
Bicriteria Optimization in Multihop
Wireless Networks: Characterizing
the Throughput-Energy Envelope

Canming Jiang, Member, IEEE, Yi Shi, Member, IEEE, Sastry Kompella, Senior Member, IEEE,

Y. Thomas Hou, Senior Member, IEEE, and Scott F. Midkiff, Senior Member, IEEE

Abstract—Network throughput and energy consumption are two important performance metrics for a multihop wireless network.

Current state-of-the-art research is limited to either maximizing throughput under some energy constraint or minimizing energy

consumption while satisfying some throughput requirement. Although many of these prior efforts were able to offer some optimal

solutions, there is still a critical need to have a systematic study on how to optimize both objectives simultaneously. In this paper, we

take a multicriteria optimization approach to offer a systematic study on the relationship between the two performance objectives. To

focus on throughput and energy performance, we simplify link layer scheduling by employing orthogonal channels among the links.

We show that the solution to the multicriteria optimization problem characterizes the envelope of the entire throughput-energy region,

i.e., the so-called optimal throughput-energy curve. We prove some important properties of the optimal throughput-energy curve. For

case study, we consider both linear and nonlinear throughput functions. For the linear case, we characterize the optimal throughput-

energy curve precisely through parametric analysis, while for the nonlinear case, we use a piecewise linear approximation to

approximate the optimal throughput-energy curve with arbitrary accuracy. Our results offer important insights on exploiting the tradeoff

between the two performance metrics.

Index Terms—Bicriteria optimization, multihop wireless networks, throughput, energy

Ç

1 INTRODUCTION

SINCE the inception of multihop wireless networks,
throughput and energy are two key performance

metrics that network designers and operators bear in their
minds. Throughput is clearly the first and foremost
performance consideration, as users of a multihop wireless
network increasingly wish such network can offer compar-
able experience as its counterpart wireline networks. On the
other hand, energy consumption is also regarded as a key
performance consideration, as many types of multihop
wireless networks (e.g., ad hoc network, sensor network)
are battery powered and are constrained with limited
energy at each node.

To date, there is a vast amount of literature on
optimizing throughput or energy. For network throughput,

people have been trying to maximize it either at different
layers (e.g., scheduling algorithms [8], [26], [36], [39],
routing algorithms [6], [13], [32]) or jointly across multi-
ple layers (e.g., [1], [2], [7], [12], [24], [27]). For energy,
people are trying to conserve/minimize its consumption
while meeting certain service requirements (e.g., energy-
efficient scheduling and MAC schemes [17], [21], [34],
[35], [38], [40], or energy-efficient routing protocol [15],
[18], [23]).

We have also witnessed quite a few studies exploring the
interaction between network throughput and energy con-
sumption in the context of either maximizing network
throughput under energy (or power) constraints (e.g., [9],
[14], [31]) or minimizing energy consumption while satisfy-
ing some throughput constraints (e.g., [5], [10], [24], [25],
[31]). The only one previous work that studied the relation-
ship between throughput and energy is [37], which
considered a particular type of cell partitioned network.
Although many of these prior efforts were able to offer
some optimal solutions, there is still a critical need to have a
systematic study on how to optimize both objectives
simultaneously. In particular, none of the existing efforts
is able to offer a holistic view on how the maximum
network throughput changes as a function of network
energy consumption for general multihop wireless net-
works, i.e., the so-called optimal throughput-energy curve
(or envelope) in this paper.

The significance of optimal throughput-energy curve is
threefold. First, it gives an envelope of the entire
throughput-energy region, which offers a global perspec-
tive on the achievable throughput-energy tradeoff. In
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contrast, a solution to traditional problems such as
maximizing throughput under energy constraints or mini-
mizing energy under throughput constraints only repre-
sents a point on this curve or inside this region. Second,
each time when the requirement on either network
throughput or energy consumption changes, one can use
the optimal throughput-energy curve to find a new
optimal tradeoff between throughput and energy instantly,
rather than resorting to solving a new optimization
problem. Finally, the optimal throughput-energy curve
shows us the existence of a saturation point, beyond which
the throughput can no longer be further increased,
regardless of how much additional energy is used.

In this paper, we conduct a systematic study on the
optimal relationship between network throughput and
energy consumption for a multihop wireless network. We

tackle this problem through a multicriteria optimization
formulation, i.e., maximizing network throughput while

minimizing total power in the network. Our main contribu-
tions can be summarized as follows:

. By solving the multicriteria optimization problem,
we find the entire throughput-energy curve.

. We find a number of important properties associated
with the optimal throughput-energy curve, such as
nondecreasing, concave, the existence of a saturation
point, and strictly increasing between zero and the
saturation point.

. For the case study, we consider two cases where the
throughput functions are linear and nonlinear,
respectively:

- For the linear case, we show that the optimal
throughput-energy curve can be characterized
exactly via parametric analysis (PA).

- For the nonlinear case, we show that the optimal
throughput-energy curve can be approximated
by piecewise linear segments with arbitrary
desired accuracy.

The remainder of this paper is organized as follows: In

Section 2, we describe our network model. In Section 3, we
present a multicriteria formulation that maximizes network
throughput while minimizing energy consumption in a

multihop wireless network. We show that finding the
optimal solution to this multicriteria optimization problem
is equivalent to finding the optimal throughput-energy
curve. We also present some important properties asso-

ciated with the optimal throughput-energy curve. In
Section 4, we discuss approaches to obtain throughput-
energy curves in practice. Sections 5 and 6 present two case

studies when the throughput functions are linear and
nonlinear, respectively. Section 7 concludes this paper.

2 NETWORK MODEL

We consider a general multihop wireless network with a set
of N nodes. A directed link ði; jÞ; i; j 2 N from nodes i to j
exists if and only if node j is within the transmission range

of node i. Denote L the set of directed links in the network.
To focus on throughput and energy performance, we

simplify link layer scheduling by employing orthogonal

channels among the links,1 similar to that in [12], [22], [29].

Table 1 lists all notations used in this paper.
Denote M as a set of user (unicast) communication

sessions in the network. Denote srcðmÞ and dstðmÞ as the
source and destination nodes of session m 2 M, respec-
tively. Denote rðmÞ as the rate of session m 2 M. Consider
a general flow routing strategy where flow splitting (i.e.,
multipath) is allowed. On link l, denote rlðmÞ as the data
rate that is attributed to session m 2 M. Denote LOut

i and
LIn
i as the sets of potential outgoing and incoming links at

node i, respectively. Then, we have the following flow
balance equations for multihop routing:

. If node i is the source node of session m, i.e.,

i ¼ srcðmÞ, then X
l2LOut

i

rlðmÞ ¼ rðmÞ: ð1Þ

. If node i is an intermediate relay node along the path

of session m, i.e., i 6¼ srcðmÞ and i 6¼ dstðmÞ, then

Xl6¼ði;srcðmÞÞ

l2LOut
i

rlðmÞ ¼
Xl6¼ðdstðmÞ;iÞ

l2LIn
i

rlðmÞ: ð2Þ

. If node i is the destination node of session m, i.e.,

i ¼ dstðmÞ, then
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1. An upper bound on the number of required orthogonal channels is
1þ dv, where dv is the maximum vertex degree in the conflict graph in the
final flow routing solution. More efficient channel assignment algorithms
may further reduce the number of required channels. But problem of
channel assignment is beyond the scope of this paper.

TABLE 1
Notation



X
l2LIn

i

rlðmÞ ¼ rðmÞ: ð3Þ

It can be easily verified that once (1) and (2) are satisfied,
then (3) is also satisfied. As a result, it is sufficient to list
only (1) and (2) in a formulation.

For power control at each node, we employ a simple
“on/off” control, which has been used for energy saving in
wireless networks (see, e.g., [28], [30]). When a link is “on,”
the transmitter of this link transmits at a fixed power level
PT ; when the link is “off” (for energy conservation), the
transmitter of this link does not expend any power for
transmission. To quantify the percentage of time that the
link is in different states, we denote �l (0 � �l � 1; l 2 L)
the fraction of time within a time frame that link l is “on.”

Based on this on/off energy conservation model, the
average rate of link l can be computed as

Cl ¼ �l �Bl log2 1þ PT � gl
�Bl

� �
; ð4Þ

where Bl is the bandwidth of link l under a given channel
assignment, gl is channel gain between the transmitter and
receiver of link l, and � is the ambient Gaussian noise
density. Note the absence of an interference term in (4),
which is due to our use of orthogonal channels in the
network.

On link l, we have the following flow rate constraint:X
m2M

rlðmÞ � Cl; for all l 2 L; ð5Þ

which states that the aggregate flow rates from all
sessions traversing link l cannot exceed the achievable
rate of this link.

3 THROUGHPUT-ENERGY CURVE AND ITS

PROPERTIES

3.1 Multicriteria Formulation

In this paper, we are interested in a multicriteria optimiza-
tion problem, i.e., how to maximize network throughput
while minimizing energy consumption at the same time.
We now give a formulation of this problem.

Denote hð�Þ as a continuous, concave, and nondecreasing
utility function. We define the network throughput utility U
as follows:

U ¼
X
m2M

h½rðmÞ�;

where rðmÞ is the rate of session m 2M. Note that in the
special case when h½rðmÞ� ¼ rðmÞ, then U is simply the sum
of throughput in the network; in the case when
h½rðmÞ� ¼ ln½rðmÞ�, U is called proportional fairness [20].

Now, we consider energy consumption. Note that when
a link is active, the rate of energy consumption includes
energy consumption for both transmission and reception.
Then, the network energy consumption rate P in the
network can be defined as follows:

P ¼
X
l2L

�l � ðPT þ PRÞ;

where �l is the fraction of time within a time frame that
link l is active, PT is the transmission power, and PR is the
reception power. For simplicity, we assume that all nodes
have the same transmission power and reception power.

With the above two definitions, our multicriteria
optimization problem can be formulated as follows:

MOPT min P ¼
X
l2L

�l � ðPT þ PRÞ

max U ¼
X
m2M

h½rðmÞ�

s:t: Constraints ð1Þ; ð2Þ; ð4Þ; and ð5Þ
rðmÞ; rlðmÞ � 0; 0 � �l � 1:

Note that the two objective functions, P and U , are
conflicting objectives. For example, when P is minimized
(i.e., 0), U is also 0 and is not maximized. So, there does not
appear to exist an optimal solution to our problem that
optimizes both objectives simultaneously.

Given that an optimal solution does not exist, a natural
question to ask is what kind of solutions should we pursue
when investigating problem MOPT? Before answering this
question, it is important to clarify how we compare two
feasible solutions. We use

x ¼ frðmÞ; rlðmÞ; �l j l 2 L; m 2 Mg

to represent a solution. Denote ðP1; U1Þ and ðP2; U2Þ the
objective pairs of two different feasible solutions x1 and x2,
respectively. We say objective pair ðP1; U1Þ dominates
ðP2; U2Þ if P1 � P2 and U1 � U2. This means that solution
x1 uses no more energy than solution x2 to achieve the same
or more throughput, i.e., x1 is better than x2. With this
clarification, it is clear that our goal should be to find
solutions that are not dominated by any other solutions.
That is, we want to find solutions with their objective
pair ðPy; UyÞ such that there does not exist another solution
with objective pair ðP;UÞ such that P � Py and U � Uy.
Such solutions are called Pareto-optimal solutions (also called
efficient solutions in [16]) and the objective value pair
ðPy; UyÞ corresponding to a Pareto-optimal solution is
called a Pareto-optimal point. Pareto-optimal solutions are
those that any further improvement in one objective will
lead to a deterioration in the other objective.

For our problem, we find that it is difficult to obtain all
Pareto-optimal solutions directly. Instead, we can find a
solution x� with its objective pair ðP �; U�Þ such that there
does not exist another solution x with its objective pair
ðP;UÞ satisfying P < P � and U > U�. That is, there does not
exist a solution x that can use less energy than solution x� to
achieve more throughput. Such solutions are called weakly
Pareto optimal solutions (also called weakly efficient solutions
in [16]), and the objective value pair ðP �; U�Þ corresponding
to such a solution is called a weakly Pareto optimal point. Note
that Pareto-optimal points are also weakly Pareto optimal,
but weakly Pareto optimal points are not always Pareto
optimal. Weakly Pareto optimal solutions are those for
which improvement in both objectives simultaneously is
impossible, but improvement on one objective without
deteriorating the other is possible. Once we find all the
weakly Pareto optimal solutions, we can identify a subset of
solutions that are Pareto optimal based on its definition.

1868 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 9, SEPTEMBER 2013



3.2 Throughput-Energy Curve

Instead of solving MOPT directly, let us consider a simpler

single objective optimization problem for a given P (i.e.,

fixing one of the objective values). That is,

OPTðP Þ max
X
m2M

h½rðmÞ�

s:t:
X
l2L

�lðPT þ PRÞ ¼ P

All constraints in MOPT

rðmÞ; rlðmÞ � 0; 0 � �l � 1:

ð6Þ

We now show that the optimal solution to OPTðP Þ is a

weakly Pareto optimal solution to MOPT.

Lemma 1. If x� ¼ fr�ðmÞ; r�l ðmÞ; ��l j l 2 L;m 2 Mg is an

optimal solution to OPT ðP Þ for a given value of P � with a

corresponding objective value U�, then x� is a weakly Pareto

optimal solution to MOPT.

Lemma 1 can be proved by contradiction. The details are

given in [19].
Denote the range of P as ½0; Pmax�, where Pmax can be

obtained by setting �l ¼ 1 for all l 2 L. That is, Pmax ¼P
l2LðPT þ PRÞ ¼ jLj � ðPT þ PRÞ. If one can enumerate all

possible P 2 ½0; Pmax� and obtain their corresponding

optimal solutions via OPTðP Þ, then based on Lemma 1,

all these solutions are weakly Pareto optimal solutions.
Now, we show the converse is also true, i.e., any weakly

Pareto optimal point ðP;UÞ of MOPT can be obtained by a

corresponding problem of OPTðP Þ.
Lemma 2. Each weakly Pareto optimal point ðP;UÞ of MOPT

can be obtained by solving an instance of OPT ðP Þ.

A proof of Lemma 2 is based on contradiction. We refer

readers to [19].
Based on Lemmas 1 and 2, we conclude that each weakly

Pareto optimal point ðP;UÞ of MOPT uniquely corresponds

to the same ðP;UÞ generated by an optimal solution of

OPTðP Þ. Thus, by finding the optimal U for each OPTðP Þ,
P 2 ½0; Pmax�, we can obtain all the weakly Pareto optimal

points of MOPT. This gives us a mapping from P to U ,

which we denote as f : P ! U . Intuitively, this says that for

any weakly Pareto optimal point ðP;UÞ, U ¼ fðP Þ is the

maximum throughput utility that the network can deliver.

Note that function U ¼ fðP Þ defines the envelope of the

entire throughput-energy region, which we formally define

as follows:

Definition 1 (Optimal throughput-energy curve). For all

P 2 ½0; Pmax�, the mapping f : P ! U via solving OPT(P)

constitutes an optimal throughput-energy curve U ¼ fðP Þ.

3.3 Key Properties

In this section, we present several interesting properties for

the optimal throughput-energy curve. These properties are

important for us to understand the fundamental behavior of

this curve and to characterize this curve under specific

throughput utility functions in the next section.

Property 1. U ¼ fðP Þ is a nondecreasing function over

0 � P � Pmax.

This property is easy to understand intuitively. It says

that the throughput will not decrease when energy is

increased. The proof is quite straightforward and is omitted.

Property 2. U ¼ fðP Þ is a concave function.

Property 2 can be proved by the definition of a concave

function. We refer readers to [19].
The next two properties further spell out the shape of the

concave throughput-energy curve.

Property 3. There is a saturation point ðPs; UsÞ on the optimal

throughput-energy curve fðP Þ such that fðP Þ ¼ Us for P 2
½Ps; Pmax� and fðP Þ < Us for P < Ps.

Proof. We prove this property by construction. We compute

the saturation point ðPs; UsÞ as follows:
We first compute the maximum achievable network

throughput Us under OPTðPmaxÞ. Once we have Us, we
can find the minimum network energy consumption
rate Ps that can achieve this Us by solving the following
optimization problem:

Ps ¼ min
X
l2L

�l � ðPT þ PRÞ

s:t:
X
m2M

h½rðmÞ� � Us

Constraints ð1Þ; ð2Þ; ð4Þ; and ð5Þ:

Since a throughput-energy curve is a nondecreasing
function (Property 1) and that we have fðPsÞ ¼
fðPmaxÞ ¼ Us, the throughput-energy curve must be flat
between ½Ps; Pmax�. Since Ps is the minimum energy that
achieves Us, based on Property 1, we have fðP Þ < Us for
P < Ps. tu

The above property states that the last segment of the

optimal throughput-energy curve is flat after the saturation

point (see Fig. 1)
The following property states that the segment of the

optimal throughput-energy curve is strictly increasing for

P 2 ½0; Ps� (see Fig. 1).

Property 4. fðP Þ is a strictly increasing function for P 2 ½0; Ps�.
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Fig. 1. The shape of an optimal throughput-energy curve.



Property 4 can be proved by contradiction. We refer
readers to [19].

Recall that all the weakly Pareto optimal points of
MOPT coincide with the optimal throughput-energy curve
fðP Þ over P 2 ½0; Pmax�. It is easy to see that the points on
fðP Þ over P 2 ½0; Ps� are Pareto-optimal points (while
those on fðP Þ over P 2 ðPs; Pmax� are only weakly Pareto
optimal points).

4 A NAIVE APPROACH VERSUS PERFORMANCE

GUARANTEE

Although we have successfully analyzed some key proper-
ties of the optimal throughput-energy curve, it remains
difficult to characterize the entire curve for a given
throughput utility function. A naive approach to approx-
imate the curve could be as follows: We can discretize the
energy interval ½0; Ps� into a large number of equally spaced
intervals. For each energy consumption value, Pi, we can
compute its corresponding throughput value fðPiÞ by
solving OPTðPiÞ. So, we obtain a point ðPi; fðPiÞÞ on the
throughput-energy curve. Upon finding all these points on
the curve, we can connect them via linear segments. This
will give an approximate throughput-energy curve.

Although the above naive approach is simple and
straightforward, it does not offer any performance guaran-
tee of the curve. In contrast, one of the goals of this paper is
to characterize the curve with performance guarantee.
In the following two sections, we consider two classes of
throughput utility functions: the linear case and the non-
linear case. In the linear case, we are able to characterize the
optimal curve exactly by exploiting some special structures
of linear program (LP); for the nonlinear case, we develop a
novel technique to approximate the curve with ð1� "Þ-
optimal performance guarantee, where " is an arbitrary
small error reflecting our desired accuracy.

5 CASE 1: LINEAR THROUGHPUT FUNCTION

In this section, we consider the case where the throughput
utility function is linear with respect to rðmÞ, m 2 M. That
is, U ¼

P
m2M wðmÞrðmÞ, where wðmÞ is a constant and can

be considered as the weight for session m 2 M. In this case,
our OPTðP Þ becomes the following LP:

LPðP Þ max U ¼
X
m2M

wðmÞrðmÞ

s:t: All constraints in OPTðPÞ
rðmÞ; rlðmÞ � 0; 0 � �l � 1:

Instead of obtaining the fðP Þ curve by solving LPðP Þ for
all possible P 2 ½0; Pmax�, which is impractical, we will
exploit the special structure of LP and obtain the exact fðP Þ
curve by solving a finite number of LPs. In particular, since
LPðP Þ is parametric LP with respect to P , we propose to
employ the so-called PA technique [3, Ch. 6] to obtain fðP Þ
curve efficiently.

5.1 Finding fðP ÞfðP Þ Curve via PA

Rewrite LPðP Þ in the standard form Max cx; s:t: Ax ¼
b and x � 0, where A is a nrow � ncol matrix and b is a nrow

vector. Here, we use boldface to denote vectors and
matrices. Assume that we have nrow � ncol. (Otherwise,
there are more constraints than variables and will be no
feasible solution in LPðP Þ). Suppose that rankðAÞ ¼ nrow.2

A nonsingular nrow � nrow submatrix B of A is called basis
matrix. Denote B as the set of indices of the columns of A
defining B. Set B is called a basis. Denote Q as the set of
nonbasic column indices, which can be written as
Q ¼ f1; . . . ; ncolgnB. A solution x ¼ ½xBxQ

� to equations
Ax ¼ b, where xB ¼ B�1b and xQ ¼ 0, is called a basic
feasible solution (BFS) of the LP. The components of xB are
called basic variables, and the components of xQ are called
nonbasic variables. Note that the BFS of LPðP Þ is usually
not unique. When a BFS x ¼ ½xBxQ

� achieves the optimality of
LPðP Þ, we call B the optimal basis, and its corresponding
B and Q the optimal basic matrix and the optimal
nonbasic matrix.

The main idea of PA is to investigate how a perturbation
on parameter P will affect the optimality of LPðP Þ. For a
given value of P , the current optimal basis of LPðP Þ could
still be optimal when there is a perturbation on P . Thus, the
interval ½0; Ps� can be partitioned into small consecutive
intervals, each corresponding to a different optimal basis.
Within each small interval, the optimal basis to LPðP Þ is the
same even when P varies. Further, we will show that fðP Þ
is linear within each small interval.

Partition ½0; Ps� into smaller intervals. We now show how
to partition interval ½0; Ps� into small intervals. For LPðP Þ
with a particular value P , we assume that an optimal
solution to LPðP Þ is ½xBxQ

�, and the optimal basic matrix and
nonbasic matrix are B and Q. Denote cB and cQ as the
objective function coefficient vectors of throughput utility U
for the basic and nonbasic variables, respectively. Then, we
can write the corresponding canonical equations as follows
[3, Ch. 6]:

U þ
�
cTBB

�1Q� cQ
�
xQ ¼ cT

BB�1b; ð7Þ

xB þB�1QxQ ¼ B�1b: ð8Þ

Note that when xB and xQ are optimal solutions, we have
xQ ¼ 0 [3, Ch. 3]. Thus, based on (8), we have

xB ¼ B�1b :

Suppose that we do a perturbation on parameter P , i.e.,
we change P to P þ �. Then, vector b becomes
bþ ð�; 0; . . . ; 0ÞT . The only change due to this perturbation
is that B�1b will be replaced by B�1ðbþ �IÞ, where vector I
has a single 1 on the first element and zero on all the others.
Note that xB ¼ B�1ðbþ �IÞ is a BFS. As long as B�1ðbþ �IÞ
is nonnegative, the current basis remains optimal. This is
because that changing b to bþ �I does not affect the
correctness of (7) and (8).

On the other hand, when one of the elements in
B�1ðbþ �IÞ becomes negative, the optimal basis must
change. Otherwise, we will have one negative element in
xB, which contradicts x � 0 in the LP formulation. The
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by removing those redundant constraints.



value of � at which this change occurs can be determined

as follows: Denote �b ¼ B�1b and �b0 ¼ B�1I, and let

S ¼ fi : �b0i < 0g, where �b0i is the ith element in vector �b0.

If S ¼ ;, then the current basis is optimal for all values of

� � 0 since all elements in vector B�1ðbþ �IÞ are non-

negative. Otherwise, let

�̂ ¼ min
i2S

�bi

��b0i

� �
: ð9Þ

For � 2 ½0; �̂�, the current basis B remains optimal, and its

corresponding BFS is xB ¼ B�1ðbþ �IÞ. When � > �0, the

basis B is no longer optimal. Thus, we need to choose the

variable xr to leave the basis, where the minimum in (9) is

attained for i ¼ r. The entering variable xs is chosen by the

dual simplex method rule [3, Ch. 6]. Based on the new

optimal basis obtained after the pivot, we can update the

corresponding canonical equations and get a ðP;UÞ pair,

which is an endpoint of the linear segment of fðP Þ.
Fig. 2 lists the steps to obtain a new optimal basis for a

given optimal basis B. Thus, starting from P ¼ 0, we can

use this algorithm iteratively to find different bases until we

reach Ps. The series of �̂ for these bases will partition ½0; Ps�
into small intervals.

The complexity of the basis updating algorithm can be

analyzed as follows: The dominant computational complex-

ity occurs in step 2: �A ¼ B�1A. Note that our linear

programming LPðP Þ has nrow ¼ ð1þ 2 j L j þ j N j �
j M j Þ constraints and ncol ¼ ðjLj � jMj þ 2 j L j þ j M j Þ
variables. Since �A ¼ B�1A involves matrix multiplication

of a nrow � nrow matrix and a nrow � ncol matrix, its complex-

ity is Oðn2
rowncolÞ ¼ OðjLj3jMj þ jN j2jLkMj þ jNkLj2jMjÞ.

Linearity of each small interval. For each small interval

with an optimal basis, we now show that fðP Þ is linear.

Suppose interval ½0; Ps� is divided into K small intervals

½Pi; Piþ1�; i ¼ 1; . . . ; K, where P1 ¼ 0; PKþ1 ¼ Ps, and the

optimal basis for small ½Pi; Piþ1� is Bi. Then, for an optimal

basis Bi within a particular small interval ½Pi; Piþ1�, the

objective value of throughput fðP Þ; Pi � P � Piþ1 can be

computed as follows:

fðP Þ ¼ cTBiB
�1
i ðbþ �IÞ; ð10Þ

where � ¼ P � Pi. Substituting � ¼ P � Pi into (10), we have

fðP Þ ¼ cTBiB
�1
i ½bþ ðP � PiÞI�: ð11Þ

In (11), since cTBi ;B
�1
i ; b; I, and Pi are constants, and P is

the only variable, we conclude that fðP Þ is a linear function
of P for Pi � P � Piþ1, i ¼ 1; . . . ; K. We formally state this
result in the following lemma:

Lemma 3. For the linear case, the optimal throughput-energy
curve fðP Þ is piecewise linear within ½0; Ps�.

Recall that by executing the basis updating algorithm
sequentially, we also obtain a series of ðP;UÞ pair and the
solution x generating ðP;UÞ, each corresponding to an
optimal basis. Since fðP Þ is a piecewise linear line with each
linear segment determined by an optimal basis, the series of
ðP;UÞ pairs are the endpoints of these linear segments.
Then, by connecting these endpoints consecutively, we are
able to characterize the entire optimal throughput-energy
curve fðP Þ.

5.2 From Curve to a Point

By obtaining the entire optimal throughput-energy curve
fðP Þ, we also have the endpoints of each line segment on
fðP Þ and the solutions of all endpoints. We now show that
the solution for any point on the optimal throughput-
energy curve fðP Þ can be easily calculated through linear
combination of the solutions for the endpoints (instead of
solving a new LPðP Þ).

Assume that we want to find the solution x for a point

ðP;UÞ on the optimal throughput-energy curve, which lies

in the line segment with two ends ðP1; U1Þ and ðP2; U2Þ, and

the optimal solutions for ðP1; U1Þ and ðP2; U2Þ are x1 ¼
frð1ÞðmÞ; rð1Þl ðmÞ; �

ð1Þ
l j l 2 L; m 2 Mg a n d x2 ¼ frð2ÞðmÞ;

r
ð2Þ
l ðmÞ; �

ð2Þ
l j l 2 L;m 2 Mg, respectively. Then, there exists

a constant 0 � � � 1 such that P ¼ �P1 þ ð1� �ÞP2. The

corresponding solution x ¼ frðmÞ; rlðmÞ; �l j l 2 L;m 2 Mg
for point ðP;UÞ can now be computed as x ¼ �x1 þ
ð1� �Þx2, which means that the optimal session rates

rðmÞ, data flow rates rlðmÞ on each link l, and the fraction

of active time on each link �l in solution x are just a simple

linear combination of solutions x1 and x2.
Thus, after we characterize the optimal throughput-

energy curve fðP Þ, we can find an optimal solution for any
point on the curve via linear combination of known solutions.
We formally state this result in the following theorem:

Theorem 1. Denote xi and xiþ1 as the optimal solutions for the
two endpoints ðPi; fðPiÞÞ and ðPiþ1; fðPiþ1ÞÞ of the ith
linear segment in fðP Þ. The optimal solution x for any
point ðP; fðP ÞÞ between ðPi; fðPiÞÞ and ðPiþ1; fðPiþ1ÞÞ,
where P ¼ �Pi þ ð1� �ÞPiþ1; 0 � � � 1, can be written as
x ¼ �xi þ ð1� �Þxiþ1.

Proof. Based on Lemmas 1 and 2, we know that ðP; fðP ÞÞ
can be obtained by solving LPðP Þ. Now, we need to
show that the optimal solution of LPðP Þ, where
P ¼ �Pi þ ð1� �ÞPiþ1; 0 � � � 1, i s �xi þ ð1� �Þxiþ1.
From the previous analysis, we know that basis Bi

remains optimal for LPðP Þ; P 2 ½Pi; Piþ1�. Rewrite LPðP Þ,
LPðPiÞ, and LPðPiþ1Þ under standard forms as Max cx;
s:t: Ax ¼ b and x � 0, Max cx; s:t: Ax ¼ bi and x � 0,

and Max cx; s:t: Ax ¼ biþ1 and x � 0, respectively. The
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Fig. 2. The basis updating algorithm.



only difference among b, bi, and biþ1 is on the first
element. The first elements of b, bi, and biþ1 are P , Pi,
and Piþ1. Since P ¼ �Pi þ ð1� �ÞPiþ1, we have

b ¼ �bi þ ð1� �Þbiþ1: ð12Þ

We also know that the optimal solutions of LPðP Þ,
LPðPiÞ, and LPðPiþ1Þ are x ¼ B�1

i b, xi ¼ B�1
i bi, and

xiþ1 ¼ B�1
i biþ1. Based on (12), we can conclude

x ¼ �xi þ ð1� �Þxiþ1. This completes the proof. tu

5.3 A Numerical Example

In the following, we present some pertinent numerical
results to demonstrate our theoretical findings. We first
describe our simulation settings. As shown in Fig. 3, we
consider a randomly generated multihop wireless network
with 20 nodes, which are distributed in a square region of
1;000 m� 1;000 m. The transmission power and reception
power for each node are set to PT ¼ 1 W and PR ¼ 0:2 W.
The bandwidth on each link is Bl ¼ 1 MHz. We use a
simplified channel gain model gl ¼ d��l , where dl is the
distance between the transmitter and receiver of link l, and
� is the path loss index. We set � ¼ 3. There are 10 user
sessions in the network, and Table 2 specifies the source
and destination nodes of each session. For the weight wðmÞ
of each session m 2 M, we consider two scenarios: 1) equal
weight, for example, wðmÞ ¼ 1 for all m 2 M; and
2) random weight for each session.

The top curve in Fig. 4a shows the throughput-energy
curve when each session has an equal weight of 1. At the
saturation point, we have Ps ¼ 50:12 W and Us ¼ 120:02.
This curve is obtained by using the PA method, which gives

33 endpoints that interconnect the piecewise linear seg-
ments of fðP Þ. For comparison, the bottom curve in Fig. 4a
shows the throughput-energy curve under the popular
minimum energy routing scheme [33], where each session
chooses the path that consumes the minimum energy. The
minimum energy path for a session can be computed by
using the well-known shortest path algorithms (e.g.,
Dijkstra’s algorithm [11]), where the cost on link l is set to
the total energy consumed to send one bit from a
transmitter to a receiver, i.e., ðPT þ PRÞ=Cl. The large gap
between throughput utility of the two curves shows that
minimum-energy routing is far from optimal in terms of
throughput-energy curve. This result affirms the impor-
tance of employing multicriteria formulation as we have
done in this paper.

Fig. 4b shows the results for the case when the weight of

each session is randomly chosen. The randomly generated

weights for the 10 sessions are 0.8147, 0.1270, 0.9134, 0.9134,

0.6324, 0.0975, 0.2785, 0.5469, 0.1270, and 0.9058, respec-

tively. Again, the throughput-energy curve is of the same

form as that in Fig. 4a, as expected. At the saturation point,

we have Ps ¼ 60:43 W and Us ¼ 72:11. The bottom curve in

Fig. 4b shows the throughput-energy curve under mini-

mum energy routing, which is far from optimal.
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Fig. 3. Topology for a 20-node network.

TABLE 2
Source and Destination Nodes of Each Session

Fig. 4. The throughput-energy curves for a 20-node example.



Note that for each endpoint on the curve, we also obtain
its optimal solution for multihop routing variables
rðmÞ; rlðmÞ, and �l at each link. As an example, we show
the optimal solution for the saturation point ðPs; UsÞ ¼
ð50:12; 120:02Þ under equal weight, which uses the mini-
mum energy consumption of 50.12 W to achieve the
maximum network throughput of 120.02 Mb/s. We find
that the optimal data rates (in Mb/s) for the 10 sessions are
1.09, 8.73, 17.05, 4.40, 0, 9.45, 25.90, 22.44, 30.96, and 0,
respectively.3 In this optimal solution, there are 49 active
links in the network. Table 3 shows the fraction of time for
each active link. Also, we find that some links never need to
be activated to maximize throughput utility. Fig. 5 shows
the flow routing solution for Sessions 1, 2, and 3 (others are
similar and are thus omitted). The number next to each
arrow represents the data rate on that link that is attributed
to that session.

6 CASE 2: NONLINEAR THROUGHPUT FUNCTION

In this section, we consider the case where the through-
put utility function hð�Þ is a concave, but nonlinear
function of rðmÞ;m 2 M. In particular, we consider
h½rðmÞ� ¼ ln½rðmÞ�;m 2 M, which is called proportional
fairness in [20]. In this case, for a given P , OPTðP Þ is a
convex, nonlinear program. Although convex program
OPTðP Þ can be solved efficiently for one given P , it is

impractical to solve an infinite number of such convex

problems when P varies from 0 to Pmax. Further, due to

nonlinearity, we cannot take advantage of the PA

technique to compute the exact optimal throughput-energy

curve efficiently.
Instead of finding the exact optimal throughput-energy

curve, we propose a piecewise linear approximation for this

curve, where the approximation is guaranteed to be within

ð1� "Þ-optimal, with " being an arbitrary small number.

6.1 Finding fðP ÞfðP Þ Curve with ð1� ""Þ Optimality

Note that for a given P , we can always find a corresponding

U on the optimal throughput-energy curve by solving a

convex program (see Lemma 1). So, the question becomes

how to choose a set of such points and connect them with

piecewise linear segments so that this piecewise linear

approximation is no more than " (in percentile) from the

unknown optimal throughput-energy curve.
First, we identify the two endpoints on the optimal

throughput-energy curve that we want to approximate. On

the left side, since the throughput utility is a lnð�Þ function, it

is negative when P is small. Assuming that we are only

interested in the optimal throughput-energy curve when

fðP Þ � 0, we will pick a P , denoted as P0, such that U0 ¼
fðP0Þ is just above zero.4 On the right side, recall that the

optimal throughput-energy curve fðP Þ is flat from P ¼ Ps
to P ¼ Pmax. So, we can choose the saturation point ðPs; UsÞ
(see Section 3 on how to obtain it) as our right endpoint.
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Fig. 5. The optimal flow routing solutions for Sessions 1, 2, and 3 for the saturation point (50.12, 120.02) in the example.

TABLE 3
�l for Each Active Link l in the Example for the Saturation Point

3. We are aware that there is a fairness issue in this solution, due to the
network throughput being defined as the weighted sum of all session rates.
In the next session, we will show that fairness issue can be addressed when
the throughput utility function is defined in terms of lnð�Þ.

4. Note that fðP0Þ ¼ 0 cannot be our left endpoint due to the singularity
it presents when we compute the approximation error (in percentile).



With our two endpoints on the optimal throughput-
energy curve being ðP0; U0Þ and ðPs; UsÞ, our approximation
method works as follows (see Fig. 6). We connect points
ðP0; U0Þ and ðPs; UsÞ with a linear segment a and consider it
as our first approximation of the optimal throughput-
energy curve. To examine if linear segment a is accurate
enough, we compute an error upper bound � of this
approximation (in percentile). This is not trivial and will be
shown in Lemma 4. If � � ", then our linear approximation
is considered accurate enough and we are done. Otherwise,
we will find a point ðP �; U�Þ on the optimal throughput-
energy curve and use two linear segments b and c as a better
approximation. Again, finding this point ðP �; U�Þ is not
trivial (since the complete optimal throughput-energy curve
is unknown) and will be explained shortly. Now the same
process continues on linear segments b and c. The process
continues until � � " for every linear segment of the
piecewise linear approximation curve.

We first show how to compute ðP �; U�Þ, since we need
ðP �; U�Þ when computing �.

Finding ðP �; U�Þ. Point ðP �; U�Þ has the maximum
approximation error when we use a line segment to
approximate a segment of the optimal throughput-energy
curve (see Fig. 7).

Suppose that ðP1; U1Þ and ðP2; U2Þ are two endpoints of
a line segment, which we denote as ~fðP Þ. Then, this
line segment ~fðP Þ can be characterized as ~fðP Þ ¼ U1 þ
U2�U1

P2�P1
ðP � P1Þ, P1 � P � P2. Although the optimal through-

put-energy curve fðP Þ is unknown, we imagine that we
move line ~fðP Þ upward until it is tangential to the curve.
Denote this tangential point as ðP �; U�Þ, which is the point
having the maximum absolute (rather than percentile)
approximation error if we were to use ~fðP Þ to approximate
fðP Þ. Then, we have

fðP �Þ � ~fðP �Þ
¼ maxffðP Þ � ~fðP Þg

¼ max
X
m2M

h½rðmÞ� � U1 þ
U2 � U1

P2 � P1
ðP � P1Þ

� 	( )
;

for P1 � P � P2. Therefore, the tangential point ðP �; U�Þ can
be found by solving the following optimization problem:

P-MAX max
X
m2M

h½rðmÞ� � U1 þ
U2 � U1

P2 � P1
ðP � P1Þ

� 	

s:t:
X
l2L

�lðPT þ PRÞ � P ¼ 0

All constraints in MOPT

P1 � P � P2:

Note that in the above optimization problem, P is a
variable, which is different from OPTðP Þ. The above
optimization problem is a convex problem, which can be
solved efficiently by using subgradient method [4, Ch. 8].

Finding �. After obtaining the tangential point ðP �; U�Þ,
we can calculate an upper bound � of the approximation
error (in percentile) with the following lemma:

Lemma 4. By using ~fðP Þ to approximate fðP Þ for P1 � P � P2,
an upper bound for this approximation error (in percentile) is

� ¼ 1

1þ U1

U��~fðP �Þ
:

Proof. Referring to Fig. 7, for any point ðP; fðP ÞÞ within
½P1; P2�, the approximation error (in percentile) is

fðP Þ � ~fðP Þ
fðP Þ ¼ fðP Þ � ~fðP Þ

fðP Þ � ~fðP Þ þ ~fðP Þ
¼ 1

1þ ~fðP Þ
fðP Þ�~fðP Þ

:

Since ~fðP Þ � fðP1Þ ¼ U1 and fðP Þ � ~fðP Þ � U� � ~fðP �Þ,
we have

fðP Þ � ~fðP Þ
fðP Þ

¼ 1

1þ ~fðP Þ
fðP Þ�~fðP Þ

� 1

1þ U1

U��~fðP �Þ
¼ �:

ut

Now, given that we can compute � at each iteration and
our process stops when � � " for each segment, it is not
hard to see that our piecewise linear approximation can
guarantee ð1� "Þ-optimality. We state this result in the
following theorem:

Theorem 2. For any small " > 0, the proposed piecewise
linear approximation method can approximate the optimal
throughput-energy curve fðP Þ with ð1� "Þ-optimality.
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Fig. 7. An illustration showing how to obtain the tangential point and
maximum approximation error on one linear segment.Fig. 6. An illustration of our piecewise linear approximation method.



Our proposed piecewise linear approximation method
involves computing a sequence of convex programming
problems. In theory, the worst-case complexity of convex
programming problems is NP-hard. But in practice, most
convex programming problems (including ours) can be
solved efficiently. For the numerical example in Section 6.3,
it only took several seconds for our method to find the
approximated curve.

6.2 From Approximated Curve to a Point

We have shown how to obtain a throughput-energy curve
with ð1� "Þ-optimal performance guarantee. Next, we
show that for any point ðP; fðP ÞÞ on the optimal (unknown)
throughput-energy curve, we can obtain a solution (which
includes session rates, data flow rates, and the fraction of
time for each link) with ð1� "Þ-optimality through linear
combination of the solutions that we already have for the
endpoints on the approximated curve. Note that this is
much faster than solving a new convex programming
problem (OPTðP Þ). We formally state this result in the
following theorem:

Theorem 3. Denote xi and xiþ1 as the optimal solutions for the
two endpoints ðPi; ~fðPiÞÞ and ðPiþ1; ~fðPiþ1ÞÞ of the ith linear
segment on the approximated curve ~fðP Þ. Denote ðP; fðP ÞÞ as
a point on the optimal curve, where P ¼ �Pi þ ð1� �ÞPiþ1,
Pi � P � Piþ1, 0 � � � 1. Then, the point ðP; ÛÞ generated
by the solution x̂ ¼ �xi þ ð1� �Þxiþ1 is within ð1� "Þ-
optimal from point ðP; fðP ÞÞ.

Proof. We first show that x̂ is a feasible solution to MOPT.
Note that solutions xi and xiþ1 are obtained by solving P-
MAX. It is easy to see that xi and xiþ1 satisfy all the
constraints in MOPT. Since the constraints in MOPT
define a convex region, x̂ ¼ �xi þ ð1� �Þxiþ1 is also in
this region. Thus, x̂ is feasible to MOPT.

For the energy consumption by solution x̂, it is easy to
show that it is equal to P .

Next, we show that throughput Û under x̂ is at least
~fðP Þ. That is, the throughput Û under x̂ is greater than or
equal to the throughput corresponding to the same P on
the approximated curve.

Denote frðiÞðmÞ j m 2 Mg and frðiþ1ÞðmÞ j m 2 Mg as
the session data rates in solutions xi and xiþ1, respec-
tively. Then, we have that the session data rates in x̂
are f�rðiÞðmÞ þ ð1� �Þrðiþ1ÞðmÞ j m 2 Mg. Thus, we get

Û ¼
X
m2M

h½�rðiÞðmÞ þ ð1� �Þrðiþ1ÞðmÞ�

�
X
m2M
f�h½rðiÞðmÞ� þ ð1� �Þh½rðiþ1ÞðmÞ�g

¼ �~fðPiÞ þ ð1� �Þ~fðPiþ1Þ
¼ ~f ½�Pi þ ð1� �ÞPiþ1�
¼ ~fðP Þ;

where the second inequality holds due to the concavity
of function hð�Þ and the fourth inequality holds since
~fðP Þ is linear for Pi � P � Piþ1.

Since x̂ is a feasible solution to MOPT and ðP; fðP ÞÞ is
Pareto optimal, we have Û � fðP Þ. Since ðP; ~fðP ÞÞ is on
the approximated curve with ð1� "Þ-optimal and

~fðP Þ � Û � fðP Þ, we can conclude that ðP; ÛÞ is also
ð1� "Þ-optimal. tu

6.3 A Numerical Example

We now use a numerical example to illustrate the optimal
throughput-energy curve when the throughput utility
function h½rðmÞ� ¼ ln½rðmÞ�. We use the same setting as
that of the numerical example shown in Section 5. The
network topology is shown in Fig. 3. We first determine
the saturation point ðPs; UsÞ based on the approach
presented in Section 3. On the left, we find P ð3:86Þ ¼ 0.
So, we choose P0 ¼ 4 > 3:86 and find its corresponding
throughput utility fðP0Þ ¼ 0:35. On the right, we find the
saturation point ðPs; UsÞ ¼ ð51:83; 23:54Þ. Now, we will
approximate the optimal throughput-energy curve fðP Þ
for P 2 ½4:00; 51:83�. Suppose we set the target approxima-
tion error " ¼ 1%, i.e., we are pursuing a 99 percent-
optimal piecewise linear approximation. Using the method
described in this section, we obtain 18 piecewise linear
segments shown in Fig. 8, corresponding to linear
connection of 19 points on the optimal throughput-energy
curve. From the figure, we can see that these points are not
equally spaced along the horizontal axis. Our method
dynamically adds points on the curve to meet the error
bound requirement. When the curve grows rapidly at the
beginning, we put more points there; when the curve
slows its growth toward the end, fewer points are needed.
On the other hand, if the naive approach were employed
to divide the same interval ½P0; Ps� into 18 equally spaced
smaller intervals, the maximum error bound among all
intervals would be 48 percent.

As an example, we show the optimal solution (including
session rates, data flow rates, and the fraction of time for
each active link) for saturation point ðPs; UsÞ ¼ ð51:83;
23:54Þ. The optimal data rates (in Mb/s) for the 10 sessions
are 8.90, 9.35, 11.87, 7.84, 11.27, 8.40, 12.00, 11.78, 20.89, and
7.67, respectively. Note that unlike the linear case under
equal weight, where there is a fairness issue, there is no
session that has zero rate under the nonlinear case. This is
due to our choice of lnð�Þ as the throughput utility function.
There are 57 active links in the network. In Table 4, we show
the fraction of time for each active link. We also show the
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Fig. 8. A ð1� "Þ-optimal throughput-energy curve for the nonlinear case.
" ¼ 1%.



optimal flow routing solutions for the first three sessions in
Fig. 9, but omit to show the rest to conserve space.

7 CONCLUSION

In this paper, we explored the relationship between two key
performance metrics for a multihop wireless network:
network throughput and energy consumption. By casting
the problem into a multicriteria optimization, we showed
that the solution to this problem characterizes the envelope
of the entire throughput-energy region. Subsequently, we
presented a number of important properties associated with
the optimal throughput-energy curve. As for case study, we
considered both the linear and nonlinear throughput
functions. For the linear case, we were able to characterize
the optimal throughput-energy curve precisely via PA. For
the nonlinear case, we proposed a piecewise linear
approximation that can guarantee ð1� "Þ-optimal.

In theory, the characterization of optimal throughput-
energy curve is a major step beyond the state-of-the-art
research, which is limited to either maximizing throughput
under some energy constraint or minimizing energy
consumption, while satisfying some throughput require-
ment (with each being able to offer only a single point on the
optimal throughput-energy curve). In practice, the optimal
throughput-energy curve is very useful for a network
designer or operator, as it offers a holistic view on the two
performance metrics. A network designer/operator can
achieve his/her desired tradeoff between the two metrics
depending on the specific network application scenarios.
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