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Abstract—In this paper, we investigate the maximum weighted
sum-rate problem (MWSR) of MIMO Gaussian broadcast chan-
nels (MIMO-BC). We propose an efficient algorithm that em-
ploys conjugate gradient projections (CGP) to solve the MWSR
problem. The proposed CGP offers provable convergence. By
deflecting gradient direction to its Hessian conjugate, CGP enjoys
a superlinear convergence rate. Also, CGP has a modest memory
requirement. It only needs the solution information from the
previous step. More importantly, CGP is able to solve the MWSR
problem with arbitrary number of antennas on both sides of a
MIMO-BC.

I. INTRODUCTION

The capacity region of multiple-input multiple-output broad-
cast channels (MIMO-BC) has received great attention in
recent years. MIMO-BC belongs to the class of nondegraded
broadcast channels, for which the capacity region is a well-
known hard problem [1]. Recently, Weigarten et al. [2] proved
that “dirty paper coding” (DPC) achieves the entire capacity
region of MIMO-BC. Moreover, by uplink-downlink duality
[3], the nonconvex MIMO-BC capacity region (with respect
to the downlink input covariance matrices) can be transformed
to its dual MIMO multiple access channel (MIMO-MAC) ca-
pacity region with a sum power constraint. Since the capacity
region of the dual MIMO-MAC is convex with respect to
the uplink input covariance matrices, efficient optimization for
MIMO-BC becomes possible.

In this paper, we investigate the maximum weighted sum-
rate problem (MWSR) of MIMO-BC. Important applications
of MWSR arise from cross-layer optimization for MIMO-
based ad hoc networks [4] and stabilizing the transmission
buffers to guarantee fairness for MIMO-based cellular down-
links [5]. The MWSR problem of MIMO-BC is the general
case of the maximum sum-rate problem (MSR), which has
been solved by a number of algorithms such as the mini-
max method (MM) [6], the gradient method (GD) [7], the
Lagrangian dual decomposition (LDD) method [8], and the
iterative water-filling methods IWF) [9]. However, IWF, MM,
and LDD cannot be readily applied to solve MWSR. In [5],
Kobayashi ef al. extended IWF to solve the MWSR problem
and proposed some modifications to IWF (M-IWF) to handle
scalability issue. However, their algorithm is only valid for the
case where each receiver is equipped with single antenna. For
general scenarios where receivers are equipped with multiple
antennas, only GD is readily applicable. However, GD does
not fully take advantage of the gradient information and may

not converge under some circumstances. The limitations of
these existing algorithms motivate us to design an efficient,
robust, and scalable algorithm to solve the MWSR problem of
large MIMO-BC systems with arbitrary number of antennas.

Our main contribution in this paper is that we design an
efficient algorithm to solve the MWSR problem based on
conjugate gradient projection (CGP) approach. Our algorithm
is inspired by [10], where Ye et al. used a gradient projection
method to find a local optimum of the maximum sum-rate for
Gaussian MIMO Interference Channels (MIMO-IC). However,
unlike [10], we propose to use conjugate gradient directions
instead of gradient directions to reduce the “zigzagging”
phenomenon so as to speed up convergence. Also, since the
MWSR problem of MIMO-BC can be transformed into an
equivalent convex problem, our CGP method can determine
the global optimum of MIMO-BC. For the semidefinite cone
projection subproblem, we develop a rigorous algorithm based
on Lagrangian duality. Our proposed CGP has the following
attractive features.

o CGP offers provable convergence.

o Unlike M-IWF, which is only valid for cases where each
receiver has a single antenna, CGP can handle arbitrary
number of antennas on both sides of a MIMO-BC.

o CGP enjoys a superlinear convergence rate. Also, per
iteration complexity of CGP is O(K), where K is the
number of users.

e CGP has a modest memory requirement: it only needs
the solution information from the previous step.

The remainder of this paper is organized as follows. In
Section II, we present the network model and the problem
formulation. Section III introduces the key components in of
CGP, including the computation of conjugate gradients and
solving projection subproblem. In Section IV, we analyze the
complexity of CGP and present numerical results. Section V
concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We begin with introducing notation. We use boldface to
denote matrices and vectors. For a complex-valued matrix A,
AT denote the conjugate transpose of A and Tr{A} denotes
the trace of A. We let I denote an identity matrix with dimen-
sion determined from the context. A > 0 represents that A is
Hermitian and positive semidefinite (PSD). Diag{A; ... A, }
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denotes the block diagonal matrix with matrices Aq, ...
on its main diagonal.

Suppose that a MIMO Gaussian broadcast channel has K
users, the transmitter has n; antennas, and each of the K
users is equipped with n, antennas. The channel matrix for
user i is denoted as H; € C"*"¢ It has been shown in [2]
that the capacity region of a MIMO-BC is equal to the dirty-
paper coding (DPC) rate region. Suppose that users 1,..., K
are encoded sequentially, then the DPC rate of user ¢ can be
computed as [3]

) A-TL

4+ H: (T s)) o
‘I + H; (Zj'(:iﬂ Sj) Hj
where S; € C™*™ ¢ = 1,..., K, are the downlink input
covariance matrices and S = {S;,...Sg} denotes the col-

lection of all the downlink covariance matrices. The MWSR
problem can be written as follows:

CPTO(8) = log (1)

Maximize ZZK:1 w; CPPC(S)
subjectto S; =0, i=1,...,K
YL Tr(Si) < P,

2)

where w; is the weight assigned to user ¢, P represents the
maximum transmit power. It is evident that (2) is a nonconvex
optimization problem since the DPC rate equation in (1)
is a nonconvex function of the input covariance matrices
S1,...,Sk. However, from the uplink-downlink duality the-
orem [3], we know that the rates achievable in a MIMO-
BC are also achievable in its dual MIMO-MAC. That is,
given a feasible S, there exists a set of feasible uplink input
covariance matrices for its dual MIMO-MAC, denoted by Q,
such that CMAC(Q) = CPPC(S). Thus, (2) is equivalent to
the following MWSR problem of the dual MIMO-MAC with
a sum power constraint:

Maximize Zfil w; CMAC(Q)
subjectto Q; =0, i=1,....K
CMAC(Q) € Cuac(PHT), i=1,...

where Q; € C"*"r 4 = 1,..., K, are the uplink input
covariance matrices, Q = {Qq, ... Qx } represents the collec-
tion of all the uplink covariance matrices, and Cyac (P, HT)
represents the capacity region of the dual MIMO-MAC, and
can be determined by

K ®

Crac(P,HT) =
log [T+ Y, s HIQH;|,

Conv q (C1,...,Ck) VS C{1,...,K}, G
i, Q) < P
Q; ~ 0, Vi.

where Conv(-) represents the convex hull operation. When
the dual MIMO-MAC is Gaussian, the convex hull operation
can be dropped [1].

The capacity region of a MIMO-MAC can be achieved
by successive decoding [1]. However, in order to determine
the capacity region of a MIMO-MAC, K! possible successive
decoding orders may need to be enumerated, which makes the
problem intractable if the number of users is large. We give
the following result, which shows that such an enumeration
can indeed be avoided.

Theorem 1. The MWSR problem in (3) can be solved by the

following equivalent optimization problem:

Maximize Zfil(ww(i) — Wr(i—1))X
K
log I+, er(j)Q‘fT(j)Hﬂ'(j)

(5)
subject to > ;7 Tr(Q;) < Pax
Q =0, i=1,.. K,
where wy(g) = 0, 7 is a permutation of the set {1,...,K}

such that wr1y < ... < we(g) (i.e, w(i) = j represents the
it" position in permutation T is user j).

Proof. Since the objective function is monotonically increas-
ing, the optimal solution of (3) must be achieved on the
boundary of the capacity region. We assume that the weights
are not identical (Otherwise, the MWSR is reduced to a scaled
MSR problem, where the optimal solution is trivially achieved
at any of the K! corner points of the capacity region). As a
result, the optimal solution is achieved in a subregion on the
boundary of the capacity region under one of the K'! decoding
order [1]. Furthermore, since such a subregion consists of all
corner points with the same decoding order under all feasible
power allocations, the optimal solution must be achieved at a
corner point corresponding to some decoding order and some
power allocation.

Suppose that 7r(-) is the optimal decoding order. It is easy
to see that, for the MWSR problem, the objective gradient at
every point on the boundary of the capacity region is

T
[ wr(1) Wr(2) W) |-

Since the objective function of (3) is linear and the capacity
region is convex, (3) is a convex programming problem with
non-empty feasible region, which means Slater conditions
holds (c.f. [11]). As a result, KKT condition is necessary and
sufficient for optimality.

For simplicity, we drop the superscript “MAC” and simply
refer the rates in the dual MIMO-MAC as C;. Note that in
successive decoding with decoding order 7(-), the active rate
vector constraints at a corner point corresponding to 7 (-) are

)

Cr(x) < log ‘I + HL(K)Q;(K)H”(K)
Crr-1) + Crx) <
K *
log ’I + iK1 H:rr(i)Qﬂ(i)Hﬂ'(i)

)

(6)

Cry + + Crx—1) + Cr(x) <
log ‘I + i Hir(i)

)

:r(i)Hﬂ(i)
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where Q;(i), 1 = 1,2,..., K represent the optimal input
covariance matrices that achieve the maximum weighted sum-
rate. Thus, by KKT condition, we have

Wr(1) 0 0 1
=up| - |tug| - | +etug » (D
Wy (K1) 0 1
Wr(K) 1 1 1

where u; > 0, Vi. Solving for u; in (7), we have

UK = Wr(1)
UK —i = ww(i+1) — Wr (i), = 1,2, e ,K — 1.

Since u; > 0, it then follows that
Wr(1) S Wr2) < -0 < Wi(K)-

Since the constraints in (6) are tight at optimality, we have

Crxy = log I+HL(K)QZ§(K)H7T(K) : (®)
K

Cry = log T+ Y H 1 Q) He()| —
=i

K
1 *
I+ > H Q0 Hek|, ©
j=i+1

log

fori=1,2,..., K — 1. Summing up all w;Cxr(; and after
rearranging the terms, it can be readily verified that
K

K
wa(i)cfr(i) = Z(ww(i) — Wr(i-1)) X
=1

i=1

K
t
log [T+ > H  Qu(jHeg)) -
j=i
It then follows that the MWSR problem of the dual MIMO-
MAC is equivalent to maximizing (10) with the sum power
constraint, i.e., the optimization problem in (5). O

(10)

One important observation from (5) is that, since log]|:|
is a concave function for positive semidefinite matrices [1],
(5) is a convex optimization problem with respect to the
uplink input covariance matrices Q (1), - - -, Qr(x). However,
although standard convex optimization tools can be used to
solve (5), it is considerably more complex than a custom-
designed method that exploits the special structure of the
problem.

III. SOLVING MWSR USING CONJUGATE GRADIENT
PROJECTION

To solve (5), we propose an efficient algorithm based on
conjugate gradient projection (CGP), which utilizes an impor-
tant concept called Hessian conjugate to deflect the gradient
direction. In doing so, we can achieve an asymptotic super-
linear convergence rate [11], which is close to that of quasi-
Newton methods, e.g., BEGS method. The convergence proof
of CGP relies on proving the closedness of the algorithmic

maps for finding conjugate gradient directions and performing
projections, respectively. Due to space limitation, we refer
readers to [11] for details. The CGP pseudo-code for solving
(5) is shown in Algorithm 1.

Algorithm 1 CGP Method for Solving MWSR
Initialization:
Choose the initial conditions Q(©) = [Q{”, Q{”,..., QYT
Let £ = 0.
Main Loop:
1. Calculate the gradients ng), i=1,2,..., K as follows:

J
Gr(j) = 2H, (5 {Z (Wr(s) = Wr(i-1)) X
i=1

K -1
f t

(I + Z Hw(k)er(er(k)) Hﬂ(j)'

k=i
2. Deflect the gradients using Fletcher and Reeves’ choice of deflection:

~ (k
IGL) 112

P = T k—1),9

IG5

3. Choose an appropriate step size sg. Let Q;<k) = ng) + sngk),
fori=1,2,..., K.

4. Let Q%) be the projection of Q (%) onto Q4 (P), where Q4 (P) &
{Qi, i=1,...,K|Q; = 0, K Tr{Q;} < P}.

5. Choose appropriate step size ay. Let Q£k+1) = ng) + ag (ng)f
Q™) i=1,2,... K.

6. k = k+ 1. If the maximum absolute value of the elements in ng) -
ng_l) <e¢ fori=1,2,..., L, then stop; else go to step 1.

Due to the complexity of the objective function in (5), we
adopt “Armijo Rule” inexact line search to avoid excessive
objective function evaluations, while still enjoying provable
convergence [11]. We now consider two major components
in the CGP framework: 1) how to compute the conjugate
gradient direction G;; and 2) how to project Q/(k') onto the set
Qp(P)2{Qs i=1,...,K:Q; = 0,1 Tr{Q;} < P}.

A. Computing the Conjugate Gradients

For convenience, we denote the objective function of (5)
as J(Q). To compute the gradient G (;) £ VaQq,;J(Q), the
first step is to compute the partial derivative of J(Q) with
respect 10 Qg ;). The computation of partial derivatives of
J(Q) relies on the following equation from matrix differential
calculus ZRIALBXCL _ oA + BXC)~'B]" [10], [12].
First of all, we can compute the partial derivative of the i*"
term in the summation of J(Q) with respect to Qr(;), j > 4,
as follows:

K
d
9 (Wr(s) — Wr(i—1)) log [T+ Z er(k)er(k)Hﬂ(k‘)
Q) Py
= (Wn(i) = Wr(i-1)) X
K —1
T T
H ;) (I + ZHﬂ(mQﬂk)Hw(k)) H
k=1

Note that for gradient G(;y, only the first j terms in J(Q)
involve Q ;). From the definition V. f(z) = 2(9f(2)/0z)*
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[13], we obtain

J
Gr(j) = 2H () lz (wﬂ(i) - ww(i—l)) x
=1
K —1
f t
<I + Z Hw(k)Qw(k)Hw(k)> H . (D
k=i

Although the (11) is seemingly quite complex, we can in fact
exploit the special summation structure to reduce its compu-
tational complexity when implementing CGP. Note that the
most computationally heavy part in the expression of (_}ﬂ(j) is
the summation of the terms in the form of er( k)Qﬂ(k)Hﬂ(k).
Under direct computation, we will have j(2K + 1 — j)/2
times of such additions for these terms. Fortunately, most
of these terms in the summation occur repeatedly when j
varies. Therefore, we can store a running sum in the form of
I+ Zszl er(k)Q,r(k)Hﬂ(k). Then, starting out from j = K
and reducing j by one subsequently, we only need to compute
such addition once in each iteration.

The conjugate gradlent direction in the k*" iteration can
be computed as G () Ggr()) + kG(k( U we adopt
the Fletcher and Reeves’ choice of deflection [11], which
can be computed as p;, = \|(_£‘:7rk(j)||2/||(_£‘:;k(;)l |2, After such
deflection, we obtained the so-called Hessian-conjugate of
Gfrk(J)l) The benefit of using Hessian conjugate deflection is
that we can reduce the “zigzagging” phenomenon encountered
in the conventional gradient projection method, and achieve an
asymptotic superlinear convergence rate [11]. Also, in CGP,
we do not need to store a Hessian approximation matrix as in
quasi-Newton methods, whose size is usually large.

B. Constrained Semidefinite Cone Projection

The goal of the projection subproblem in CGP is to find a
projection on a constrained semideﬁnlte cone for Q;, Vi. Since
G (;) is Hermitian, we have that Q Q(k) Girk(j)
is Hermitian as well. Then, the pI‘O]eCIIOIl problem becomes
how to simultaneously project K Hermitian matrices onto
the set Q0 (Puax) = {Q : 2 Tr{Qi} < Paax, Qi =
0,1 = 1,...,K}. We construct a block diagonal matrix
D = Diag{Q,r(l) Qi) } € CEm>En) g is easy
to recognize that Qﬂ(]) € Oy (Puax)s j = 1,..., K, if and
only if Tr(D) = Zj 1Tt (Qn(j)) < Pmax and D = 0. In
our projection, given a block diagonal matrix D,, we wish
to find a matrix D, € Q4 (Ppax) such that D,, minimizes
|D,, — D,||#, where || - ||z denotes Frobenius norm, i.e.,
equivalently, we solve the following optimization problem.

Minimize 2HD D|%

12
subject to ’IT(D) < Poax, D= 0. (12)

Note that this problem is a convex minimization problem
and we can solve this minimization problem by solving its
Lagrangian dual. Associating Hermitian matrix X to the
constraint D = 0 and 1 to the constraint Tr(D) < Praxs
we can write the Lagrangian as g(X, u) = mlnD{(1/2)||]5 —
D|% — Tr(X'D) + u(Tr(D) — Puax)}. Since g(X,p) is

an unconstrained convex quadratic minimization problem, we
can compute the minimizer of the Lagrangian by simply
setting its first derivative (with respect to D) to zero, i.e.,
(D — D) — X' + uI = 0. Noting that X = X, we have
D=D- pI + X. Substituting D back into the Lagrangian
and after some algebraic simplifications, we can rewrite the
Lagrangian dual problem as

- 2
Maximize —1|D — puI+ X||5
subjectto X = 0,u > 0.

- MPmax + %HDHQ

13)

In semidefinite programming, (13) is referred to as ma-

trix nearness problems [14], [15]. Generic matrix nearness

problems are hard to solve. Fortunately, thanks to the piece-

wise quadratic structure in (13), it is possible to solve (13)

efficiently. Due to space limitation, we refer readers to [16]
for more details.

IV. PERFORMANCE AND COMPLEXITY COMPARISONS

In this section, we compare CGP with other existing
algorithms. Among these algorithms, the minimax method
(MM) [6] is more complex than the others having the linear
complexity and is not readily applicable for MWSR. The
Lagrangian dual decomposition method (LDD) [8] consists of
nested iterative loops in solving the Lagrangian dual in each
iteration and therefore has a non-deterministic complexity per
iteration. The iterative water-filling methods (IWF) in [9] do
not scale well as the number of users increases because the
most recently updated solution in each iteration only accounts
for a fraction of 1/K in the effective channels’ computation.
Also, IWF cannot be directly used to solve MWSR. Kobayashi
et al. proposed modifications of IWF (M-IWF) for solving
MWSR. They also came up with a new averaging update
scheme to address the scalability issue of IWF. However, as
indicated by Kobayashi et al., M-IWF can only handle the case
when each receiver in a MIMO-BC has only one antenna.

The gradient method (GD) in [7] also uses the gradient
information to guide the search of optimal solution. Let v; and
A; be the principal eigenvector (of unit norm) and principal
eigenvalue for Q;, respectively, ¢ = 1,2,..., K. Let j* =
argmax(Ag, ..., Ax). The iterate of GD is updated as

Q(k‘H) Q(k) + t*d( )

where the moving direction is
E

—Q;’f) + ij*v;*, e

(k)
2
k
_ Q%)]T’
and the step-size t* is determined by the following line search

t* = arg Jnax J((1—1) (k), (1= t)Qg-]f) + thj*v;r-*,

- Q).

where the interval 0 < ¢ < 1 ensures that the searching stays in
the feasible region. The direction d*) is obtained by ViV
projected onto the hyperplane Zl 1 Tr(Q( )) = P, which,
although related to the gradient at Q(*), is very different to
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our approach. In essence, v = v;r.* is a rank-one update to Q;If),
as opposed to the full-rank update in CGP. In fact, GD is a
variant of Zoutendijk method, for which the convergence is
not guaranteed as the algorithmic map of Zoutendijk method is
not closed [11]. Fig. 1 shows a equal-weighted 10-user equal-
weighted MIMO-BC example where GD fails to converge to
the optimal solution.

30
29
E 28
@
52
g
:q_')’ 27
©
i
E
» 26
25
gl i i i i i i i i i
2 4 6 8 10 12 14 16 18 20
Number of lterations
Fig. 1. A 10-user MIMO-BC channel with ny = n, = 4 where GD fails

to converge to the optimal solution.

It can also be seen from Fig. 1 that CGP is very efficient. It
only takes 20 iterations to reach to the global optimum. In fact,
it can be shown that, by using conjugate gradient directions,
CGP achieves an asymptotic superlinear convergence rate.

V. CONCLUSION

In this paper, we investigated the maximum weighted sum-
rate problem (MWSR) of MIMO Gaussian broadcast channels
(MIMO-BC). We proposed an efficient algorithm called conju-
gate gradient projections (CGP) to solve the MWSR problem.
The proposed CGP has provable convergence. With appro-
priate deflections for gradients, CGP enjoys an asymptotic
superlinear convergence rate. Also, CGP has a modest memory
requirement, which only needs the solution information from
the previous step. Another attractive feature of CGP is that it
can handle arbitrary number of antennas on both sides of a
MIMO-BC.
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