
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2318320, IEEE Transactions on Parallel and Distributed Systems

1

A Hybrid Cloud Approach for Secure Authorized
Deduplication

Jin Li, Yan Kit Li, Xiaofeng Chen, Patrick P. C. Lee, Wenjing Lou

Abstract—Data deduplication is one of important data compression techniques for eliminating duplicate copies of repeating data,
and has been widely used in cloud storage to reduce the amount of storage space and save bandwidth. To protect the confidentiality
of sensitive data while supporting deduplication, the convergent encryption technique has been proposed to encrypt the data before
outsourcing. To better protect data security, this paper makes the first attempt to formally address the problem of authorized data
deduplication. Different from traditional deduplication systems, the differential privileges of users are further considered in duplicate
check besides the data itself. We also present several new deduplication constructions supporting authorized duplicate check in a hybrid
cloud architecture. Security analysis demonstrates that our scheme is secure in terms of the definitions specified in the proposed
security model. As a proof of concept, we implement a prototype of our proposed authorized duplicate check scheme and conduct
testbed experiments using our prototype. We show that our proposed authorized duplicate check scheme incurs minimal overhead
compared to normal operations.

Index Terms—Deduplication, authorized duplicate check, confidentiality, hybrid cloud

F

1 INTRODUCTION

Cloud computing provides seemingly unlimited “virtu-
alized” resources to users as services across the whole
Internet, while hiding platform and implementation de-
tails. Today’s cloud service providers offer both highly
available storage and massively parallel computing re-
sources at relatively low costs. As cloud computing
becomes prevalent, an increasing amount of data is being
stored in the cloud and shared by users with specified
privileges, which define the access rights of the stored
data. One critical challenge of cloud storage services is
the management of the ever-increasing volume of data.

To make data management scalable in cloud comput-
ing, deduplication [17] has been a well-known technique
and has attracted more and more attention recently.
Data deduplication is a specialized data compression
technique for eliminating duplicate copies of repeating
data in storage. The technique is used to improve storage
utilization and can also be applied to network data
transfers to reduce the number of bytes that must be
sent. Instead of keeping multiple data copies with the
same content, deduplication eliminates redundant data
by keeping only one physical copy and referring other
redundant data to that copy. Deduplication can take

• J. Li is with the School of Computer Science, Guangzhou University, P.R.
China and Department of Computer Science, Virginia Polytechnic Institute
and State University, USA (Email: lijin@gzhu.edu.cn)

• Xiaofeng Chen is with the State Key Laboratory of Integrated Service
Networks (ISN), Xidian University, Xi’an, P.R. China and Department
of Computer Science, Virginia Polytechnic Institute and State University,
USA (Email: xfchen@xidian.edu.cn)

• Y. Li and P. Lee are with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong
Kong (emails: {liyk,pclee}@cse.cuhk.edu.hk).

• W. Lou is with the Department of Computer Science, Virginia Polytechnic
Institute and State University, USA (Email: wjlou@vt.edu)

place at either the file level or the block level. For file-
level deduplication, it eliminates duplicate copies of the
same file. Deduplication can also take place at the block
level, which eliminates duplicate blocks of data that
occur in non-identical files.

Although data deduplication brings a lot of benefits,
security and privacy concerns arise as users’ sensitive
data are susceptible to both insider and outsider attacks.
Traditional encryption, while providing data confiden-
tiality, is incompatible with data deduplication. Specif-
ically, traditional encryption requires different users to
encrypt their data with their own keys. Thus, identical
data copies of different users will lead to different ci-
phertexts, making deduplication impossible. Convergent
encryption [8] has been proposed to enforce data con-
fidentiality while making deduplication feasible. It en-
crypts/decrypts a data copy with a convergent key, which
is obtained by computing the cryptographic hash value
of the content of the data copy. After key generation
and data encryption, users retain the keys and send the
ciphertext to the cloud. Since the encryption operation is
deterministic and is derived from the data content, iden-
tical data copies will generate the same convergent key
and hence the same ciphertext. To prevent unauthorized
access, a secure proof of ownership protocol [11] is also
needed to provide the proof that the user indeed owns
the same file when a duplicate is found. After the proof,
subsequent users with the same file will be provided a
pointer from the server without needing to upload the
same file. A user can download the encrypted file with
the pointer from the server, which can only be decrypted
by the corresponding data owners with their convergent
keys. Thus, convergent encryption allows the cloud to
perform deduplication on the ciphertexts and the proof
of ownership prevents the unauthorized user to access

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2318320, IEEE Transactions on Parallel and Distributed Systems

2

the file.
However, previous deduplication systems cannot sup-

port differential authorization duplicate check, which is im-
portant in many applications. In such an authorized
deduplication system, each user is issued a set of priv-
ileges during system initialization (in Section 3, we
elaborate the definition of a privilege with examples).
Each file uploaded to the cloud is also bounded by a set
of privileges to specify which kind of users is allowed to
perform the duplicate check and access the files. Before
submitting his duplicate check request for some file, the
user needs to take this file and his own privileges as
inputs. The user is able to find a duplicate for this file
if and only if there is a copy of this file and a matched
privilege stored in cloud. For example, in a company,
many different privileges will be assigned to employees.
In order to save cost and efficiently management, the
data will be moved to the storage server provider (S-
CSP) in the public cloud with specified privileges and
the deduplication technique will be applied to store only
one copy of the same file. Because of privacy consid-
eration, some files will be encrypted and allowed the
duplicate check by employees with specified privileges
to realize the access control. Traditional deduplication
systems based on convergent encryption, although pro-
viding confidentiality to some extent, do not support
the duplicate check with differential privileges. In other
words, no differential privileges have been considered
in the deduplication based on convergent encryption
technique. It seems to be contradicted if we want to
realize both deduplication and differential authorization
duplicate check at the same time.

1.1 Contributions

In this paper, aiming at efficiently solving the problem of
deduplication with differential privileges in cloud com-
puting, we consider a hybrid cloud architecture consist-
ing of a public cloud and a private cloud. Unlike existing
data deduplication systems, the private cloud is involved
as a proxy to allow data owner/users to securely per-
form duplicate check with differential privileges. Such an
architecture is practical and has attracted much attention
from researchers. The data owners only outsource their
data storage by utilizing public cloud while the data
operation is managed in private cloud. A new dedu-
plication system supporting differential duplicate check
is proposed under this hybrid cloud architecture where
the S-CSP resides in the public cloud. The user is only
allowed to perform the duplicate check for files marked
with the corresponding privileges.

Furthermore, we enhance our system in security.
Specifically, we present an advanced scheme to support
stronger security by encrypting the file with differential
privilege keys. In this way, the users without correspond-
ing privileges cannot perform the duplicate check. Fur-
thermore, such unauthorized users cannot decrypt the
ciphertext even collude with the S-CSP. Security analysis

Acronym Description

S-CSP Storage-cloud service provider
PoW Proof of Ownership
(pkU , skU) User’s public and secret key pair
kF Convergent encryption key for file F
PU Privilege set of a user U
PF Specified privilege set of a file F
ϕ′
F,p Token of file F with privilege p

TABLE 1
Notations Used in This Paper

demonstrates that our system is secure in terms of the
definitions specified in the proposed security model.

Finally, we implement a prototype of the proposed
authorized duplicate check and conduct testbed exper-
iments to evaluate the overhead of the prototype. We
show that the overhead is minimal compared to the nor-
mal convergent encryption and file upload operations.

1.2 Organization
The rest of this paper proceeds as follows. In Section 2,
we briefly revisit some preliminaries of this paper. In
Section 3, we propose the system model for our dedupli-
cation system. In Section 4, we propose a practical dedu-
plication system with differential privileges in cloud
computing. The security and efficiency analysis for the
proposed system are respectively presented in Section 5.
In Section 6, we present the implementation of our pro-
totype, and in Section 7, we present testbed evaluation
results. Finally we draw conclusion in Section 8.

2 PRELIMINARIES

In this section, we first define the notations used in this
paper, review some secure primitives used in our secure
deduplication. The notations used in this paper are listed
in TABLE 1.

Symmetric encryption. Symmetric encryption uses a
common secret key κ to encrypt and decrypt informa-
tion. A symmetric encryption scheme consists of three
primitive functions:

• KeyGenSE(1
λ) → κ is the key generation algorithm

that generates κ using security parameter 1λ;
• EncSE(κ,M) → C is the symmetric encryption algo-

rithm that takes the secret κ and message M and
then outputs the ciphertext C; and

• DecSE(κ,C) → M is the symmetric decryption algo-
rithm that takes the secret κ and ciphertext C and
then outputs the original message M .

Convergent encryption. Convergent encryption [4],
[8] provides data confidentiality in deduplication. A user
(or data owner) derives a convergent key from each
original data copy and encrypts the data copy with the
convergent key. In addition, the user also derives a tag
for the data copy, such that the tag will be used to detect
duplicates. Here, we assume that the tag correctness

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2318320, IEEE Transactions on Parallel and Distributed Systems

3

property [4] holds, i.e., if two data copies are the same,
then their tags are the same. To detect duplicates, the
user first sends the tag to the server side to check if
the identical copy has been already stored. Note that
both the convergent key and the tag are independently
derived, and the tag cannot be used to deduce the
convergent key and compromise data confidentiality.
Both the encrypted data copy and its corresponding tag
will be stored on the server side. Formally, a convergent
encryption scheme can be defined with four primitive
functions:

• KeyGenCE(M) → K is the key generation algorithm
that maps a data copy M to a convergent key K;

• EncCE(K,M) → C is the symmetric encryption
algorithm that takes both the convergent key K
and the data copy M as inputs and then outputs
a ciphertext C;

• DecCE(K,C) → M is the decryption algorithm that
takes both the ciphertext C and the convergent key
K as inputs and then outputs the original data copy
M ; and

• TagGen(M) → T (M) is the tag generation algorithm
that maps the original data copy M and outputs a
tag T (M).

Proof of ownership. The notion of proof of ownership
(PoW) [11] enables users to prove their ownership of
data copies to the storage server. Specifically, PoW is
implemented as an interactive algorithm (denoted by
PoW) run by a prover (i.e., user) and a verifier (i.e.,
storage server). The verifier derives a short value ϕ(M)
from a data copy M . To prove the ownership of the
data copy M , the prover needs to send ϕ′ to the verifier
such that ϕ′ = ϕ(M). The formal security definition
for PoW roughly follows the threat model in a content
distribution network, where an attacker does not know
the entire file, but has accomplices who have the file. The
accomplices follow the “bounded retrieval model”, such
that they can help the attacker obtain the file, subject to
the constraint that they must send fewer bits than the
initial min-entropy of the file to the attacker [11].

Identification Protocol. An identification protocol Π
can be described with two phases: Proof and Verify. In
the stage of Proof, a prover/user U can demonstrate his
identity to a verifier by performing some identification
proof related to his identity. The input of the prover/user
is his private key skU that is sensitive information such
as private key of a public key in his certificate or credit
card number etc. that he would not like to share with
the other users. The verifier performs the verification
with input of public information pkU related to skU . At
the conclusion of the protocol, the verifier outputs either
accept or reject to denote whether the proof is passed
or not. There are many efficient identification protocols
in literature, including certificate-based, identity-based
identification etc. [5], [6].

User

Public Cloud

Private Cloud

3. U
pload/Download Request

4. R
esults

Encrypted Files

Privilege Keys

1. Token Request
2. File Token

Fig. 1. Architecture for Authorized Deduplication

3 SYSTEM MODEL

3.1 Hybrid Architecture for Secure Deduplication
At a high level, our setting of interest is an enterprise
network, consisting of a group of affiliated clients (for
example, employees of a company) who will use the
S-CSP and store data with deduplication technique. In
this setting, deduplication can be frequently used in
these settings for data backup and disaster recovery
applications while greatly reducing storage space. Such
systems are widespread and are often more suitable
to user file backup and synchronization applications
than richer storage abstractions. There are three entities
defined in our system, that is, users, private cloud and
S-CSP in public cloud as shown in Fig. 1. The S-CSP
performs deduplication by checking if the contents of
two files are the same and stores only one of them.

The access right to a file is defined based on a set
of privileges. The exact definition of a privilege varies
across applications. For example, we may define a role-
based privilege [9], [19] according to job positions (e.g.,
Director, Project Lead, and Engineer), or we may define
a time-based privilege that specifies a valid time period
(e.g., 2014-01-01 to 2014-01-31) within which a file can
be accessed. A user, say Alice, may be assigned two
privileges “Director” and “access right valid on 2014-
01-01”, so that she can access any file whose access role
is “Director” and accessible time period covers 2014-01-
01. Each privilege is represented in the form of a short
message called token. Each file is associated with some
file tokens, which denote the tag with specified privileges
(see the definition of a tag in Section 2). A user computes
and sends duplicate-check tokens to the public cloud for
authorized duplicate check.

Users have access to the private cloud server, a semi-
trusted third party which will aid in performing dedu-
plicable encryption by generating file tokens for the
requesting users. We will explain further the role of the
private cloud server below. Users are also provisioned

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2318320, IEEE Transactions on Parallel and Distributed Systems

4

with per-user encryption keys and credentials (e.g., user
certificates). In this paper, we will only consider the file-
level deduplication for simplicity. In another word, we
refer a data copy to be a whole file and file-level dedu-
plication which eliminates the storage of any redundant
files. Actually, block-level deduplication can be easily
deduced from file-level deduplication, which is similar
to [12]. Specifically, to upload a file, a user first performs
the file-level duplicate check. If the file is a duplicate,
then all its blocks must be duplicates as well; otherwise,
the user further performs the block-level duplicate check
and identifies the unique blocks to be uploaded. Each
data copy (i.e., a file or a block) is associated with a
token for the duplicate check.

• S-CSP. This is an entity that provides a data storage
service in public cloud. The S-CSP provides the
data outsourcing service and stores data on behalf
of the users. To reduce the storage cost, the S-CSP
eliminates the storage of redundant data via dedu-
plication and keeps only unique data. In this paper,
we assume that S-CSP is always online and has
abundant storage capacity and computation power.

• Data Users. A user is an entity that wants to out-
source data storage to the S-CSP and access the
data later. In a storage system supporting dedupli-
cation, the user only uploads unique data but does
not upload any duplicate data to save the upload
bandwidth, which may be owned by the same user
or different users. In the authorized deduplication
system, each user is issued a set of privileges in the
setup of the system. Each file is protected with the
convergent encryption key and privilege keys to re-
alize the authorized deduplication with differential
privileges.

• Private Cloud. Compared with the traditional dedu-
plication architecture in cloud computing, this is
a new entity introduced for facilitating user’s se-
cure usage of cloud service. Specifically, since the
computing resources at data user/owner side are
restricted and the public cloud is not fully trusted
in practice, private cloud is able to provide data
user/owner with an execution environment and
infrastructure working as an interface between user
and the public cloud. The private keys for the
privileges are managed by the private cloud, who
answers the file token requests from the users. The
interface offered by the private cloud allows user to
submit files and queries to be securely stored and
computed respectively.

Notice that this is a novel architecture for data dedu-
plication in cloud computing, which consists of a twin
clouds (i.e., the public cloud and the private cloud).
Actually, this hybrid cloud setting has attracted more
and more attention recently. For example, an enterprise
might use a public cloud service, such as Amazon S3, for
archived data, but continue to maintain in-house storage
for operational customer data. Alternatively, the trusted

private cloud could be a cluster of virtualized crypto-
graphic co-processors, which are offered as a service
by a third party and provide the necessary hardware-
based security features to implement a remote execution
environment trusted by the users.

3.2 Adversary Model
Typically, we assume that the public cloud and private
cloud are both “honest-but-curious”. Specifically they
will follow our proposed protocol, but try to find out
as much secret information as possible based on their
possessions. Users would try to access data either within
or out of the scopes of their privileges.

In this paper, we suppose that all the files are sen-
sitive and needed to be fully protected against both
public cloud and private cloud. Under the assumption,
two kinds of adversaries are considered, that is, 1)
external adversaries which aim to extract secret infor-
mation as much as possible from both public cloud
and private cloud; 2) internal adversaries who aim to
obtain more information on the file from the public
cloud and duplicate-check token information from the
private cloud outside of their scopes. Such adversaries
may include S-CSP, private cloud server and authorized
users. The detailed security definitions against these
adversaries are discussed below and in Section 5, where
attacks launched by external adversaries are viewed as
special attacks from internal adversaries.

3.3 Design Goals
In this paper, we address the problem of privacy-
preserving deduplication in cloud computing and pro-
pose a new deduplication system supporting for

• Differential Authorization. Each authorized user is
able to get his/her individual token of his file to
perform duplicate check based on his privileges.
Under this assumption, any user cannot generate
a token for duplicate check out of his privileges or
without the aid from the private cloud server.

• Authorized Duplicate Check. Authorized user is able
to use his/her individual private keys to generate
query for certain file and the privileges he/she
owned with the help of private cloud, while the
public cloud performs duplicate check directly and
tells the user if there is any duplicate.

The security requirements considered in this paper lie
in two folds, including the security of file token and
security of data files. For the security of file token, two
aspects are defined as unforgeability and indistinguisha-
bility of file token. The details are given below.

• Unforgeability of file token/duplicate-check token. Unau-
thorized users without appropriate privileges or file
should be prevented from getting or generating the
file tokens for duplicate check of any file stored at
the S-CSP. The users are not allowed to collude with
the public cloud server to break the unforgeability

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2318320, IEEE Transactions on Parallel and Distributed Systems

5

of file tokens. In our system, the S-CSP is honest
but curious and will honestly perform the duplicate
check upon receiving the duplicate request from
users. The duplicate check token of users should be
issued from the private cloud server in our scheme.

• Indistinguishability of file token/duplicate-check token. It
requires that any user without querying the private
cloud server for some file token, he cannot get any
useful information from the token, which includes
the file information or the privilege information.

• Data Confidentiality. Unauthorized users without ap-
propriate privileges or files, including the S-CSP and
the private cloud server, should be prevented from
access to the underlying plaintext stored at S-CSP.
In another word, the goal of the adversary is to
retrieve and recover the files that do not belong to
them. In our system, compared to the previous def-
inition of data confidentiality based on convergent
encryption, a higher level confidentiality is defined
and achieved.

4 SECURE DEDUPLICATION SYSTEMS

Main Idea. To support authorized deduplication, the tag
of a file F will be determined by the file F and the priv-
ilege. To show the difference with traditional notation of
tag, we call it file token instead. To support authorized
access, a secret key kp will be bounded with a privilege p
to generate a file token. Let ϕ′

F,p = TagGen(F, kp) denote
the token of F that is only allowed to access by user with
privilege p. In another word, the token ϕ′

F,p could only
be computed by the users with privilege p. As a result, if
a file has been uploaded by a user with a duplicate token
ϕ′
F,p, then a duplicate check sent from another user will

be successful if and only if he also has the file F and
privilege p. Such a token generation function could be
easily implemented as H(F, kp), where H(·) denotes a
cryptographic hash function.

4.1 A First Attempt

Before introducing our construction of differential
deduplication, we present a straightforward attempt
with the technique of token generation TagGen(F, kp)
above to design such a deduplication system. The main
idea of this basic construction is to issue corresponding
privilege keys to each user, who will compute the file
tokens and perform the duplicate check based on the
privilege keys and files. In more details, suppose that
there are N users in the system and the privileges in
the universe is defined as P = {p1, . . . , ps}. For each
privilege p in P , a private key kp will be selected. For a
user U with a set of privileges PU , he will be assigned
the set of keys {kpi}pi∈PU .

File Uploading. Suppose that a data owner U with
privilege set PU wants to upload and share a file F
with users who have the privilege set PF = {pj}.

The user computes and sends S-CSP the file token
ϕ′
F,p = TagGen(F, kp) for all p ∈ PF .

• If a duplicate is found by the S-CSP, the user pro-
ceeds proof of ownership of this file with the S-CSP.
If the proof is passed, the user will be assigned a
pointer, which allows him to access the file.

• Otherwise, if no duplicate is found, the user com-
putes the encrypted file CF = EncCE(kF , F) with
the convergent key kF = KeyGenCE(F) and uploads
(CF , {ϕ′

F,p}) to the cloud server. The convergent key
kF is stored by the user locally.

File Retrieving. Suppose a user wants to download a file
F . It first sends a request and the file name to the S-CSP.
Upon receiving the request and file name, the S-CSP
will check whether the user is eligible to download F .
If failed, the S-CSP sends back an abort signal to the
user to indicate the download failure. Otherwise, the
S-CSP returns the corresponding ciphertext CF . Upon
receiving the encrypted data from the S-CSP, the user
uses the key kF stored locally to recover the original
file F .

Problems. Such a construction of authorized
deduplication has several serious security problems,
which are listed below.

• First, each user will be issued private keys
{kpi}pi∈PU

for their corresponding privileges, de-
noted by PU in our above construction. These pri-
vate keys {kpi}pi∈PU

can be applied by the user to
generate file token for duplicate check. However,
during file uploading, the user needs to compute file
tokens for sharing with other users with privileges
PF . To compute these file tokens, the user needs
to know the private keys for PF , which means PF

could only be chosen from PU . Such a restriction
makes the authorized deduplication system unable
to be widely used and limited.

• Second, the above deduplication system cannot pre-
vent the privilege private key sharing among users.
The users will be issued the same private key for
the same privilege in the construction. As a result,
the users may collude and generate privilege private
keys for a new privilege set P ∗ that does not belong
to any of the colluded user. For example, a user
with privilege set PU1 may collude with another
user with privilege set PU2 to get a privilege set
P ∗=PU1 ∪ PU2.

• The construction is inherently subject to brute-force
attacks that can recover files falling into a known
set. That is, the deduplication system cannot pro-
tect the security of predictable files. One of critical
reasons is that the traditional convergent encryption
system can only protect the semantic security of
unpredictable files.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2318320, IEEE Transactions on Parallel and Distributed Systems

6

4.2 Our Proposed System Description
To solve the problems of the construction in Section 4.1,
we propose another advanced deduplication system sup-
porting authorized duplicate check. In this new dedupli-
cation system, a hybrid cloud architecture is introduced
to solve the problem. The private keys for privileges will
not be issued to users directly, which will be kept and
managed by the private cloud server instead. In this way,
the users cannot share these private keys of privileges
in this proposed construction, which means that it can
prevent the privilege key sharing among users in the
above straightforward construction. To get a file token,
the user needs to send a request to the private cloud
server. The intuition of this construction can be described
as follows. To perform the duplicate check for some file,
the user needs to get the file token from the private
cloud server. The private cloud server will also check
the user’s identity before issuing the corresponding file
token to the user. The authorized duplicate check for
this file can be performed by the user with the public
cloud before uploading this file. Based on the results of
duplicate check, the user either uploads this file or runs
PoW.

Before giving our construction of the deduplication
system, we define a binary relation R = {((p, p′)} as
follows. Given two privileges p and p′, we say that p
matches p′ if and only if R(p, p′) = 1. This kind of a
generic binary relation definition could be instantiated
based on the background of applications, such as the
common hierarchical relation. More precisely, in a hier-
archical relation, p matches p′ if p is a higher-level privi-
lege. For example, in an enterprise management system,
three hierarchical privilege levels are defined as Director,
Project lead, and Engineer, where Director is at the top
level and Engineer is at the bottom level. Obviously, in
this simple example, the privilege of Director matches
the privileges of Project lead and Engineer. We provide
the proposed deduplication system as follows.

System Setup. The privilege universe P is defined as
in Section 4.1. A symmetric key kpi for each pi ∈ P
will be selected and the set of keys {kpi}pi∈P will be
sent to the private cloud. An identification protocol
Π = (Proof,Verify) is also defined, where Proof and
Verify are the proof and verification algorithm respec-
tively. Furthermore, each user U is assumed to have a
secret key skU to perform the identification with servers.
Assume that user U has the privilege set PU . It also
initializes a PoW protocol POW for the file ownership
proof. The private cloud server will maintain a table
which stores each user’s public information pkU and its
corresponding privilege set PU . The file storage system
for the storage server is set to be ⊥.

File Uploading. Suppose that a data owner wants to
upload and share a file F with users whose privilege be-
longs to the set PF = {pj}. The data owner needs interact
with the private cloud before performing duplicate check
with the S-CSP. More precisely, the data owner performs

an identification to prove its identity with private key
skU . If it is passed, the private cloud server will find
the corresponding privileges PU of the user from its
stored table list. The user computes and sends the file
tag ϕF = TagGen(F) to the private cloud server, who
will return {ϕ′

F,pτ
= TagGen(ϕF , kpτ)} back to the user

for all pτ satisfying R(p, pτ) = 1 and p ∈ PU . Then, the
user will interact and send the file token {ϕ′

F,pτ
} to the

S-CSP.
• If a file duplicate is found, the user needs to run

the PoW protocol POW with the S-CSP to prove the
file ownership. If the proof is passed, the user will
be provided a pointer for the file. Furthermore, a
proof from the S-CSP will be returned, which could
be a signature on {ϕ′

F,pτ
}, pkU and a time stamp.

The user sends the privilege set PF = {pj} for
the file F as well as the proof to the private cloud
server. Upon receiving the request, the private cloud
server first verifies the proof from the S-CSP. If it is
passed, the private cloud server computes {ϕ′

F,pτ
=

TagGen(ϕF , kpτ)} for all pτ satisfying R(p, pτ) = 1
for each p ∈ PF -PU , which will be returned to the
user. The user also uploads these tokens of the file
F to the private cloud server. Then, the privilege
set of the file is set to be the union of PF and the
privilege sets defined by the other data owners.

• Otherwise, if no duplicate is found, a proof from
the S-CSP will be returned, which is also a sig-
nature on {ϕ′

F,pτ
}, pkU and a time stamp. The

user sends the privilege set PF = {pj} for the
file F as well as the proof to the private cloud
server. Upon receiving the request, the private cloud
server first verifies the proof from the S-CSP. If it is
passed, the private cloud server computes {ϕ′

F,pτ
=

TagGen(ϕF , kpτ)} for all pτ satisfying R(p, pτ) = 1
and p ∈ PF . Finally, the user computes the en-
crypted file CF = EncCE(kF , F) with the convergent
key kF = KeyGenCE(F) and uploads {CF , {ϕ′

F,pτ
}}

with privilege PF .
File Retrieving. The user downloads his files in the same
way as the deduplication system in Section 4.1. That is,
the user can recover the original file with the convergent
key kF after receiving the encrypted data from the S-CSP.

4.3 Further Enhancement
Though the above solution supports the differential
privilege duplicate, it is inherently subject to brute-
force attacks launched by the public cloud server, which
can recover files falling into a known set. More specif-
ically, knowing that the target file space underlying
a given ciphertext C is drawn from a message space
S = {F1, · · · , Fn} of size n, the public cloud server
can recover F after at most n off-line encryptions. That
is, for each i = 1, · · · , n, it simply encrypts Fi to get
a ciphertext denoted by Ci. If C = Ci, it means that
the underlying file is Fi. Security is thus only possible
when such a message is unpredictable. This traditional

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2318320, IEEE Transactions on Parallel and Distributed Systems

7

convergent encryption will be insecure for predictable
file.
We design and implement a new system which could
protect the security for predicatable message. The main
idea of our technique is that the novel encryption key
generation algorithm. For simplicity, we will use the
hash functions to define the tag generation functions
and convergent keys in this section. In traditional con-
vergent encryption, to support duplicate check, the key
is derived from the file F by using some cryptographic
hash function kF = H(F). To avoid the deterministic key
generation, the encryption key kF for file F in our system
will be generated with the aid of the private key cloud
server with privilege key kp. The encryption key can be
viewed as the form of kF,p = H0(H(F), kp)

⊕
H2(F),

where H0,H and H2 are all cryptographic hash func-
tions. The file F is encrypted with another key k, while k
will be encrypted with kF,p. In this way, both the private
cloud server and S-CSP cannot decrypt the ciphertext.
Furthermore, it is semantically secure to the S-CSP based
on the security of symmetric encryption. For S-CSP, if the
file is unpredicatable, then it is semantically secure too.
The details of the scheme, which has been instantiated
with hash functions for simplicity, are described below.

System Setup. The privilege universe P and the sym-
metric key kpi for each pi ∈ P will be selected for
the private cloud as above. An identification protocol
Π = (Proof,Verify) is also defined. The proof of own-
ership POW is instantiated by hash functions H,H0,H1

and H2, which will be shown as follows. The private
cloud server maintains a table which stores each user’s
identity and its corresponding privilege.

File Uploading. Suppose that a data owner with priv-
ilege p wants to upload and share a file F with users
whose privilege belongs to the set P = {pj}. The data
owner performs the identification and sends H(F) to
the private cloud server. Two file tag sets {ϕF,pτ =
H0(H(F), kpτ)} and {ϕ′

F,pτ
= H1(H(F), kpτ)} for all pτ

satisfying R(p, pτ) = 1 and p ∈ PU will be sent back
to the user if the identification passes. After receiving
the tag {ϕF,pτ }, and {ϕ′

F,pτ
}, the user will interact and

send these two tag sets to the S-CSP. If a file duplicate
is found, the user needs to run the PoW protocol POW
with the S-CSP to prove the file ownership. If the proof is
also passed, the user will be provided a pointer for the
file. Otherwise, if no duplicate is found, a proof from
the S-CSP will be returned, which could be a signature.
The user sends the privilege set P = {pj} as well as the
proof to the private cloud server for file upload request.
Upon receiving the request, the private cloud server
verifies the signature first. If it is passed, the private
cloud server will compute ϕF,pj = H0(H(F), kpj) and
ϕ′
F,pj

= H1(H(F), kpj) for each pj satisfying R(p, pj) = 1
and p ∈ PF , which will be returned to the user. Finally,
the user computes the encryption CF = EncSE(k, F),
where k is random key, which will be encrypted into ci-
phertext Ck,pj with each key in {kF,pj = ϕF,pj

⊕
H2(F)}

using a symmetric encryption algorithm. Finally, the user
uploads {ϕ′

F,pj
, CF , Ck,pj}.

File Retrieving. The procedure of file retrieving is sim-
ilar to the construction in Section 4.2. Suppose a user
wants to download a file F . The user first uses his key
kF,pj to decrypt Ck,pj and obtain k. Then the user uses
k to recover the original file F .

5 SECURITY ANALYSIS

Our system is designed to solve the differential privilege
problem in secure deduplication. The security will be
analyzed in terms of two aspects, that is, the authoriza-
tion of duplicate check and the confidentiality of data.
Some basic tools have been used to construct the secure
deduplication, which are assumed to be secure. These
basic tools include the convergent encryption scheme,
symmetric encryption scheme, and the PoW scheme.
Based on this assumption, we show that systems are
secure with respect to the following security analysis.

5.1 Security of Duplicate-Check Token

We consider several types of privacy we need protect,
that is, i) unforgeability of duplicate-check token: There
are two types of adversaries, that is, external adversary
and internal adversary. As shown below, the external ad-
versary can be viewed as an internal adversary without
any privilege. If a user has privilege p, it requires that
the adversary cannot forge and output a valid duplicate
token with any other privilege p′ on any file F , where
p does not match p′. Furthermore, it also requires that
if the adversary does not make a request of token with
its own privilege from private cloud server, it cannot
forge and output a valid duplicate token with p on
any F that has been queried. The internal adversaries
have more attack power than the external adversaries
and thus we only need to consider the security against
the internal attacker, ii) indistinguishability of duplicate-
check token: this property is also defined in terms of
two aspects as the definition of unforgeability. First, if
a user has privilege p, given a token ϕ′, it requires that
the adversary cannot distinguish which privilege or file
in the token if p does not match p′. Furthermore, it also
require that if the adversary does not make a request of
token with its own privilege from private cloud server,
it cannot distinguish a valid duplicate token with p on
any other F that the adversary has not queried. In the
security definition of indistinguishablity, we require that
the adversary is not allowed to collude with the public
cloud servers. Actually, such an assumption could be
removed if the private cloud server maintains the tag
list for all the files uploaded. Similar to the analysis of
unforgeability, the security against external adversaries
is implied in the security against the internal adversaries.

Next, we will give detailed security analysis for
scheme in Section 4.2 based on the above definitions.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2318320, IEEE Transactions on Parallel and Distributed Systems

8

Unforgeability of duplicate-check token

• Assume a user with privilege p could forge a new
duplicate-check token ϕ′

F,p′ for any p′ that does not
match p. If it is a valid token, then it should be
calculated as ϕ′

F,p′ = H1(H(F), kp′). Recall that kp′

is a secret key kept by the private cloud server
and H1(H(F), kp′) is a valid message authentication
code. Thus, without kp′ , the adversary cannot forge
and output a new valid one for any file F .

• For any user with privilege p, to output a new
duplicate-check token ϕ′

F,p, it also requires the
knowledge of kp. Otherwise, the adversary could
break the security of message authentication code.

Indistinguishiability of duplicate-check token

The security of indistinguishability of token can be
also proved based on the assumption of the underlying
message authentication code is secure. The security of
message authentication code requires that the adversary
cannot distinguish if a code is generated from an un-
known key. In our deduplication system, all the privilege
keys are kept secret by the private cloud server. Thus,
even if a user has privilege p, given a token ϕ′, the
adversary cannot distinguish which privilege or file in
the token because he does not have the knowledge of
privilege key skp.

5.2 Confidentiality of Data

The data will be encrypted in our deduplication system
before outsourcing to the S-CSP. Furthermore, two kinds
of different encryption methods have been applied in
our two constructions. Thus, we will analyze them re-
spectively. In the scheme in Section 4.2, the data is en-
crypted with the traditional encryption scheme. The data
encrypted with such encryption method cannot achieve
semantic security as it is inherently subject to brute-
force attacks that can recover files falling into a known
set. Thus, several new security notations of privacy
against chosen-distribution attacks have been defined for
unpredictable message. In another word, the adapted
security definition guarantees that the encryptions of
two unpredictable messages should be indistinguishable.
Thus, the security of data in our first construction could
be guaranteed under this security notion.

We discuss the confidentiality of data in our further
enhanced construction in Section 4.3. The security anal-
ysis for external adversaries and internal adversaries is
almost identical, except the internal adversaries are pro-
vided with some convergent encryption keys addition-
ally. However, these convergent encryption keys have
no security impact on the data confidentiality because
these convergent encryption keys are computed with
different privileges. Recall that the data are encrypted
with the symmetric key encryption technique, instead
of the convergent encryption method. Though the sym-
metric key k is randomly chosen, it is encrypted by

another convergent encryption key kF,p. Thus, we still
need analyze the confidentiality of data by considering
the convergent encryption. Different from the previous
one, the convergent key in our construction is not de-
terministic in terms of the file, which still depends on
the privilege secret key stored by the private cloud
server and unknown to the adversary. Therefore, if the
adversary does not collude with the private cloud server,
the confidentiality of our second construction is seman-
tically secure for both predictable and unpredictable file.
Otherwise, if they collude, then the confidentiality of file
will be reduced to convergent encryption because the
encryption key is deterministic.

6 IMPLEMENTATION

We implement a prototype of the proposed authorized
deduplication system, in which we model three entities
as separate C++ programs. A Client program is used to
model the data users to carry out the file upload process.
A Private Server program is used to model the private
cloud which manages the private keys and handles the
file token computation. A Storage Server program is used
to model the S-CSP which stores and deduplicates files.

We implement cryptographic operations of hashing
and encryption with the OpenSSL library [1]. We also im-
plement the communication between the entities based
on HTTP, using GNU Libmicrohttpd [10] and libcurl [13].
Thus, users can issue HTTP Post requests to the servers.

Our implementation of the Client provides the fol-
lowing function calls to support token generation and
deduplication along the file upload process.

• FileTag(File) - It computes SHA-1 hash of the
File as File Tag;

• TokenReq(Tag, UserID) - It requests the Private
Server for File Token generation with the File Tag
and User ID;

• DupCheckReq(Token) - It requests the Storage
Server for Duplicate Check of the File by sending
the file token received from private server;

• ShareTokenReq(Tag, {Priv.}) - It requests the
Private Server to generate the Share File Token with
the File Tag and Target Sharing Privilege Set;

• FileEncrypt(File) - It encrypts the File with
Convergent Encryption using 256-bit AES algorithm
in cipher block chaining (CBC) mode, where the
convergent key is from SHA-256 Hashing of the file;
and

• FileUploadReq(FileID, File, Token) - It
uploads the File Data to the Storage Server if the
file is Unique and updates the File Token stored.

Our implementation of the Private Server includes
corresponding request handlers for the token generation
and maintains a key storage with Hash Map.

• TokenGen(Tag, UserID) - It loads the associated
privilege keys of the user and generate the token
with HMAC-SHA-1 algorithm; and

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2318320, IEEE Transactions on Parallel and Distributed Systems

9

 0

 2

 4

 6

 8

 10

 12

 14

10 50 100 200 400

T
im

e
(s

ec
)

File Size (MB)

Tagging

Token Gen

Duplicate Check

Share Token Gen

Encryption

Transfer

Fig. 2. Time Breakdown for Different File Size

• ShareTokenGen(Tag, {Priv.}) - It generates
the share token with the corresponding privilege
keys of the sharing privilege set with HMAC-SHA-1
algorithm.

Our implementation of the Storage Server provides
deduplication and data storage with following handlers
and maintains a map between existing files and associ-
ated token with Hash Map.

• DupCheck(Token) - It searches the File to Token
Map for Duplicate; and

• FileStore(FileID, File, Token) - It stores
the File on Disk and updates the Mapping.

7 EVALUATION

We conduct testbed evaluation on our prototype. Our
evaluation focuses on comparing the overhead induced
by authorization steps, including file token generation
and share token generation, against the convergent en-
cryption and file upload steps. We evaluate the over-
head by varying different factors, including 1) File Size
2) Number of Stored Files 3) Deduplication Ratio 4) Priv-
ilege Set Size . We also evaluate the prototype with a
real-world workload based on VM images.

We conduct the experiments with three machines
equipped with an Intel Core-2-Quad 2.66GHz Quad Core
CPU, 4GB RAM and installed with Ubuntu 12.04 32-
Bit Operation System. The machines are connected with
1Gbps Ethernet network.

We break down the upload process into 6 steps, 1) Tag-
ging 2) Token Generation 3) Duplicate Check 4) Share
Token Generation 5) Encryption 6) Transfer . For each
step, we record the start and end time of it and therefore
obtain the breakdown of the total time spent. We present
the average time taken in each data set in the figures.

7.1 File Size
To evaluate the effect of file size to the time spent on
different steps, we upload 100 unique files (i.e., without

 0

 500

 1000

 1500

 2000

 0 2000 4000 6000 8000 10000

C
u

m
u

la
ti

v
e

T
im

e
(s

ec
)

Number of Files

Tagging

Token Gen

Duplicate Check

Share Token Gen

Encryption

Transfer

Fig. 3. Time Breakdown for Different Number of Stored
Files

any deduplication opportunity) of particular file size
and record the time break down. Using the unique files
enables us to evaluate the worst-case scenario where
we have to upload all file data. The average time of
the steps from test sets of different file size are plotted
in Figure 2. The time spent on tagging, encryption,
upload increases linearly with the file size, since these
operations involve the actual file data and incur file
I/O with the whole file. In contrast, other steps such as
token generation and duplicate check only use the file
metadata for computation and therefore the time spent
remains constant. With the file size increasing from 10MB
to 400MB, the overhead of the proposed authorization
steps decreases from 14.9% to 0.483%.

7.2 Number of Stored Files

To evaluate the effect of number of stored files in the sys-
tem, we upload 10000 10MB unique files to the system
and record the breakdown for every file upload. From
Figure 3, every step remains constant along the time.
Token checking is done with a hash table and a linear
search would be carried out in case of collision. Despite
of the possibility of a linear search, the time taken in
duplicate check remains stable due to the low collision
probability.

7.3 Deduplication Ratio

To evaluate the effect of the deduplication ratio, we
prepare two unique data sets, each of which consists of
50 100MB files. We first upload the first set as an initial
upload. For the second upload, we pick a portion of 50
files, according to the given deduplication ratio, from the
initial set as duplicate files and remaining files from the
second set as unique files. The average time of uploading
the second set is presented in Figure 4. As uploading and
encryption would be skipped in case of duplicate files,
the time spent on both of them decreases with increasing

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2318320, IEEE Transactions on Parallel and Distributed Systems

10

 0

 1

 2

 3

 4

 5

0 20 40 60 80 100

T
im

e
(s

ec
)

Deduplication Ratio (%)

Tagging

Token Gen

Duplicate Check

Share Token Gen

Encryption

Transfer

Fig. 4. Time Breakdown for Different Deduplication Ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1000 10000 30000 50000 100000

T
im

e
(s

ec
)

Privilege Set Size

Tagging

Token Gen

Duplicate Check

Share Token Gen

Encryption

Transfer

Fig. 5. Time Breakdown for Different Privilege Set Size

deduplication ratio. The time spent on duplicate check
also decreases as the searching would be ended when
duplicate is found. Total time spent on uploading the
file with deduplication ratio at 100% is only 33.5% with
unique files.

7.4 Privilege Set Size
To evaluate the effect of privilege set size, we upload
100 10MB unique files with different size of the data
owner and target share privilege set size. In Figure 5,
it shows the time taken in token generation increases
linearly as more keys are associated with the file and
also the duplicate check time. While the number of keys
increases 100 times from 1000 to 100000, the total time
spent only increases to 3.81 times and it is noted that the
file size of the experiment is set at a small level (10MB),
the effect would become less significant in case of larger
files.

7.5 Real-World VM Images
To evaluate the overhead introduced under read-world
workload dataset, we consider a dataset of weekly VM

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
(s

ec
)

Week

Tagging

Token Gen

Duplicate Check

Share Token Gen

Encryption

Transfer

Fig. 6. Time Breakdown for the VM dataset.

image snapshots collected over a 12-week span in a
university programming course, while the same dataset
is also used in the prior work [14]. We perform block-
level deduplication with a fixed block size of 4KB. The
initial data size of an image is 3.2GB (excluding all zero
blocks). After 12 weeks, the average data size of an image
increases to 4GB and the average deduplication ratio
is 97.9%. For privacy, we only collected cryptographic
hashes on 4KB fixed-size blocks; in other words, the
tagging phase is done beforehand. Here, we randomly
pick 10 VM image series to form the dataset. Figure 6
shows that the time taken in token generation and
duplicate checking increases linearly as the VM image
grows in data size. The time taken in encryption and
data transfer is low because of the high deduplication
ratio. Time taken for the first week is the highest as the
initial upload contains more unique data. Overall, the
results are consistent with the prior experiments that use
synthetic workloads.

7.6 Summary

To conclude the findings, the token generation intro-
duces only minimal overhead in the entire upload pro-
cess and is negligible for moderate file sizes, for example,
less than 2% with 100MB files. This suggests that the
scheme is suitable to construct an authorized deduplica-
tion system for backup storage.

8 RELATED WORK

Secure Deduplication. With the advent of cloud
computing, secure data deduplication has attracted
much attention recently from research community.
Yuan et al. [24] proposed a deduplication system in
the cloud storage to reduce the storage size of the
tags for integrity check. To enhance the security of
deduplication and protect the data confidentiality,
Bellare et al. [3] showed how to protect the data
confidentiality by transforming the predicatable message

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2318320, IEEE Transactions on Parallel and Distributed Systems

11

into unpredicatable message. In their system, another
third party called key server is introduced to generate
the file tag for duplicate check. Stanek et al. [20]
presented a novel encryption scheme that provides
differential security for popular data and unpopular
data. For popular data that are not particularly sensitive,
the traditional conventional encryption is performed.
Another two-layered encryption scheme with stronger
security while supporting deduplication is proposed
for unpopular data. In this way, they achieved better
tradeoff between the efficiency and security of the
outsourced data. Li et al. [12] addressed the key-
management issue in block-level deduplication by
distributing these keys across multiple servers after
encrypting the files.

Convergent Encryption. Convergent encryption [8]
ensures data privacy in deduplication. Bellare et al. [4]
formalized this primitive as message-locked encryption,
and explored its application in space-efficient secure
outsourced storage. Xu et al. [23] also addressed the
problem and showed a secure convergent encryption
for efficient encryption, without considering issues of
the key-management and block-level deduplication.
There are also several implementations of convergent
implementations of different convergent encryption
variants for secure deduplication (e.g., [2], [18], [21],
[22]). It is known that some commercial cloud storage
providers, such as Bitcasa, also deploy convergent
encryption.

Proof of ownership. Halevi et al. [11] proposed the
notion of “proofs of ownership” (PoW) for deduplication
systems, such that a client can efficiently prove to the
cloud storage server that he/she owns a file without
uploading the file itself. Several PoW constructions
based on the Merkle-Hash Tree are proposed [11] to
enable client-side deduplication, which include the
bounded leakage setting. Pietro and Sorniotti [16]
proposed another efficient PoW scheme by choosing
the projection of a file onto some randomly selected
bit-positions as the file proof. Note that all the above
schemes do not consider data privacy. Recently, Ng
et al. [15] extended PoW for encrypted files, but they
do not address how to minimize the key management
overhead.

Twin Clouds Architecture. Recently, Bugiel et al. [7]
provided an architecture consisting of twin clouds for
secure outsourcing of data and arbitrary computations
to an untrusted commodity cloud. Zhang et al. [25]
also presented the hybrid cloud techniques to support
privacy-aware data-intensive computing. In our work,
we consider to address the authorized deduplication
problem over data in public cloud. The security model
of our systems is similar to those related work, where
the private cloud is assume to be honest but curious.

9 CONCLUSION

In this paper, the notion of authorized data dedupli-
cation was proposed to protect the data security by
including differential privileges of users in the duplicate
check. We also presented several new deduplication
constructions supporting authorized duplicate check in
hybrid cloud architecture, in which the duplicate-check
tokens of files are generated by the private cloud server
with private keys. Security analysis demonstrates that
our schemes are secure in terms of insider and outsider
attacks specified in the proposed security model. As a
proof of concept, we implemented a prototype of our
proposed authorized duplicate check scheme and con-
duct testbed experiments on our prototype. We showed
that our authorized duplicate check scheme incurs min-
imal overhead compared to convergent encryption and
network transfer.

ACKNOWLEDGEMENTS

This work was supported by National Natural Science
Foundation of China (NO.61100224 and NO.61272455),
GRF CUHK 413813 from the Research Grant Council
of Hong Kong, Distinguished Young Scholars Fund of
Department of Education(No. Yq2013126), Guangdong
Province, China. Besides, Lou’s work is supported by
US National Science Foundation under grant (CNS-
1217889).

REFERENCES

[1] OpenSSL Project. http://www.openssl.org/.
[2] P. Anderson and L. Zhang. Fast and secure laptop backups with

encrypted de-duplication. In Proc. of USENIX LISA, 2010.
[3] M. Bellare, S. Keelveedhi, and T. Ristenpart. Dupless: Server-

aided encryption for deduplicated storage. In USENIX Security
Symposium, 2013.

[4] M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-locked
encryption and secure deduplication. In EUROCRYPT, pages 296–
312, 2013.

[5] M. Bellare, C. Namprempre, and G. Neven. Security proofs for
identity-based identification and signature schemes. J. Cryptology,
22(1):1–61, 2009.

[6] M. Bellare and A. Palacio. Gq and schnorr identification schemes:
Proofs of security against impersonation under active and concur-
rent attacks. In CRYPTO, pages 162–177, 2002.

[7] S. Bugiel, S. Nurnberger, A. Sadeghi, and T. Schneider. Twin
clouds: An architecture for secure cloud computing. In Workshop
on Cryptography and Security in Clouds (WCSC 2011), 2011.

[8] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer.
Reclaiming space from duplicate files in a serverless distributed
file system. In ICDCS, pages 617–624, 2002.

[9] D. Ferraiolo and R. Kuhn. Role-based access controls. In 15th
NIST-NCSC National Computer Security Conf., 1992.

[10] GNU Libmicrohttpd. http://www.gnu.org/software/libmicrohttpd/.
[11] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg. Proofs of

ownership in remote storage systems. In Y. Chen, G. Danezis,
and V. Shmatikov, editors, ACM Conference on Computer and
Communications Security, pages 491–500. ACM, 2011.

[12] J. Li, X. Chen, M. Li, J. Li, P. Lee, and W. Lou. Secure deduplication
with efficient and reliable convergent key management. In IEEE
Transactions on Parallel and Distributed Systems, 2013.

[13] libcurl. http://curl.haxx.se/libcurl/.
[14] C. Ng and P. Lee. Revdedup: A reverse deduplication storage

system optimized for reads to latest backups. In Proc. of APSYS,
Apr 2013.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2318320, IEEE Transactions on Parallel and Distributed Systems

12

[15] W. K. Ng, Y. Wen, and H. Zhu. Private data deduplication
protocols in cloud storage. In S. Ossowski and P. Lecca, editors,
Proceedings of the 27th Annual ACM Symposium on Applied Comput-
ing, pages 441–446. ACM, 2012.

[16] R. D. Pietro and A. Sorniotti. Boosting efficiency and security
in proof of ownership for deduplication. In H. Y. Youm and
Y. Won, editors, ACM Symposium on Information, Computer and
Communications Security, pages 81–82. ACM, 2012.

[17] S. Quinlan and S. Dorward. Venti: a new approach to archival
storage. In Proc. USENIX FAST, Jan 2002.

[18] A. Rahumed, H. C. H. Chen, Y. Tang, P. P. C. Lee, and J. C. S.
Lui. A secure cloud backup system with assured deletion and
version control. In 3rd International Workshop on Security in Cloud
Computing, 2011.

[19] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman.
Role-based access control models. IEEE Computer, 29:38–47, Feb
1996.

[20] J. Stanek, A. Sorniotti, E. Androulaki, and L. Kencl. A secure data
deduplication scheme for cloud storage. In Technical Report, 2013.

[21] M. W. Storer, K. Greenan, D. D. E. Long, and E. L. Miller. Secure
data deduplication. In Proc. of StorageSS, 2008.

[22] Z. Wilcox-O’Hearn and B. Warner. Tahoe: the least-authority
filesystem. In Proc. of ACM StorageSS, 2008.

[23] J. Xu, E.-C. Chang, and J. Zhou. Weak leakage-resilient client-side
deduplication of encrypted data in cloud storage. In ASIACCS,
pages 195–206, 2013.

[24] J. Yuan and S. Yu. Secure and constant cost public cloud storage
auditing with deduplication. IACR Cryptology ePrint Archive,
2013:149, 2013.

[25] K. Zhang, X. Zhou, Y. Chen, X. Wang, and Y. Ruan. Sedic: privacy-
aware data intensive computing on hybrid clouds. In Proceedings
of the 18th ACM conference on Computer and communications security,
CCS’11, pages 515–526, New York, NY, USA, 2011. ACM.

Jin Li received his B.S. (2002) in Mathemat-
ics from Southwest University. He got his Ph.D
degree in information security from Sun Yat-
sen University at 2007. Currently, he works at
Guangzhou University as a professor. He has
been selected as one of science and technology
new star in Guangdong province. His research
interests include Applied Cryptography and Se-
curity in Cloud Computing. He has published
over 70 research papers in refereed international
conferences and journals and has served as the

program chair or program committee member in many international
conferences.

Yan Kit Li received the BEng. Degree in Com-
puter Engineering from the Chinese University
of Hong Kong in 2012. Currently he is an M.Phil.
student of the Department of Computer Sci-
ence and Engineering at the same school. His
research interests including deduplication and
distributed storage.

Xiaofeng Chen received his B.S. and M.S. on
Mathematics in Northwest University, China. He
got his Ph.D degree in Cryptography from Xidian
University at 2003. Currently, he works at Xidian
University as a professor. His research interests
include applied cryptography and cloud comput-
ing security. He has published over 100 research
papers in refereed international conferences and
journals. He has served as the program/general
chair or program committee member in over 20
international conferences.

Patrick P. C. Lee received the B.Eng. degree
(first-class honors) in Information Engineering
from the Chinese University of Hong Kong in
2001, the M.Phil. degree in Computer Science
and Engineering from the Chinese University
of Hong Kong in 2003, and the Ph.D. degree
in Computer Science from Columbia University
in 2008. He is now an assistant professor of
the Department of Computer Science and En-
gineering at the Chinese University of Hong
Kong. His research interests are in various ap-

plied/systems topics including cloud computing and storage, distributed
systems and networks, operating systems, and security/resilience.

Wenjing Lou received a B.S. and an M.S. in
Computer Science and Engineering at Xi’an
Jiaotong University in China, an M.A.Sc. in Com-
puter Communications at the Nanyang Tech-
nological University in Singapore, and a Ph.D.
in Electrical and Computer Engineering at the
University of Florida. She is now an associate
professor in the Computer Science department
at Virginia Polytechnic Institute and State Uni-
versity.

