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Abstract—Interference neutralization (IN) is an interference
management technique that allows simultaneous transmission of
multiple links by nullifying their mutual interference in the air via
cooperation among the transmitters. Although IN has been studied
from information theoretic perspective, its potential for a general
multi-hop wireless network has not been explored. The goal of
this paper is to understand IN in a multi-hop wireless network
from networking perspective. We first establish an IN reference
model. Based on this reference model, we develop a set of feasibility
constraints for a subset of links to be active simultaneously. By
identifying each eligible neutralization node (called neut), we study
IN in a general multi-hop network and develop a set of necessary
constraints to characterize neut selection, IN, and scheduling.
These constraints allow us to study the performance of multi-hop
networks without the need of getting involved into onerous signal
design issues at the physical layer. Finally, we apply our IN model
and constraints to study a throughput maximization problem and
show that the use of IN can generally increase network throughput.
In particular, throughput gain is most significant when the node
density increases.

I. INTRODUCTION

Traditional paradigm for interference management in wireless
networks is avoidance, where interference is avoided by orthog-
onalizing channel access, either in time, frequency, space, or
code. Recent advancement of physical (PHY) layer technologies
allows a shift in paradigm toward interference exploitation,
which allows multiple concurrent independent transmissions in
the interference domain. This is accomplished by the use of
some powerful PHY layer techniques at a node’s transceiver
(e.g., interference cancellation (IC) and interference alignment
(IA)). This paper studies interference neutralization (IN), which
is a new technique in the interference exploitation family. The
IN terminology was coined by Mohajer et al. in [9], [10],
[11] when studying two-hop relay networks. As a special form
of transmitter-side zero-forcing, IN refers to a joint design
of signals at the transmitters so that these transmit signals
nullify themselves in the air at their unintended receivers while
remaining resolvable at their intended receivers. To achieve
interference nullification in the air, IN requires that multiple
transmitters have the same data that is under transmission.
This makes it uniquely suitable for wireless mesh networks.
Note that IN differs from transmitter-side IC, which projects
interference to a perpendicular direction of the desired signal
at the unintended receivers (rather than nullifying interference
in the air). IN is also different from IA. Although both IN and
IA require a joint signal design at the transmitters, the signal
design of IN is to nullify interference in the air, while the signal
design of IA is to align interference in the same direction.

To illustrate the idea of IN, let’s consider three transmit nodes
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Fig. 1: An example that illustrates IN.

and six receive nodes as shown in Fig. 1. Each node only
has a single antenna. Suppose that the three transmit nodes
{T1, T2, T3} have the same data information x for transmission.
Also suppose that {R1, R2, R3, R4} are the intended receivers
of x and {R5, R6} are the unintended receivers. Further, we
require that the interference on {R5, R6} from {T1, T2, T3} be
nullified. Denote hji as the channel coefficient between receive
node j and transmit node i, which is a complex number. Denote
ui as the precoding coefficient at transmit node i, which is
a complex number as well. Denote yj as the received signal
(desired signal or interference) at receive node j. Then we have

yj =
(
hj1u1 + hj2u2 + hj3u3

)
x,

for receiver Rj , j = 1, 2, · · · , 6. We now show that through
careful design of the precoding coefficients at the three trans-
mitters {T1, T2, T3}, the interference at the two unintended
receive nodes {R5, R6} can be neutralized while the desired
signal at the four intended receivers {R1, R2, R3, R4} can be
decoded successfully. To do so, we need to show that there exist
precoding coefficients (u1, u2, and u3) that satisfy the following
four constraints:

hj1u1 + hj2u2 + hj3u3 ̸= 0, j ∈ {1, 2, 3, 4}, (1a)

hj1u1 + hj2u2 + hj3u3 = 0, j ∈ {5, 6}. (1b)

Suppose that the channel coefficients hji (j = 1, 2, · · · , 6
and i = 1, 2, 3) are independent of each other, it is not difficult
to find a set of precoding coefficients u1, u2, u3 to meet the six
linear constraints. In fact, it can be shown that if one can find
a set of nonzero value for u1, u2, and u3 that satisfy (1b), then
u1, u2, u3 will satisfy (1a) almost surely [17]. Therefore, to
find a feasible solution to (1), one only need to focus on (1b).
For two equations with three variables, there exist non-unique
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feasible solutions. For example, we can set u1 = 1 and solve
u2 and u3 in (1b). We have

u2 = (h61h53 − h63h51)/(h63h52 − h62h53),

u3 = (h61h52 − h62h51)/(h62h53 − h52h63).

It is easy to verify that the above precoding coefficients satisfy
all constraints in (1). This indicates that by jointly construct-
ing precoding coefficients at transmitters T1, T2, and T3, the
interference at R5 and R6 can be nullified in the air while the
signal at R1, R2, R3 and R4 can be successfully decoded. In this
example, as nodes T1 and T2 help T2 to cancel its interference
at its unintended receive node, we call T1 and T2 as T2’s neuts.
In general, as we shall see in Section II, for K transmitters, we
can neutralize their interference to (K−1) unintended receivers
while there is no limit on the number of intended receivers.

Conceptually, IN resembles distributed MIMO in the sense
that both of them exploit precoding technique to achieve inter-
ference nullification at a selected subset of receivers. But there
is a key difference between their objectives. Historically, the
goal of distributed MIMO was mainly to maximize the SINR of
users in a cellular network (rather than to nullify interference at
a subset of receivers). Therefore, we choose to use terminology
IN in this paper (as in [9], [10], [11]) so as to contrast its
objective with that of distributed MIMO.

The next question is: why is IN particularly suitable for
wireless mesh networks? We answer this question by applying
IN to a wireless mesh network. Consider the wireless mesh
network in Fig. 2 as an example. There are three sessions in
the network: S1 → D1, S2 → D2, and S3 → D3. Each session
goes through multi-hop transmissions to deliver message from
its source to its destination. Inside the network, due to broadcast
advantage of wireless channel, there will be multiple nodes
overhearing the same message from one of the source nodes
and each of them can help relay the message to its next-hop
nodes. In this regard, consider the scenario in Fig. 2, where
the set of nodes in T can send message to the set of nodes in
R in one hop. Within the set of nodes in T , there are three
subsets of nodes, differentiated by the legends ⋆, �, and N,
each of which has message from S1, S2, and S3, respectively.
By using IN, the three subsets of nodes in T can send their
respective messages to their intended receivers in R (marked
with the three different legends) simultaneously, in one time
slot (instead of three). Inside R, three subsets of nodes can
successfully decode their own desired incoming messages since
the undesired messages (interferences) can be neutralized by IN.

The above example illustrates the potential benefits of IN in
a multi-hop network, i.e., allowing multiple data transmissions
in the same interference domain. To date, the previous arts
of IN have been limited to simple and specialized network
configurations, such as 2 × 2 × 2 network in [2], [15], half-
duplex relay channel [1], [12], full-duplex relay channel [6],
instantaneous relay channel in [3], [5], and ZZ network in [9],
[10], [11]. It is not clear how IN can be systematically exploited
in a general multi-hop network, such as the multi-hop network
shown in Fig. 2. This knowledge gap underscores both the
technical depth of this problem and the critical need of bridging
this gap. The goal of this paper is to make a concrete step toward

S1

S2

S3

D1

D2

D3

Fig. 2: An example that illustrates IN in a wireless mesh
network.

advancing IN technique in a general multi-hop network. The
main contributions of this paper are summarized as follows:

• We establish a reference model for IN. Under the reference
model, we derive the maximum number of unintended
receivers whose interference can be effectively neutralized.
By applying the IN reference model to a set of links, we
derive a set of feasibility constraints for a subset of links
that can be active simultaneously.

• We show how IN can enable simultaneous data trans-
missions at different nodes in an ad hoc network by
taking the broadcast advantage of wireless channels and
the assistance of idle nodes. We introduce a concept called
neut to represent those idle nodes that can be exploited for
IN.

• Based on the notion of neut, we study IN in a general
multi-hop network. We show that the thrust of the problem
is to select an optimal set of neuts along each session’s
routing path. Subsequently, we develop the necessary
mathematical models (constraints) to characterize neut se-
lection, IN, and scheduling. Collectively, these constraints
allow us to quantify the throughput benefits of IN at
network level while not getting involved into the tedious
signal design at the PHY layer.

• As an application, we apply our IN model to study
a throughput maximization problem. We compare the
throughput of the network with IN against that without IN.
Simulation results show that the use of IN can generally
increase throughput. We find that the throughput gain is
most profound when the network is dense and the number
of idle nodes that can be used as neuts is abundant.

The remainder of the paper is organized as follows. In
Section II, we establish a reference model for IN, based on
which we characterize the feasibility constraints for a set of
active links. In Section III, we develop a mathematical model
for IN in a multi-hop network. In Section IV, we apply our IN
model to study a throughput maximization problem. Section V
presents performance evaluation results. Section VI concludes
this paper.
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Fig. 3: A reference model for IN.

II. FEASIBILITY CONSTRAINTS FOR INTERFERING LINKS IN
A SINGLE HOP

In this section, we study the feasibility conditions (con-
straints) for IN to work in a single-hop transmission. These
constraints will lay the groundworks for our study of IN for
multi-hop in the next section.
A Reference Model and Basic Result. Figure 3 shows
the reference model (or building block) for IN in our study.
Denote T as the set of transmitters and R as the set of
intended receivers. Each receiver in R is in the transmission
range of the transmitters in T . Denote P as the set of receivers
that are interfered with by all the transmitters in T . That is,
each receiver j ∈ P is within the interference range of every
transmitter i ∈ T . In the figure, the solid arrow line represents
“aggregate” transmission link from the transmitters in T to the
receivers in R. Such an aggregate link refers to concurrent
transmissions from T to R. Likewise, the dashed arrow line
represents “aggregate” interference link from transmitters in T
to unintended receivers in P . Again, such an aggregate link
refers to concurrent interference from T to P . In the following,
if there is no ambiguity, we drop the wording “aggregate” when
we refer to such links.

For the transmitters in T , they may not be able to neutralize
their interference to all the receivers in P . So we ask the
following question: How many receivers in P can have their
interference be neutralized by the transmitters in T ?

Define Q as a subset of P (i.e., Q ⊆ P). To have the
transmitters in T neutralize their interference to each receiver
in Q while keeping their signals decodable at each receiver in
R, we need to ensure that the following linear constraints have
a feasible solution:∑

i∈T

hjiui ̸= 0, j ∈ R; (2)∑
i∈T

hjiui = 0, j ∈ Q; (3)

where hji is assumed to be a constant and ui is a variable.
Since the channel coefficients are independent among them-

selves, it was shown in [17] that a nonzero solution to (3) also
satisfies (2) almost surely (with probability 1). Therefore, we
only need to make sure that there exists a nonzero solution
to (3). For the linear equations in (3), there are |Q| constraints
and |T | variables. According to [8, Ch. 2], a sufficient condition
for the existence of nonzero solution to (3) is that it has more
variables than constraints, i.e., |Q| ≤ |T |−1. Therefore, (2) and
(3) always have a feasible solution if |Q| ≤ |T | − 1. Simply
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Fig. 4: A set of “aggregate” transmission links.

put, the transmitters in T can neutralize their interference to
|T | − 1 receivers.

To find a set of precoding coefficients that satisfy (3), we can
use Gauss–Jordan elimination algorithm. By performing row
reduction on (3), we can obtain the reduced row echelon form
as follows:

u1+h̃12u2+h̃13u3+ · · ·+ h̃1(T−1)u(T−1) + h̃1TuT = 0,

u2+h̃13u3+ · · ·+ h̃2(T−1)u(T−1) + h̃2TuT = 0, (4)
· · ·

u(T−1) + h̃QTuT = 0,

where T = |T | and Q = |Q|.
In the reduced row echelon form (4), if a variable is a leading

variable for an equation, then it is a basic variable; otherwise,
it is a free variable [8, Ch. 2]. Denote G as the set of basic
variables and E as the set of free variables. Then, a solution to
(3) can be computed as follows:

ui =


1, for ui ∈ E ,

−
T∑

k=i+1

h̃ikuk, for ui ∈ G.
(5)

Given that |Q| ≤ |T |−1, there exists at least one free variable
in (4), i.e., E ̸= ∅. Since the free variable is set to 1 in (5), the
solution is nonzero and thus satisfies (2) almost surely. The
following lemma summarizes our results:

Lemma 1: Through joint design of precoding coefficients, the
transmitters in T can neutralize their interference to any subset
of receivers Q in P if |Q| ≤ |T | − 1.
Feasibility Constraints. We now apply the results in Lemma 1
to a general one-hop transmission scenario as shown in Fig. 4. In
this figure, there is a set L of concurrent links, where each link
l ∈ L denotes aggregate transmissions from the transmitters
in Tl to the receivers in Rl, as we discussed previously. For
each transmitter in Tl, we assume it has a fixed interference
range. Then, for the receivers of link k (e.g., Rk), some of
them may be interfered with by the transmitters in Tl and some
of them may not. Denote Pl as the set of receivers that are
interfered with by at least one transmitter in Tl. Then the subset



of receivers in Rk that are interfered with by the transmitters
in Tl can be written as Pl ∩Rk.

Denote αl as a binary variable to indicate whether link l ∈
L is active. Specifically, αl = 1 if link l is active (i.e., the
transmitters in Tl are transmitting to the receivers in Rl) and 0
otherwise. Obviously, not all links in L may be allowed to be
active at the same time. So the question is: for a given subset of
links, how can we determine if they can be active at the same
time? In what follows, we present feasibility constraints that
can be used to make this determination. Further, this feasibility
constraint can be used to plot the entire feasibility region for
(α1, α2, · · · , αL).

To explore the feasibility constraints, we consider the follow-
ing two cases for link l ∈ L:

• Link l is active (i.e., αl = 1). In this case, the transmitters
in Tl must neutralize their interference to all receivers in Pl

that are receiving signals from their intended transmitters.
To do so, the number of transmitters in Tl should be at least
1 more than the number of active receivers in Pl (based on
Lemma 1). We now count the number of active receivers
in Pl. For link k ∈ L, the subset of its intended receivers
in Rk that is also within Pl is Pl∩Rk. So the total number
of active receivers in Pl is

∑k ̸=l
k∈L |Pl ∩Rk| ·αk. Based on

Lemma 1, it is required that
∑k ̸=l

k∈L |Pl∩Rk|·αk ≤ |Tl|−1.
• Link l is inactive (i.e., αl = 0). In this case, the transmit

nodes in Tl do not generate interference. So there is no
restriction on the number of active receivers within their
interference ranges.

By defining N as the total number of nodes in the network,
it is easy to verify that the above two cases can be combined
as follows:

k ̸=l∑
k∈L

|Pl ∩Rk|·αk ≤ |Tl|−1+(1−αl)·N, l ∈ L. (6)

Another restriction of neutralization in this network is that
the transmitters in Tl can only neutralize their interferences to
a node that are interfered with by all transmitters in Tl. To
model this restriction, we define a binary constant for links l
and k in Fig. 4 as follows:

Wl,k =

 0 If there exists a receiver j∈Rk that is interfered
with by a subset of transmitters in Tl,

1 otherwise.

Based on the definition of Wl,k, we have the following two
cases:

• Wl,k = 0: In this case, receiver j ∈ Rk is interfered with
by some transmitter(s) in Tl, but not interfered with by all
the transmitters in Tl. In our IN scheme, to guarantee the
feasibility of the final solution, neutralization is only done
for a receiver that is interfered with by all the transmitters
in Tl. So we will not employ IN to nullify the interference
for receiver j ∈ Rk. As a result, links k and l cannot be
active at the same time, i.e., αl + αk ≤ 1.

• Wl,k = 1: In this case, there is no additional restriction
on αl and αk.
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(a) A network with three sessions. Each oval contains a
node along a session’s path and a set of nodes acting as its
neuts.
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(b) IN among three active links in a time slot.

Fig. 5: An example of IN in a multi-hop wireless network.

It is easy to verify that the above two cases can be combined
into the following constraint:

αl + αk ≤ 1 +Wl,j , l, k ∈ L, l ̸= k. (7)

Therefore, (6) and (7) constitute the feasibility constraints
for (α1, α2, · · · , αL). By enumerating all possible setting of
(α1, α2, · · · , αL), we can use (6) and (7) to plot the feasible
region.

III. INTERFERENCE NEUTRALIZATION IN MULTI-HOP
NETWORKS

In this section, we study IN in multi-hop networks. Consider
a multi-hop network consisting of a set of nodes as shown in
Fig. 5(a). Among the nodes, there is a set of sessions S, with
src(s) and dst(s) denoting the source and destination nodes of
session s ∈ S , respectively. Denote r(s) as the end-to-end data
rate of session s ∈ S . We assume that the routing path of each
session is obtained through some routing protocol for ad hoc
networks. Based on the routing paths, the nodes in the network
can be classified into two subsets: Ns and Nidle, where Ns is



the set of nodes on routing paths (marked as filled circles in
Fig. 5(a)), and Nidle is the set of remaining nodes (marked as
empty circles). Denote Ls as the set of links that are traversed
by the set of sessions S. Assume that transmission scheduling
among the links in Ls is based on a frame that consists of T
time slots.

For each multi-hop session, if an idle node is chosen to help
a session node cancel its interference at its unintended nodes,
then we call this idle node neut. Figure 5(a) illustrates how
some idle nodes along the path are chosen as neuts by the
nodes along each path. For example, {N2, N4, N7} are chosen
as N5’s neuts, {N8} is chosen as N9’s neut, {N12, N14} are
chosen as N10’s neuts, and so forth. When receiving, the group
of neuts can receive the same information as the corresponding
node on the path from its one-hop upstream node. For example,
{N2, N4, N7}, which are N5’s neuts, can receive data from
N3 since they are all within the transmission range of N3.
When transmitting, based on Lemma 1, {N2, N4, N5, N7} can
neutralize their interferences to three other unintended receivers
via the joint design of their precoding coefficients. Fig. 5(b)
shows an example where IN can enable simultaneous transmis-
sions in a multi-hop wireless network. Suppose all nodes are in
the same interference domain. {N2, N4, N5, N7} can neutral-
ize their interferences to receive nodes N32, N46, and N47.
Similarly, the set of transmitters {N16, N17, N23, N29, N31}
can neutralize their interferences to receive nodes N8, N9,
N46, and N47; the set of transmitters {N40, N43, N44, N45}
can neutralize their interference to receive nodes N8, N9, and
N32. Since interference is neutralized at the receivers, the three
transmissions can be active in the same time slot. Note that
without IN, only one of the three links (N5 → N9, N44 → N47,
or N31 → N32) can be active in a time slot.

It is worth pointing out that for a node q ∈ Ns, how to choose
a subset of its neighboring nodes as neuts is a key problem
in IN. A small number of neuts will limit the neutralization
capability (see Lemma 1) while a large number of neuts may
increase the interference footprint unnecessarily. For the same
number of neuts, the locations of the neuts are also important
as they will characterize the overall shape and size of the
interference footprint. Therefore, one must choose a set of
neuts for each node q ∈ Ns meticulously and systematically to
maximize the benefits of IN. In our study for IN in a multi-hop
network, we model neut selection as part of the optimization
problem.

A. Neut Selection and IN

Referring to Fig. 5(a), for a node on a path, say N5, not every
idle node is eligible to be its neut. An idle node is eligible to
be N5’s neut only if it can receive the same information from
N5’s one-hop upstream node, i.e., N3. In general, for a node
q ∈ Ns, denote Iq as the set of idle nodes that are eligible
to be its neuts. Referring to Fig. 6(a), if node q has only one
one-hop upstream node, say p, then Iq is the set of idle nodes
within the transmission range of node p, i.e., Iq = {i : d(i, p) ≤
DT, i ∈ Nidle}, where d(i, p) is the distance between nodes i
and p and DT is a node’s transmission range. If node q ∈ Ns

is traversed by multiple sessions (see, e.g., Fig. 6(b)), node q
has multiple one-hop upstream nodes and therefore Iq is the
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Fig. 6: An illustration of Aq – the set containing eligible neuts
for a node q.

set of idle nodes that fall in the intersection of the transmission
ranges of these nodes. Therefore, we have

Iq =
∩

(p,q)∈Ls

{
i : d(i, p) ≤ DT, i ∈ Nidle

}
, q ∈ Ns,

where (p, q) represents a one-hop link in Ls.
Consider an idle node i ∈ Nidle. It may be eligible to serve

as a neut for multiple nodes in Ns, but it can only serve as a
neut for only one node in Ns. Denote Mi as a subset of nodes
in Ns for which idle node i is eligible to serve as a neut. Denote
λq,i as a binary variable to indicate whether or not node i is
assigned to serve as a neut for node q ∈ Mi. Specifically,

λi→q =

{
1 if node i is assigned to be node q’s neut,
0 otherwise.

Since an idle node can serve as a neut for at most one node,
we have the following constraint:∑

q∈Mi

λi→q ≤ 1, i ∈ Nidle. (8)

For notational convenience, we define Aq as the union of Iq
and {q}, i.e.,

Aq = Iq ∪ {q}. (9)

We also define Bq as the subset of idle nodes in Aq that are
chosen to be node q’s neuts, plus node q itself, i.e.,

Bq =
{
i : i ∈ Aq, λi→q = 1

}
, (10)

where λq→q ≡ 1 for q ∈ Ns.
For transmission scheduling among the links in Ls, we

assume it is based on time slots. Consider all links in Ls in
a time slot t as shown in Fig. 7. Obviously, not all these links
can be active at the same time. Denote αl(t) as a binary variable
to indicate whether or not link l ∈ Ls is active in time slot t,
i.e.,

αl(t) =

{
1 if link l is active in time slot t,
0 otherwise.

Consider link l’s transmitters in BTx(l) and a node j among
another link k’s receivers in ARx(l). We define a binary variable
π
BTx(l)

j (t) to indicate whether or not the transmitters in BTx(l)
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neutralize their interferences to node j ∈ ARx(k) in time slot t.
That is,

π
BTx(l)

j (t) =


1 if the transmitters in BTx(l) neutralize

their interference to node j ∈ ARx(k)

in time slot t,
0 otherwise,

Then, we have two cases:
• αl(t) = 1: In this case, the nodes in BTx(l) are active

transmitters. Based on Lemma 1, we know that the trans-
mitters in BTx(l) can neutralize their interferences to at
most (|BTx(l)| − 1) unintended receivers. Based on (10),
we have |BTx(l)| − 1 = (

∑
i∈ITx(l)

λi→Tx(l) + 1) − 1 =∑
i∈ITx(l)

λi→Tx(l) . Therefore, we have the following
constraint:∑
j∈∪k ̸=l

k∈Ls
ARx(k)

π
BTx(l)

j (t) ≤ |BTx(l)| − 1 =
∑

i∈ITx(l)

λi→Tx(l) .

• αl(t) = 0: In this case, the nodes in BTx(l) are inactive.
They neither produce any interference to other nodes nor
possess IN capability. Therefore, we have π

BTx(l)

j (t) = 0
for all j ∈ ARx(k), k ∈ Ls\{l}.

It is easy to verify that the above two cases can be combined
into the following equivalent set of constraints:∑

j∈∪k ̸=l
k∈Ls

ARx(k)

π
BTx(l)

j (t) ≤
( ∑

i∈ITx(l)

λi→Tx(l)

)
· αl(t) ,

l ∈ Ls, 1 ≤ t ≤ T. (11)

For (11), we implicitly assume that node j ∈ ARx(k) falls
in the intersection of interference ranges of all nodes in BTx(l)

when π
BTx(l)

j (t) = 1. We now develop the necessary constraints
to ensure that this assumption is valid. Define a binary indicator
Ei,j to indicate whether or not node j is within node i’s
interference range. That is,

Ei,j =

{
1 if node j is within node i’s interference range,
0 otherwise.

If π
BTx(l)

j (t) = 1, then node j must be within the interference
range of every node in BTx(l), i.e., Ei,j = 1 for i ∈ BTx(l).
Given that λi→Tx(l) = 1 for i ∈ BTx(l) and λi→Tx(l) = 0 for
i ∈ ATx(l)\BTx(l), it is required that λi→Tx(l) ≤ Ei,j for i ∈
ATx(l). Otherwise (i.e., π

BTx(l)

j (t) = 0), there is no interference
from BTx(l) and therefore there is no requirement on whether
node j is within the interference range of the nodes in BTx(l).
Combining these two cases, we have

π
BTx(l)

j (t) · λi→Tx(l) ≤ π
BTx(l)

j (t) · Ei,j ,

l ∈ Ls, i ∈ ATx(l), k ∈ Ls\{l}, j ∈ ARx(k), 1 ≤ t ≤ T.
(12)

B. Link Scheduling Constraints

For each node, we assume that it has a single antenna and
operates with a half-duplex radio. When acting as a transmitter
(or receiver), we assume a node can only be used by at most
one active link in a time slot. Then we have∑

q∈
{
Tx(l),Rx(l)

}αl(t) ≤ 1, q ∈ Ns, 1 ≤ t ≤ T. (13)

Consider node j ∈ ARx(k) in Fig. 7. We define a binary
variable θ

BTx(l)

j (t) to indicate whether or not node j is within
the interference range of at least one active transmitter in BTx(l).
That is,

θ
BTx(l)

j (t) =


1 if node j is within the interference range

of at least one active transmitter in
BTx(l) in time slot t,

0 otherwise.

We now explore the relationship between θ
BTx(l)

j (t) and
αl(t) = 1 as follows. If αl(t) = 1, then the nodes in BTx(l)

are active transmitters. Based on the definition of θ
BTx(l)

j (t),
θ
BTx(l)

j (t) = 0 if and only if node j is out of the interference
range of every node i ∈ BTx(l), i.e., Ei,j = 0 for i ∈ BTx(l).
Therefore, we have

1

N

∑
i∈BTx(l)

Ei,j ≤ θ
BTx(l)

j (t) ≤
∑

i∈BTx(l)

Ei,j ,

where N is the total number of nodes in the network. Otherwise
(i.e., αl(t) = 0), the nodes in BTx(l) are inactive. So they do
not interfere with node j, i.e., θ

BTx(l)

j (t) = 0. Combining these
two cases, we have[ 1

N

∑
i∈BTx(l)

Ei,j

]
· αl(t) ≤ θ

BTx(l)

j (t) ≤
[ ∑
i∈BTx(l)

Ei,j

]
· αl(t) ,

k ∈ Ls, j ∈ ARx(k), l ∈ Ls\{k}, 1 ≤ t ≤ T.
(14)

Consider a receive node j ∈ BRx(k), k ∈ Ls, in Fig. 7.
Since it has a single antenna, it does not have capability to
cancel interference while receiving. If node j is active and being
interfered with by at least one node in BTx(l), then BTx(l) must
neutralize such interference to node j. To meet this requirement,
we have the following constraints for θ

BTx(l)

j (t) and π
BTx(l)

j (t)
in two cases:



• αk(t) = 1: In this case, link k is active and thus node j

is an active receiver. If θ
BTx(l)

j (t) = 1, node j is interfered
with by BTx(l). To neutralize such interference to node j,
we must have π

BTx(l)

j (t) = 1. Otherwise (i.e., θ
BTx(l)

j (t) =
0), node j is not interfered with by BTx(l). Then BTx(l)

do not need to neutralize their interferences to node j,
i.e., π

BTx(l)

j (t) = 0. Combining these two cases, we have
θ
BTx(l)

j (t) = π
BTx(l)

j (t).
• αk(t) = 0: In this case, link k is an inactive link

and thus node j is an inactive receiver. Then node j can
be interfered with by any unintended transmitters, i.e.,
θ
BTx(l)

j (t) can be either 0 or 1. Further, since node j is
inactive, there is no requirement for BTx(l) to neutralize
their interference to node j, i.e., π

BTx(l)

j (t) can be either 0
or 1.

Combining these two cases, we have the following constraint:

−[1− αk(t)] ≤ θ
BTx(l)

j (t)− π
BTx(l)

j (t) ≤ [1− αk(t)] ,

k ∈ Ls, j ∈ BRx(k), l ∈ Ls\{k}, 1 ≤ t ≤ T. (15)

Collectively, constraints (8), (11), (12), (13), (14), and (15)
constitute an IN model, which allows us to determine which
subsets of links can be active simultaneously without the need
of involving onerous signal design at the PHY layer.

IV. AN APPLICATION TO THROUGHPUT MAXIMIZATION
PROBLEM IN MULTI-HOP NETWORK

In this section, we apply IN to study a throughput maxi-
mization problem in a multi-hop network. The objective is to
maximize the minimum achievable data rate among all sessions.
To formulate this throughput maximization problem, let us
consider a specific link l ∈ Ls in the network. It may be
traversed by multiple sessions’ routing paths. Denote Sl as the
set of sessions that share wireless link l along their paths. Then
the aggregate data rate requirement on link l is

∑
s∈Sl

r(s).
For link l, we assume that fixed modulation and coding scheme
(MCS) is used for its data stream transmission and one data
stream in one time slot corresponds to one unit data rate. Then,
the achievable data rate of link l (averaged over T time slots)
is 1

T

∑T
t=1 αl(t). Since the aggregate data rate requirement (for

its traversing sessions) cannot exceed the achievable data rate,
we have ∑

s∈Sl

r(s) ≤ 1

T

T∑
t=1

αl(t), l ∈ L. (16)

By denoting rmin as the minimum achievable rate among all
sessions, we have

rmin ≤ r(s), s ∈ S. (17)

Collectively, the throughput maximization problem can be
formulated as follows:

OPT-INraw: max rmin

s.t. Neut selection and IN: (8), (11), (12);
Link scheduling: (13), (14), (15);
Link rate constraints: (16);
Min rate constraints: (17).

In this optimization formulation, (11), (12), (14), and (15)
are nonlinear constraints and the rest are all linear. We now
show how to linearize (11), (12), (14), and (15) without loss of
optimality.
Reformation of (11). To linearize (11), we define a new
binary variable γi→Tx(l)(t) = λi→Tx(l) · αl(t). Then, (11) can
be equivalently transformed to the following linear constraint:∑

j∈∪k ̸=l
k∈Ls

ARx(k)

π
BTx(l)

j (t) ≤
∑

i∈ITx(l)

γi→Tx(l)(t) ,

l ∈ Ls, 1 ≤ t ≤ T. (18)

Based on the definition of γi→Tx(l)(t), we can enumerate all
possible cases for λi→Tx(l) and αl(t) (both are binary variables)
and obtain the following linear constraint for λi→Tx(l):

λi→Tx(l) + αl(t)− 1 ≤ γi→Tx(l)(t) =
1

2
[λi→Tx(l) + αl(t)],

l ∈ L, i ∈ ATx(l), 1 ≤ t ≤ T.
(19)

Reformation of (12). In (12), Ei,j is determined by the
network topology and therefore it is a constant. But we have
a product of two binary variables λi→Tx(l) and π

BTx(l)

j (t). By
enumerating all possibilities for these two binary variables, it
is easy to verify that (12) is equivalent to the following linear
constraint:

π
BTx(l)

j (t) + λi→Tx(l) ≤ 1 + Ei,j ,

l ∈ Ls, i ∈ ATx(l), j ∈ ∪k ̸=l
k∈Ls

ARx(k), 1 ≤ t ≤ T. (20)

Reformation of (14). In (14), Ei,j is a constant but BTx(l)

is a variable set. To linearize this constraint, we classify the
nodes in ATx(l) into two subsets: BTx(l) and ATx(l)\BTx(l). For
node i ∈ BTx(l), λi→Tx(l) = 1. For node i ∈ ATx(l)\BTx(l),
λi→Tx(l) = 0. Then we have∑

i∈BTx(l)

Ei,j =
∑

i∈ATx(l)

Ei,j · λi→Tx(l) .

Based on the above result, constraint (14) can be equivalently
written as:[ 1

N

∑
i∈ATx(l)

Ei,j · λi→Tx(l)

]
· αl(t) ≤ θ

BTx(l)

j (t)

≤
[ ∑
i∈ATx(l)

Ei,j · λi→Tx(l)

]
· αl(t),

k ∈ Ls, j ∈ ARx(k), l ∈ Ls\{k}, 1 ≤ t ≤ T. (21)

Constraint (21) is still nonlinear as it involves product of
variables λi→Tx(l) · αl(t). Based on our previous definition of
γi→Tx(l)(t) = λi→Tx(l) ·αl(t), nonlinear constraint (21) can be
further linearized as

1

N

∑
i∈ATx(l)

Ei,j · γi→Tx(l)(t) ≤ θ
BTx(l)

j (t)

≤
∑

i∈ATx(l)

Ei,j · γi→Tx(l)(t) ,

k ∈ Ls, j ∈ ARx(k), l ∈ Ls\{k}, 1 ≤ t ≤ T. (22)



Reformation of (15). For (15), it appears linear, but it is actu-
ally not. This is because the set of nodes in BRx(k) is unknown,
which is determined by variable λj→Rx(k). To address this
problem, we want to extend the range from BRx(k) to ARx(k) (a
constant set) without any change to the solution space. Recall
that λj→Rx(k) = 1 for j ∈ BRx(k) and λj→Rx(k) = 0 for
j ∈ ARx(k)\BRx(k). Therefore, for j ∈ ARx(k), we have the
following two cases:

• λj→Rx(k) = 1: In this case, node j must be in BRx(k).
Then node j must satisfies (15).

• λj→Rx(k) = 0: In this case, node j must be in
ARx(k)\BRx(k). Then node j does not need to satisfy (15).

Combining these two cases, j ∈ BRx(k) in (15) can be
expanded to j ∈ ARx(k) by rewriting (15) as follows:

−[2− αk(t)− λj→Rx(k)] ≤ θ
BTx(l)

j (t)− π
BTx(l)

j (t)

≤ [2− αk(t)− λj→Rx(k)] ,

k ∈ Ls, j ∈ ARx(k), l ∈ Ls\{k}, 1 ≤ t ≤ T.
(23)

Note that when λj→Rx(k) = 1, (23) is exactly (15); when
λj→Rx(k) = 0, (23) does not impose any additional constraint
on θ

BTx(l)

j (t), π
BTx(l)

j (t), and αk(t).
Problem Reformulation. In summary, by replacing nonlinear
constraints (11), (12), (14), and (15) with (18), (19), (20), (22),
and (23), we can reformulate OPT-INraw as follows:

OPT-IN: max rmin

s.t. Neut selection and IN: (8), (18), (19), (20);
Link scheduling: (13), (22), (23);
Link rate constraints: (16);
Min rate constraints: (17);

where N , T , and Ei,j are constant; Ns, Nidle, Ls, S, ATx(l),
and ARx(l) are given sets; αl(t), λi→q, π

BTx(l)

j (t), θ
BTx(l)

j (t),
and γi→Tx(l)(t) are optimization binary variables; rmin and r(s)
are optimization continuous variables. Note that the reformula-
tion does not change the optimality of the problem, i.e., OPT-
INraw and OPT-IN have the same optimal objective value.

OPT-IN offers a centralized approach to exploit IN for
throughput maximization in multi-hop networks. Some discus-
sions of its solution in a practical network are in order. First,
the transmitters in Bq , q ∈ Ns, are required to have cooperation
when designing their precoding coefficients for IN. This is
a mild requirement, as the nodes in Bq are typically close
to each other in a local area. Second, the transmitters in Bq

are required to have channel state information (CSI) between
themselves and their interfering receivers. To send CSI from
the receivers to the transmitters, strategies such as adaptive
feedback compression (AFC) in [16] can be employed to reduce
the overhead in feedback. Third, the transmitters in Bq are
required to be synchronized when transmitting their signals.
This is also a mild requirement, as synchronization at the time
slot level is sufficient. Synchronization protocols such as FTSP
[7] can meet this requirement.

OPT-IN is in the form of mixed-integer linear program
(MILP). Although a general MILP problem is NP-hard [13],
there exist efficient optimal algorithms (e.g., branch-and-bound
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Fig. 8: A case study of IN in a multi-hop network.

with cutting planes [4, Ch. 5]) and efficient heuristic algorithms
(e.g., sequential fixing [4, Ch. 10]) to solve it. For networks with
a few hundred nodes, an off-the-shelf solver such as CPLEX
[18] can be used. Since our goal is to study the performance
gain of IN in multi-hop networks, we employ CPLEX in our
performance evaluation.

V. PERFORMANCE EVALUATION

In this section, we first explain our simulation setting and
then use a case study to show the throughput gain of IN in
a network instance. Finally, we present our simulation results
from a large number of network instances to show how IN
affects the throughput performance of multi-hop networks. As
a benchmark for performance comparison, we formulate the
same throughput maximization problem when IN is not used,
and denote it as OPT-noIN. OPT-noIN follows interference
avoidance paradigm and schedules links in such a manner that
there is no interference among the active links in a time slot.

A. Simulation Setting

Without loss of generality, we normalize the units of distance,
data rate, bandwidth, and time with appropriate dimensions. We
consider a multi-hop network consisting of a set of randomly
generated nodes that are uniformly deployed in an 1000×1000
square region. Each node is equipped with a single antenna.
The transmission and interference ranges are set to 250 and
500, respectively [14]. There are four sessions in each network
instance, with their source and destination nodes being ran-
domly chosen among all the nodes. The routing path of each
session is computed based on a node’s transmission range and
the shortest path routing algorithm. We assume each source
node has persistent traffic for transmission. We also assume
that a frame has T = 15 time slots.

B. A Case Study

Figure 8 shows a network instance that consists of 75 nodes.
Among the nodes, there are 4 sessions, with their source and
destination nodes as well as their routing paths shown in
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the figure. By solving OPT-IN for this network instance, we
obtained the optimal objective value of 2/15, meaning that
each session’s achievable end-to-end rate is 2/15. In contrast,
by solving OPT-noIN for this network instance, the optimal
objective value is 1/15. This means that the use of IN can
increase the session throughput by 100% for this network
instance.

C. Impact of Node Density

We present results of throughput gain of IN under difference
node densities. For each randomly generated network instance,
the throughput gain of IN is calculated by (r̂∗min − r̃∗min)/r̃

∗
min,

where r̂∗min and r̃∗min are the optimal objective values from
solving OPT-IN and OPT-noIN for this network instance, re-
spectively. Figure 9 presents our simulation results. In the figure,
the x-axis is the number of nodes in the network and the y-
axis is the average throughput gain of IN over 100 randomly
generated network instances. From Fig. 9, we can observe
the significant throughput gain of IN: 57% for the 50-node
networks; 74% for the 75-node networks; 81% for the 100-node
networks; 85% for the 125-node networks; and 87% for the 150-
node networks. Clearly, the throughput gain of IN increases with
the node density. This can be explained by that the more nodes
in the network, the more idle nodes are available to be used
as neuts. The larger pool of neuts allows more interferences
to be neutralized and thus allowing more transmissions to be
carried out simultaneously. In the extreme case (not shown in
the figures), when the node density becomes asymptotically
large, all the interferences can be neutralized and the network
operates in an “interference-free” regime.

VI. CONCLUSIONS

In this paper, we studied IN in a general wireless mesh
network. We found that a multi-hop network environment
(particularly a dense one) provides a fertile environment
for us to unlock IN’s potential. By identifying eligible idle
nodes as neuts that can be exploited for IN, we established a
mathematical framework for neut selection, IN, and scheduling.
This mathematical framework allows us to determine a feasible
space for a set of links that can be active simultaneously
through optimal neut selection, IN among interference links,
and scheduling. As an application, we applied this framework
to study a throughput maximization problem and showed that
IN can indeed boost throughput performance. In particular,

we found that the benefits of IN are most profound when the
network is dense and there is a sufficient number of idle nodes
that can be chosen for IN.
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