

variable x. The input x has the verifying tag δ(pk, σ(r, s))
and the label tτ . x could be the original outsourced data
or the output of other product gate. Because the product
gate is executed before the sum gates, the verifying tag δ
must be a 1-level verifying tag. The GateEval algorithm
outputs the verifying tag δ′(pk′, σ′) and the new label t′τ
for the output y = c× x of G (e.g., the gate 1 in Fig. 2)
as

pk′ = pk, t′τ = c× tτ ,
σ′ = (r′, s′) = (rc, c× s)

= (hck, α(ctτ + cx+ ck)).

(6)

• Two inputs of the gate G are x1, x2, both of which have
the 1-level verifying tags δ1, δ2 respectively. The cloud
server randomly chooses an input (e.g., x1) as the main
input and outputs the verifying tag δ′(pk′, σ′) and the
new label t′τ for the output y = x1 × x2 of G, e.g., the
gate 2 and 3 in Fig. 2, as below.

1) The cloud server sends r1, pk2, σ2(r2, s2) and x2
to the agency ua.

2) ua first verifies the signature σ2(r2, s2) by Eq. (2).
If fails, ua outputs ⊥. Otherwise, ua chooses two
random numbers β and k′ ∈ Zp and computes ŝ =

β(tτ2 + x2 + k′), r̂ = r
(tτ2+x2+k

′)
1 , hk

′
and pk′ =

(gβα1 , hβα1 , h1/βα1).
3) ua uploads {ŝ, r̂, hk′ , pk′} to the cloud.
4) The cloud server outputs the verifying tag

δ′(pk′, σ′) as

pk′ = (gβα1 , hβα1 , h1/βα1), t′τ = tτ1 × tτ2 ,
σ′ = (r′, s′) = (r̂ × htτ1x2+tτ2x1 × hk

′×(tτ1+x1), ŝ× s1)

= (r
(tτ2+x2+k

′)
1 × htτ1x2+tτ2x1 × hk

′tτ1+k
′x1 ,

β(tτ2 + x2 + k′)× α1(tτ1 + x1 + k1)) (7)

= (hk1(tτ2+x2+k
′)+tτ1x2+tτ2x1+k

′tτ1+k
′x1 ,

βα1(tτ1tτ2 + x1x2 + k1(tτ2 + x2 + k′)

+ tτ1x2 + tτ2x1 + k′tτ1 + k′x1)).

As the polynomial expressed in Eq. (3), all the product gates
are executed before the sum gates, so the data with 2-level
verifying tag will not be the input of a ‘product gate’.
If G is a sum gate, then

• Two inputs of gate G are a constant c ∈ Zp and a variable
x with the 1-level verifying tag δ(pk, σ). The GateEval
algorithm outputs the verifying tag δ′ and the new label
t′τ for the output y = c+ x of G as

pk′ = pk = (gα, hα, h1/α), t′τ = tτ +H(c),

σ′ = (r′, s′) = (r, hs × hα(H(c)+c))

= (hk, hα((tτ+H(c))+(x+c)+k)).

(8)

• Two inputs of G are a constant c ∈ Zp and a variable x.
The input x has the 2-level verifying tag δ(pk, σ(r, s)).
The GateEval algorithm outputs the verifying tag δ′ and
the new label t′τ for the output y = c+ x of G as

pk′ = pk = (gα, hα, h1/α), t′τ = tτ +H(c),

σ′ = (r′, s′) = (r, s× hα×(H(c)+c))

= (hk, hα((tτ+H(c))+(x+c)+k)).

(9)

• Two inputs of G are the variables x1, x2 with the verify-
ing tags δ1(pk1, σ1) and δ2(pk2, σ2), both of which are 1-
level verifying tags. The GateEval algorithm outputs the
verifying tag δ′ and the label t′τ for the output y = x1+x2
of G, e.g., the gate 7 in Fig. 2 as

– If pk1 = pk2, it means δ1(pk1, σ1) and δ2(pk2, σ2)
are signed by the same private key.

pk′ = pk1, t
′
τ = tτ1 + tτ2 , (10)

σ′ = (r′, s′) = (r1 × r2, s1 + s2) = (hk1+k2 ,

α1((tτ1 + tτ2) + (x1 + x2) + (k1 + k2)).

In this case, the cloud server is able to output
the verifying tag without communicating with the
agency ua. The new verifying tag is still a 1-level
verifying tag.

– If pk1 6= pk2, it means δ1(pk1, σ1) and δ2(pk2, σ2)
are signed by different private keys.
1) The cloud server sends the third components

(h1/α1 , h1/α2 ) of pk1 and pk2 to the agency ua.
2) ua chooses a random β ∈ Zp, and then returns

(gβ , hβ , h1/β , hβ/α1 , hβ/α2) to the cloud.
3) The cloud server outputs the verifying tag

δ′(pk′, σ′) and t′τ as
pk′ = (gβ , hβ , h1/β), t′τ = tτ1 + tτ2 ,

σ′ = (r′, s′) = (r1 × r2, h
β
α1
×s1 × h

β
α2
×s2)

= (hk1+k2 , hβ((tτ1+tτ2 )+(x1+x2)+k1+k2)).

(11)

In this case, the new verifying tag is changed to the
2-level verifying tag.

• Two inputs of G are the variables x1 and x2. The input x1
has the 1-level verifying tag δ1(pk1, σ1) and the input x2
has the 2-level verifying tag δ2(pk2, σ2). The GateEval
algorithm outputs the verifying tag δ′ and t′τ for the
output y = x1 + x2 of G as

– if pk1 = pk2, it means δ1(pk1, σ1) and δ2(pk2, σ2)
are signed by the same private key.

pk′ = pk1 = pk2, t
′
τ = tτ1 + tτ2 ,

σ′ = (r′, s′) = (r1 × r2, s2 × hs1) (12)

= (hk1+k2 , hα1((tτ1+tτ2 )+(x1+x2)+k1+k2)).



1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2705628, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 8

– if pk1 6= pk2, it means δ1(pk1, σ1) and δ2(pk2, σ2)
are signed by the different private keys.
1) The cloud server sends the third component

h1/α1 of the 1-level verifying tag δ1’s public key
to the agency ua.

2) Because all the keys of the 2-level verifying tags
are generated by ua, it is able to output hα2/α1

and sends it to the cloud.
3) The cloud server outputs the verifying tag

δ′(pk′, σ′) and t′τ as

pk′ = pk2 = (gα2 , hα2 , h1/α2),

t′τ = tτ1 + tτ2 , (13)

σ′ = (r′, s′) = (r1 × r2, s2 × h
α2
α1
×s1)

= (hk1+k2 , hα2((tτ1+tτ2 )+(x1+x2)+k1+k2)).

• Two inputs of G are the variables x1 and x2, both
of which have the 2-level verifying tags δ1(pk1, σ1)
and δ2(pk2, σ2). The GateEval algorithm outputs the
verifying tag δ′ and the new label t′τ for the output
y = x1 + x2 of G as below:

– if pk1 = pk2,

pk′ = pk1 = pk2, t
′
τ = tτ1 + tτ2 ,

σ′ = (r′, s′) = (r1 × r2, s1 × s2) (14)

= (hk1+k2 , hα1((tτ1+tτ2 )+(x1+x2)+k1+k2)).

– if pk1 6= pk2,
1) The cloud server randomly chooses an input x1

as the main input.
2) The agency ua outputs α1/α2 and sends it to the

cloud. Because all the secret parameters in the
2-level verifying tags are selected by the agency,
ua grasps the parameters α1 and α2.

3) The cloud server outputs the verifying tag
δ′(pk′, σ′) and the label t′τ as

pk′ = pk1 = (gα1 , hα1 , h1/α1), t′τ = tτ1 + tτ2 ,

σ′ = (r′, s′) = (r1 × r2, s1 × s
α1
α2
2 ) (15)

= (hk1+k2 , hα1((tτ1+tτ2 )+(x1+x2)+k1+k2)).

It is worth noting that although the agency needs to select
the secret parameters and generate the messages for some
gates, the agency can select the secret parameters in a batch
for these gates and utilize a trusted verifying entity to generate
the messages for a verification task in the real world cloud
applications.
ProofGen(δ) → P is run by the cloud server. When the
computation reaches the last gate of the circuit, the cloud
server outputs the proof message P based on the verifying
tag δ output by running the GateEval algorithm on the last
gate. By the GateEval algorithm, the cloud server processes
the arithmetic circuit of the delegated polynomial function f
gate by gate. When the computation reaches the last output
gate of the circuit f , the cloud server outputs the verifying
tag δR(pk, σ) generated by the GateEval algorithm from the
last gate as the proof message P .

VerifyProof(P ) → (True, False) is executed by the agency
who is also the querier and can act as the verifier to verify
the result of delegated polynomial function. After the agency
ua receives the result R = f(x1, x2, . . . , xn) and the proof
message P = δR(pk, σ) for the polynomial function f , it
verifies the correctness of R by checking P . It outputs True
if the checking passes the verification; Otherwise, it returns
False.

For every input xi of f with the label τi1, the agency
ua computes tτi = H(τi). Next, ua evaluates the cir-
cuit on the labels (tτ1 , tτ2 , . . . , tτn), i.e., computing ρ ←
f(tτ1 , tτ2 , . . . , tτn).

If δR is a 1-level verifying tag, i.e., the last gate of the
circuit of the function f is a product gate, ua verifies P by Eq.
(16). Otherwise, ua verifies P by Eq. (17). If the verification
passes, ua accepts the result R; otherwise, ua believes that R
is incorrect.

e(g, hs)
?
= e(gα, hρ+R+k) = e(pk(1), r × hρ × hR), (16)

e(g, s)
?
= e(gα, hρ+R+k) = e(pk(1), r × hρ × hR). (17)

The verifying tags in our paper are the homomorphic
verifiable computation tags, which will be proven in the
next section. This feature enables the agency to verify the
delegated computation without knowing the inputs. Moreover,
it allows the cloud server to generate a proof message which
is independent of the size of the inputs and the complexity of
the polynomial function to save the communication cost.

Note that the labels of the outsourced data are chosen
by the clients to describe the physical meaning of them,
so they are all public information. In practice, computing
ρ = f(tτ1 , tτ2 , . . . , tτn) can be executed in advance to improve
the efficiency of the real-time applications. For example, the
agency can compute ρ for the whole year’s pollution data
statistics in advance, and this is reasonable for most related
applications.

VI. SECURITY ANALYSIS

A. Correctness

Before proving the correctness of the proposed verification
scheme, we first prove that the verifying tags in our scheme
are additive homomorphic and multiplicative homomorphic.

Lemma 1. The verifying tag in our scheme is additive
homomorphic.

Proof. For a sum gate G, the input wires are x1 and x2
with the labels τ1 and τ2 (Note that for a constant c, it’s
label is c), and tτ1 = H(τ1) and tτ2 = H(τ2). By the
GateEval algorithm in our scheme, the cloud server generates
the verifying tag for the output y = x1 + x2 of G as
σ′ = (r′, s′) = (hk, hβ((tτ1+tτ2 )+(x1+x2)+k)), where β is the
security parameter selected by the agency for the sum gate
G. Therefore, the agency can verify the result x1 + x2 of G

1ua can decide the labels of inputs based on its needs. For example, the
labels of inputs for calculating the average PM2.5 value in a day at Washington
DC should be ‘PM2.5 in Washington DC on 2015-07-15 at 9 am’, ‘PM2.5 in
Washington DC on 2015-07-15 at 10 am’, and so on.
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by Eq. (18) based on the bilinear maps without knowing the
inputs x1 and x2.

e(g, s′) = e(g, hβ((tτ1+tτ2 )+(x1+x2)+k))

= e(pk(1), r′ × htτ1+tτ2 × hx1+x2).
(18)

It is clear that the verifying tags are additive homomorphic.

Lemma 2. The verifying tag in our scheme is multiplicative
homomorphic.

Proof. For a product gate G, the input wires are x1 and x2
with the labels τ1 and τ2, and tτ1 = H(τ1) and tτ2 = H(τ2).
By the GateEval algorithm, the cloud server generates the
verifying tag for the output y = x1×x2 of G as σ′ = (r′, s′) =
(hk, α(tτ1 × tτ2 + x1 × x2 + k)). Therefore, the agency can
verify the output x1×x2 of G by Eq. (19) based on the bilinear
maps without knowing the inputs x1, x2.

e(g, hs
′
) = e(g, hα(tτ1×tτ2+x1×x2+k))

= e(pk(1), r′ × htτ1×tτ2 × hx1×x2).
(19)

It is clear that the verifying tags are multiplicative homo-
morphic.

Theorem 1. The verification scheme in our scheme achieve
correctness. That is, as long as the cloud server correctly
performs the computation, the corresponding proof message
will always pass the result integrity check.

Proof. According to Lemmas 1 and 2, the verifying tags
in our scheme are homomorphic verifiable computation tags
(HVCTs). Due to the property of HVCTs, the agency is
able to verify the correctness of the result of a polynomial
function without knowing the inputs. The correctness of the
verification of our scheme is equivalent to the correctness
of the VerifyProof(P ) algorithm. Based on the properties of
bilinear maps, the correctness of Eq.s (16) and (17) can be
proved as

e(g, hs) = e(g, hα(ρ+R+k)) = e(gα, hρ+R+k)

= e(pk(1), r × hρ × hR),
(20)

e(g, s) = e(g, hβ(ρ+R+k)) = e(gβ , hρ+R+k)

= e(pk(1), r × hρ × hR).
(21)

B. Soundness

Theorem 2. The verification scheme in our scheme achieves
soundness, i.e., the proof message corresponding to any false
computation answer will be detected and cannot pass the result
integrity check.

Proof. We prove the soundness of the verification scheme by
showing that once the cloud server or the external attackers
can forge the proof message corresponding to any false com-
putation answer to pass the verification, they would be able
to build an adversary A with non-negligible probability ε that
solves the CDH problem in the bilinear maps.

Assume that the system global parameters are
(e, p,G1,G2, g, h,H), where h = gx, x ∈ Zp. Given a
proof message P = δR(pk, σ(r, s)) where pk(1) = gα, set
α = x× y (y ∈ Zp). In this attack scenario, the adversary A
outputs the CDH challenge (gx, gy) as (gxy, gx) = (pk(1), h).
Let qHi be the total number of the queries on H for computing
tτi = H(τi). Thus, the collision in H for computing tτi occurs
with the probability at most qHi/2

l where l is the length of
H’s output. Applying the Reset Lemma [30], A can produce
two valid verifying tags δ1(pk, σ1(r, s1)) and δ2(pk, σ2(r, s2))
for the delegated polynomial function f(x1, x2, . . . , xn) with
probability at least

∏n
i=1(ε− (ε× qHi + 1)/2l)2.

If δR is a 1-level verifying tag, r = hk, s1 = α(c1 + R +
k)mod p and s2 = α(c2 +R+k)mod p, where c1 and c2 are
two different random responses for ρ ← f(tτ1 , tτ2 , . . . , tτn).
Based on these assumptions, A can solve the CDH problem
by computing and outputting:

(
hs1

hs2
)1/(c1−c2) = (

hα(c1+R+k)

hα(c2+R+k)
)1/(c1−c2)

= hα = (gx)xy = gx
2y.

(22)

If δR is a 2-level verifying tag, r = hk, s1 = hα(c1+R+k)

and s2 = hα(c2+R+k), where c1 and c2 are two different
random responses for ρ← f(tτ1 , tτ2 , . . . , tτn). Based on these
assumptions, A can solve the CDH problem by computing:

(
s1
s2

)1/(c1−c2) = (
hα(c1+R+k)

hα(c2+R+k)
)1/(c1−c2)

= hα = (gx)xy = gx
2y.

(23)

It is clear that if the adversary can build a forgery of
the verifying tag then we can solve the CDH problem in
the bilinear map G1, which is computationally infeasible.
Therefore, the proposed verification scheme is sound, i.e., the
adversary cannot generate a forgery of proof message for any
false computation answer.

VII. PERFORMANCE ANALYSIS

A. Communication Cost

For a verification task of the delegated polynomial function
f , the cloud server needs to return the proof message to the
agency ua and communicate with ua to generate the security
parameter for some gates in the corresponding arithmetic
circuit. The size of proof message δ(pk, σ) is (|Spk| + |Sσ|)
bits, where |Spk| is the the size of first component of public
key, and |Sσ| is the size of signature. For a sum gate in
the arithmetic circuit, the message for generating the security
parameter is c × |SG|, where c is a number from 0 to 7
according to the different inputs of the sum gate, and |SG| is
the size of an element of G1. Thus, the total communication
cost for a verifying task is (|Spk|+ |Sσ|) + (c× sum)|SG| =
(3 + c × sum)|SG|, where sum is the total number of sum
gates in the arithmetic circuit for the delegated function f .

B. Computation Cost

The Sign(m, sk) → σm procedure takes Texp + Thash +
Tmul+2Tadd+Tmod computations, where Texp, Thash, Tmul,
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Tadd, and Tmod represent one exponentiation operation, one
hash operation, one multiplication operation, one addition
operation, and one modular operation in G1, respectively.

For the product gate, it takes Texp + Tmul for Eq. (6) and
2Thash + 2Tadd + 4Tmul + 2Texp for Eq. (7) in GateEval
algorithm. For the sum gate, the computation cost is 2Texp +
Tmul +Thash +Tadd for Eq. (8), 2Tmul + 2Texp for Eq. (11),
Tmul+Texp+Thash+Tadd for Eq. (9), 2Tmul+Texp for Eq.
(13), and 2Tmul + Texp for Eq. (15) in GateEval algorithm.

The computation cost to generate a proof message by the
ProofGen algorithm is

∑
g∈|f | Tg , where |f | is the set of gates

in the arithmetic circuit f , and Tg is the computation cost for
gate g by GateEval algorithm.

In the VerifyProof algorithm, the agency verifies the proof
message P from the cloud. If the verifying tag in P is a 1-level
verifying tag, the computation cost is 3Texp+2Tmul+Tpair+
Tρ where Tpair denotes one pairing operation as e : G1 ×
G1 → G2, and Tρ denotes the computation cost for computing
ρ = f(tτ1 , tτ2 , . . . , tτn). Otherwise, the computation cost is
2Texp + 2Tmul + Tpair + Tρ. It is worth noting that ρ can
be calculated in advance (i.e., one-time cost), then the agency
does not have to compute ρ during the verification to improve
the computation efficiency.

VIII. EXPERIMENTAL RESULTS

A. Experiment Setup

We carry out the experiments to evaluate the performance
of our scheme. We utilize Java Pairing-Based Cryptography
Library (jPBC)2 to implement the pairing computation in
the proposed scheme in this paper. All the experiments are
conducted under Ubuntu with an Intel 2.6GHz processor and
4GB memory. We set the size of security parameter p to be
128 bits.

We use the representative real-world data set of city air
pollution in China3 as our experimental data set. The experi-
mental data set collects the daily Air Quality Index (AQI) of
367 major cities in China for one month. The total size of
experimental data is 11, 010. In the experiments, we assume
that the pollution monitor site in every city is a client, which
generates the original air quality data and uploads the data
to the cloud. And the environment ministry of China acts
as the agency to analyze the air pollution data from all the
cities and release the analysis result to the public. In our
experiments, two delegated polynomial functions are executed
over the experimental data, including the average function
which calculates the average AQI value in a month for every
city and the standard deviation function which measures the
standard deviation of the AQI value for every city. We compare
the performance of our scheme with the work homomorphic
MACs in [1] and ADSNARK in [16]. Because the verification
scheme in [1] does not support the scenario of the multiple
data contributors, we assume all the air pollution data in the
experiments for the reference [1] are outsourced by one client.

2jPBC, http://gas.dia.unisa.it/projects/jpbc/
3http://datacenter.mep.gov.cn/

B. Performance of Signature Generation

In our scheme, the client signs the data before outsourcing.
For a practically verifiable computation scheme, it should
ensure that the signing process is highly efficient and will
not burden the client. We measure the time for signing data
with respect to the scale of data, which ranges from 1, 000 to
10, 000. We compare the time cost of signing data by the Sign
algorithm in our scheme with those in homomorphic MACs
and ADSNARK.
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Fig. 3: Time cost for signing the outsourced data
As shown in Fig. 3, the computation cost for signing data

in our scheme increases linearly with respect to the scale
of outsourced data. The time cost of signing the outsourced
data is from 2.105 to 20.876 seconds. The efficiency of
signing the outsourced data in our scheme is comparable
with those in homomorphic MACs and ADSNARK. That
clearly shows the client in our scheme is able to efficiently
outsource the new data. Moreover, it is worth noting that
the solutions of homomorphic MACs and ADSNARK cannot
support the multiple data contributors directly. But, our scheme
is able to support the public verification with multiple data
contributors efficiently. This scenario is usually common in
the real applications.

C. Computation Cost of Verification at Server Side

In our scheme, the computation cost of a verification task is
divided into two parts: the computation cost at the cloud server
and the computation cost at the agency. The computation
cost at the server side is to generate the proof message for
the delegated polynomial by the ProofGen algorithm. We
carry out the experiments to evaluate the computation cost
at the cloud server for the verification task with the scale
of inputs from 1, 000 to 10, 000 and the different number of
data contributors from 1 to 300. First, to evaluate the server
performance for the polynomial function with the different
scale of inputs, we assume all the air pollution data are
uploaded and signed by one client. We compare the server
cost of our scheme with those in the verification schemes
homomorphic MACs [1] and ADSNARK [16].

The experimental results of the time cost at the server are
shown in the Fig. 4. The cloud server is able to generate
the proof message by the ProofGen algorithm in 6 seconds
for the delegated average function and in 17 seconds for the
delegated deviation function, no matter what scale the inputs
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(a) The delegated polynomial is the average function
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(b) The delegated polynomial is the standard deviation function

Fig. 4: Computation cost at the cloud server for the delegated
polynomial verification with the different scales of the inputs

are. And the experimental results also show that our scheme
can effectively reduce the server overhead for the delegated
polynomial verification compared with homomorphic MACs
and ADSNARK.

Second, one of the main research motivations is to support
the integrity verification of the delegated polynomial over
the outsourced data from the multiple data contributors. So
we carry out the experiments to evaluate the computation
overheads for the server while the air pollution data are
contributed by the different clients (from 1 to 300). We
fixed the scale of the inputs as 10, 000. Because the scheme
of homomorphic MACs cannot support the multiple data
contributors, we compare the performance of our scheme with
the extended ADSNARK [16].

From the experimental results in the Fig. 5, we can find that
our scheme can provide the efficient verification services for
the delegated polynomials even the inputs are uploaded and
signed by the different users. As shown, while the outsourced
data are uploaded by the multiple clients (from 1 to 300),
the cloud server is able to generate the proof message by the
ProofGen algorithm in 5.4 seconds to 7.3 seconds for the
delegated average function and in 16.7 seconds to 22.1 seconds
for the delegated deviation function. Moreover, while the
data contributors increase from 1 to 300, the server overhead
increases slightly by our scheme. However, the server overhead
by the extended ADSNARK increases significantly from 57.6
seconds to 174 seconds for the delegated average function and
from 70 seconds to 193 seconds. It indicates our scheme is
an efficient verification scheme for the delegated polynomials
over the outsourced data from multiple data contributors.
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(b) The delegated polynomial is the standard deviation function

Fig. 5: Computation cost at the cloud server for the delegated
polynomial verification with the different number of the data
contributors

D. Computation Cost of Verification at the Agency

The computation cost at the agency is the agency (verifier)
verifies the proof message returned from the cloud server
by the VerifyProof algorithm. We carry out the experiments
to evaluate the agency performance with the scale of inputs
from 1, 000 to 10, 000 and the different number of data
contributors from 1 to 300. First, we assume all the air
pollution data are uploaded and signed by one client. We
measure the computation cost of verification at the agency
for two cases: the verification with computing ρ and the
verification without computing ρ (the parameter ρ has been
computed in advance). We compare the verification cost of our
scheme with those in the verification schemes homomorphic
MACs [1] and ADSNARK [16].

From the experiments, we can find that our scheme enables
the agency to verify the integrity of the delegated polynomials
more efficiently than those in the homomorphic MACs and
the ADSNARK. As shown in the Fig. 6, while the agency
computes the parameter ρ during the verification, it is able
to finish the verification from 0.39 seconds to 0.57 seconds
for the average function and from 0.42 seconds to 0.82
seconds for the standard deviation function. And if the agency
computes the parameter ρ in advance, it can complete the
verification more efficiently. The agency is able to complete
the verification in 0.22 seconds for the average function and in
0.21 seconds for the standard deviation function. It is practical
for the real applications.

Second, we also carry out the experiments to evaluate the
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Fig. 6: Computation cost at the agency (verifier) for the
delegated polynomial verification with the different scales of
the inputs

agency performance while the outsourced data are uploaded
and signed by the multiple data contributors. We fixed the
scale of the inputs as 10, 000. Because the scheme of homo-
morphic MACs cannot support the multiple data contributors,
we compare the performance of agency under the average
function and the standard deviation function with the extended
ADSNARK. The experimental results are shown in Fig. 7.
From the experimental results, we find that our scheme enables
the agency to verify the integrity of the delegated polynomial
function f more efficiently especially when the inputs of f
are contributed by the multiple entities. When f is the average
function, the agency of our scheme is able to verify the result
in 0.25 seconds computing the parameter ρ in advance and
in 0.54 seconds computing ρ during verification. When f is
the standard deviation function, the agency also can complete
the verification in 0.26 seconds computing the parameter ρ in
advance and in 0.54 seconds computing ρ during verification.
Moreover, the efficiency of the verification in our scheme will
not remarkably declined with the data contributors increase. It
indicates that our scheme is an efficient verification solution
for the delegated polynomials with the multiple data contrib-
utors.

E. Communication Cost of Verification

We carry out the experiments to evaluate the communication
costs of the verification for the delegated polynomial functions.
First, we evaluate the communication overhead with the dif-
ferent scale of the inputs from 1, 000 to 10, 000. We assume
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Fig. 7: Computation cost at the agency (verifier) for the
delegated polynomial verification with the different numbers
of the data contributors

all the air pollution data are uploaded by one client. The
experimental results are shown in the Table III. While all the
data are from one source, the cloud server is able to generate
the proof message independently without communicating with
the agency. Then, the only message for the verification task
is the proof message returned from the cloud. It is 0.078
KBytes, which is irrelevant to the scale of the inputs or the
delegated polynomials. And the communication overhead of
our scheme is more lower than those in homomorphic MACs
and ADSNARK.

Inputs Communication cost (KBytes)
our scheme homomorphic MACs ADSNARK

1000 0.078 0.59 136.7
2000 0.078 0.59 258.7
3000 0.078 0.59 380.7
4000 0.078 0.59 502.7
5000 0.078 0.59 623.7
6000 0.078 0.59 743.7
7000 0.078 0.59 865.7
8000 0.078 0.59 987.7
9000 0.078 0.59 1109.7
10000 0.078 0.59 1311.7

TABLE III: Communication costs for verification (KB) while
all the inputs are from one source

We also carry out the experiments to evaluate the com-
munication overheads with the different numbers of the data
sources. We fixed the scale of the input as 10, 000. We compare
the communication cost of our scheme with the extended
ADSNARK. The experimental results are shown in the Fig. 8.
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Because the cloud server only needs to communicate with the
agency at the sum gates the inputs of which are signed by the
different public keys, the communication cost of our scheme
is small and more lower than that in ADSNARK. The com-
munication costs for the average function are from 0.078KB
to 18.83KB, and the communication costs for the standard
deviation function are from 0.078 KB to 37.58KB. The exper-
imental results demonstrate that the proposed scheme is able
to efficiently support the outsourcing computation services for
polynomials over the outsourced data in the cloud nowadays.
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Fig. 8: Communication overhead for the delegated polynomial
verification with the different numbers of the data contributors

IX. CONCLUSION

In this paper, we examined the practical problem of out-
sourcing polynomial evaluation over the outsourced cloud
data. Due to the possible misbehaviors of the cloud server,
result verification for the outsourced computation is a must.
We further identified three new practical requirements for the
verifiable polynomial evaluation outsourcing scheme. To fulfill
the requirements, we proposed a public key-based verifica-
tion scheme utilizing the bilinear maps. Our scheme allows
the agency to verify the result of the delegated polynomial
function over the outsourced data without knowing the inputs
even if they are uploaded and signed by multiple different
clients. In addition, our scheme also meets the requirements
of ‘input-independent efficiency’, ‘unbound storage’, ‘not fixed
function’, ‘function-independent efficiency’. Based on the thor-
ough security analysis, we proved that our scheme is correct
and sound. We conducted several experiments to show that
the verification processes are efficient and our scheme is

appropriate for using in cloud-based outsourcing computation
systems.
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