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Abstract— In this paper, we consider the problem of opti-
mal multipath routing for providing application performance
guarantees in multi-hop wireless networks, using multiple de-
scription video streaming as our target application. We address
this problem, which is shown to be NP-hard, with a novel
Reformulation-Linearization Technique (RLT) and branch-and-
bound-based approach, and develop an algorithm that produces
a pair of paths within the (1 − ε) range of the global optimum.
The proposed algorithm is computationally efficient and this
(1 − ε)-optimal algorithm provides an elegant tradeoff between
optimality and computational complexity.

I. INTRODUCTION

Recently, there has been considerable interest in supporting
video applications in multi-hop wireless networks (e.g., ad
hoc networks or mesh networks). The dynamic characteristics
associated with multi-hop wireless networks (e.g., mobility,
topology change, radio fading and loss) have posed some
unique challenges for video communications. Existing routing
protocols for such networks (e.g., OLSR [5], DSR [8], AODV
[12]) mainly focus on network layer connectivity problem
and do not have explicit consideration for video application
requirements. As a result, such single layer (network layer)
approaches are not optimal to support video applications.

In this paper, we investigate the important problem of
how to design routing protocols so as to optimally support
video applications in multi-hop wireless networks. We aim
to develop a cross-layer approach where the routing decision
takes explicit consideration of the application layer objective
function. In other words, the routing engine at the network
layer will not only find routes for connectivity, but will find
optimal routes such that the application layer performance
metric (e.g., PSNR) is maximized.

Throughout this investigation, we will employ multiple
description (MD) video as our target application. MD video is
an important coding technique for error resilience and control
for multimedia applications [15] and has been recognized as
an ideal candidate for video streaming in multi-hop wireless
networks [10]. Under MD coding, multiple equivalent streams
(or descriptions) are generated for a video source for transmis-
sion. At the receiver, any received subset of these descriptions
can be combined to reconstruct the original video and the
quality of the reconstructed video is commensurate with the
number of received descriptions. This video coding technique
is drastically different from traditional layered video coding,
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where video reconstruction hinges upon successful delivery of
the base layer.

From cross-layer routing perspective, the problem is to find
a set of routes (or paths) in multi-hop wireless networks, one
for each video description such that the video distortion is
minimized. The optimal multipath routing problem considered
in this paper is formulated into a mixed-integer non-linear
programming (NLP) problem. Such problems are shown to be
NP-hard in general [14]. In a previous work [9], we studied
this problem and addressed it using Genetic Algorithms (GA).
Although GA is an effective algorithm, it nevertheless is a
metaheuristic which does not provide any performance bounds
on how close the solution is to the optimal. As a result, a
theoretical result for multipath routing for MD video remains
an open problem.

In this paper, we aim to bridge this important theoretical
gap in cross-layer optimization for video communications. We
present a formal solution procedure based on the so-called
branch-and-bound [11] framework, which aims to produce an
(1 − ε)-optimal solution. Here ε > 0 is an arbitrarily small
number reflecting required accuracy. A key component in the
solution procedure is a novel method called the Reformulation-
Linearization Technique (RLT) [13], which in essence pro-
duces tight lower bound for a minimization problem. A
global optimal solution can be obtained by embedding RLT
into the branch-and-bound framework. That is, during each
branch-and-bound iteration, we employ RLT to generate an LP
relaxation for the corresponding sub-problem, and by solving
this LP relaxation we generate a lower bound for the sub-
problem. The corresponding upper bound is computed by a
suitable local search algorithm on the solution provided by the
LP relaxation. Based on the bounds of all the sub-problems
currently in the branch-and-bound tree, the gap between the
lower and upper bounds of the original problem is narrowed
iteratively, until they are within ε of each other.

The remainder of this paper is organized as follows. In
Section II, we present the problem formulation. In Section III,
we describe an RLT-based approach to reformulate and lin-
earize the problem. Section IV presents a branch-and-bound-
based solution procedure. Simulation results are presented in
Section V, and Section VI concludes this paper.

II. PROBLEM FORMULATION

A. Network Model

We model a multi-hop wireless network as a directed graph
G{V, E}, where V is the set of vertexes representing wireless
nodes and E the set of edges representing wireless links.

 
1525-3511/07/$25.00 ©2007 IEEE 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings. 
 

3987



We assume that nodes are reliable during the video session,
but links may be up or down with certain probabilities. For
our routing problem, we focus on network layer statistics,
assuming that the physical and MAC layer dynamics from the
underlying radio environment are reflected in these metrics.
We characterize a link {i, j} ∈ E with (i) bij : the available
bandwidth of link {i, j}; (ii) pij : the probability that link {i, j}
is “up”; (iii) lij : average burst length for packet losses on
link {i, j}. Based on these basic metrics, we can derive path-
level bandwidth and failure probability, which are useful to
characterize end-to-end performance at the video application
layer (i.e., distortion).

B. Video Distortion and Path Level Statistics

1) Video Distortion: Consider a video session from video
server s to client t. We assume that the video is encoded
into two descriptions, i.e., double description (DD) video, each
with a rate Rh bits/pixel, h = 1, 2. We consider DD video
since it is most widely used for MD video [2]–[4], [10]. Let dh

be the achieved distortion when only description h is received,
h = 1, 2, and d0 the distortion when both descriptions are
received. In this paper, we employ the following distortion-
rate function [1], [9]:


d0 = 2−2(R1+R2)

2−2R1+2−2R2−2−2(R1+R2) · σ2

d1 = 2−2R1 · σ2

d2 = 2−2R2 · σ2,

(1)

where σ2 is the variance of the source.
From end-to-end perspective, let π00 denote the probability

of receiving both descriptions, π01 the probability of receiving
description 1 only, π10 the probability of receiving description
2 only, and π11 the probability of losing both descriptions.
Then, the expected average video distortion at the receiver can
be approximated as: D = π00 ·d0+π01 ·d1+π10 ·d2+π11 ·σ2.
Note that our solution procedure presented later in this paper
does not depend on the specific structure of the distortion-rate
function.

2) Path-Level Statistics: To characterize a path Ph between
source node s and destination node t, we define:

I
(h)
ij =

{
1, if link {i, j} ∈ Ph,
0, otherwise.

An arbitrary path Ph can then be represented by a vector I(h)

of |E| elements, each corresponding to a link and having a
binary value.

For a source-destination pair {s, t}, consider two given
paths [P1,P2] in G{V, E}. Since we do not mandate “disjoint-
edness” between the two paths, P1 and P2 may share nodes
and links. For each link {i, j}, the aggregate description rate
should be bounded by its available bandwidth as

I
(1)
ij ·R1 + I

(2)
ij ·R2 ≤ ρ · bij ,

where ρ is a constant. For a video with coding rate f frames/s
and a resolution of W × V pixels/frame, we have ρ = 1/(κ ·
W · V · f), where κ is a constant determined by the chroma
sub-sampling scheme (e.g, κ = 1.5 for QCIF).

We now focus on how to compute the end-to-end path
statistics. Similar to the approach in [2], [3], we classify the
links into three sets: set one consisting of links shared by both
paths, denoted as J (P1,P2), and the other two sets consisting
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Fig. 1. Link and path models.

of disjoint links on the two paths, denoted as J̄ (Ph), h = 1, 2,
respectively. For disjoint portion of the paths, it suffices to
model the packet loss as a Bernoulli event, since losses of the
two descriptions are assumed to be independent on disjoint
portions. The success probabilities on the disjoint portions are:

p
(h)
dj =

{ ∏
{i, j} ∈ J̄ (Ph) pij , if J̄ (Ph) �= ∅, h = 1, 2

1, otherwise, h = 1, 2.
(2)

On the joint portion of the paths, losses on the two streams
are correlated. In order to model such correlation, we model
each shared link {i, j} as an on-off process modulated by a
discrete-time Markov chain, as shown in Figure 1(a). There is
no packet loss when the link is “up”; all packets are dropped
when the link is “down”. Transition probabilities, {αij , βij},
can be computed from the link statistics as βij = 1/lij and
αij = (1 − pij)/(pij lij).

If there are K shared links, the aggregate failure process of
these links is a Markov process with 2K states. In order to
simplify the computation, we model the aggregate process as
an on-off process. Specifically, we lump up all the states with
at least one link failure into a single “down” state, while using
the remaining state where all the links are in good condition
as the “up” state. Let Ton be the average length of the “up”
period. We have Ton = 1/[1 − ∏

{i, j} ∈ J (P1,P2)
(1 − αij)]

The transition probabilities of the aggregate on-off process can
be computed as Λ = 1/Ton, and Ψ = pjnt/[Ton(1 − pjnt)],
where pjnt is the average success probability of the joint
portion, and

pjnt =
{ ∏

{i, j} ∈ J (P1,P2)
pij , if J (P1,P2) �= ∅

1, otherwise.
(3)

Note that Λ = 0 and Ψ = 0 if J (P1,P2) = ∅.
The consolidated path model is illustrated in Figure 1(b),

where J (P1,P2) is modeled as a two-state Markov process
with parameters {Λ,Ψ}, and J̄ (Ph) is modeled as a Bernoulli
process with parameter (1 − p

(h)
dj ), h = 1, 2. With the

consolidated path model, the joint probabilities of receiving
the descriptions are as follows.


π00 = pjnt · (1 − Λ) · p(1)
dj · p(2)

dj

π01 = pjnt · p(1)
dj ·

[
1 − (1 − Λ) · p(2)

dj

]
π10 = pjnt ·

[
1 − (1 − Λ)p(1)

dj

]
· p(2)

dj

π11 = 1 − pjnt ·
[
p
(1)
dj + p

(2)
dj − (1 − Λ) · p(1)

dj · p(2)
dj

] (4)
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C. Problem Formulation

We can now formulate the problem of multipath routing for
MD video into the following mathematical programming.

In Problem OPT-MR, {I(h)
ij } are binary optimization vari-

ables (incorporated in π00, π01, π10, and π11). Constraint
(6) guarantees that the paths originate at the source s and
terminate at the destination t, and constraint (7) ensures that
the paths are loop-free. Constraint (8) guarantees that the
links are stable. For a given pair of paths, the average video
distortion D is determined by the end-to-end statistics and the
correlation of the paths, as given in (1) and (4).
OPT-MR

Minimize:

D = π00 · d0 + π01 · d1 + π10 · d2 + π11 · σ2 (5)

subject to:∑
j∈V

I
(h)
ij −

∑
j∈V

I
(h)
ji

=




1, if i = s, i ∈ V, h = 1, 2
−1, if i = t, i ∈ V, h = 1, 2

0, otherwise,
(6)

∑
i∈V

I
(h)
ij

{ ≤ 1, if i �= t, j ∈ V, h = 1, 2
= 0, if i = t, j ∈ V, h = 1, 2 (7)

I
(1)
ij ·R1 + I

(2)
ij ·R2 ≤ ρ · bij , {i, j} ∈ E (8)

I
(h)
ij ∈ {0, 1}, {i, j} ∈ E , h = 1, 2. (9)

The objective function (5) is a complex ratio of high-order
exponentials of the I-variables. The objective evaluation of a
pair of paths involves identifying the joint and disjoint por-
tions, which is only possible when both paths are completely
determined. Since such problems are NP-hard in general [7],
and Problem OPT-MR does not appear to posses any special
simplifying structure, it is likely to be NP-hard, although a
formal proof is not given in this paper.

III. REFORMULATION AND LINEARIZATION

Our solution approach to problem OPT-MR is to embed
a the novel reformulation-linearization technique (RLT) in
a branch-and-bound framework [13]. RLT is a relaxation
technique that can be used to produce tight polyhedral outer
approximations or linear programming relaxations for an
underlying non-linear, non-convex polynomial programming
problem. In the following, we first reformulate problem OPT-
MR into a mixed-integer polynomial programming problem
P-MR. Then, we replace all the non-linear terms and add the
corresponding RLT constraints into the problem formulation,
so as to obtain a linear programming relaxation of problem
OPT-MR, denoted as L-MR. In the next section, we will
develop a branch-and-bound based procedure that finds (1−ε)-
optimal solution.

A. Reformulating Problem OPT-MR

As discussed, the objective function of problem OPT-MR
is a complex function of exponential terms of the I-variables.
Our first goal is to reformulate these terms, which will simplify
the objective function and the constraints. Without loss of
generality, we set σ2 = 1 to simplify notation. Note that σ2

only affects the absolute value of distortion, but not optimal
routing selection.

In (4), there are four high order terms that need to be
reformulated, namely, pjnt, p

(1)
dj , p(2)

dj , and Λ. In the following,
we show how to reformulate a few of these terms. From
their definitions in (2) and (3), we can rewrite the success
probabilities as:




pjnt =
∏

{i,j}∈E p
{I

(1)
ij ·I(2)

ij }
ij

p
(1)
dj =

∏
{i,j}∈E p

{I
(1)
ij ·(1−I

(2)
ij )}

ij

p
(2)
dj =

∏
{i,j}∈E p

{I
(2)
ij ·(1−I

(1)
ij )}

ij .

(10)

Taking logarithms on both sides, we can convert the high order
terms on the right-hand-side (RHS) of (10) into summations
of quadratic terms of the I-variables, i.e.,


log(pjnt) =

∑
{i,j}∈E

[
I
(1)
ij · I(2)

ij · log(pij)
]

log(p(1)
dj ) =

∑
{i,j}∈E

[
I
(1)
ij · (1 − I

(2)
ij ) · log(pij)

]
log(p(2)

dj ) =
∑

{i,j}∈E
[
I
(2)
ij · (1 − I

(1)
ij ) · log(pij)

]
.

(11)

Other non-linear terms can be reformulated in a similar way.
Having simplified the high-order terms, we now deal with the
resulting constraints of the form y = log(λ). We can linearize
this logarithmic relationship over some tightly-bounded inter-
val using a polyhedral outer approximation comprised of a
convex envelope in concert with several tangential supports.
For instance, if λ is bounded as 0 < λ0 ≤ λ ≤ 1, these
constraints can be written as follows.{

y ≥ log(λ0)
1−λ0

· (1 − λ)
y ≤ log(λk) + λ−λk

λk
, k = 1, ..., kmax,

(12)

where λk = λ0 + (1 − λ0) · (k − 1)/(kmax − 1), for k =
1, 2, · · · , kmax. A four-point tangential approximation can be
obtained by letting kmax = 4. The corresponding convex enve-
lope consists of a chord connecting the two end points, which
is used in combination with tangential supports at four points
including the two end points. As a result, every logarithmic
relationship translates to five linear constraints as shown in
(12). Note that such polyhedral outer approximations will be
iteratively tightened during the branch-and-bound procedure
(see Section IV). This reduces OPT-MR into a mixed-integer
polynomial programming problem P-MR.

B. Linearizing Problem P-MR

Although greatly simplified, problem P-MR is still a polyno-
mial programming problem, which is NP-hard in general [13].
In this section, we linearize problem P-MR by employing RLT,
which involves variable substitutions and introducing linear
RLT bound-factor constraints.

Consider a quadratic product term of the form (p(1)
dj · p(2)

dj )
in (4). By introducing a new variable z0 = p

(1)
dj · p(2)

dj , we

can substitute the (p(1)
dj · p(2)

dj ) terms with z0, thus removing
this quadratic term from the objective function and constraints.
Assuming p(1)

dj and p(2)
dj are each bounded as

(
p
(1)
dj

)
L
≤ p

(1)
dj ≤(

p
(1)
dj

)
U

and
(
p
(2)
dj

)
L
≤ p

(2)
dj ≤

(
p
(2)
dj

)
U

, respectively, we can
add the following relational constraints, which are known as
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the RLT bound-factor product constraints:


{[
p
(1)
dj −

(
p
(1)
dj

)
L

]
·
[
p
(2)
dj −

(
p
(2)
dj

)
L

]}
LS

≥ 0{[
p
(1)
dj −

(
p
(1)
dj

)
L

]
·
[(
p
(2)
dj

)
U
− p

(2)
dj

]}
LS

≥ 0{[(
p
(1)
dj

)
U
− p

(1)
dj

]
·
[
p
(2)
dj −

(
p
(2)
dj

)
L

]}
LS

≥ 0{[(
p
(1)
dj

)
U
− p

(1)
dj

]
·
[(
p
(2)
dj

)
U
− p

(2)
dj

]}
LS

≥ 0,

where {·}LS denotes a linearization step under the substitu-
tion z0 = p

(1)
dj · p(2)

dj . Expanding the above inequalities and

substituting z0 = p
(1)
dj · p(2)

dj , we obtain RLT constraints for
z0. By adding the linear RLT bound-factor constraints for z0
into the problem formulation, we can therefore replace the
second-order term p

(1)
dj · p(2)

dj with the linear term z0.
Similarly, we define new variables for all the remaining

non-linear terms in the reformulated problem OPT-MR(p),
including z1 = pjnt · p(1)

dj , z2 = pjnt · p(2)
dj , and z3 = z0 · φ,

and make substitutions in the same manner. The constraints
derived from reformulating the logarithmic terms can also be
linearized by substituting zij = I

(1)
ij · I(2)

ij , and by introducing
the corresponding linear RLT bound-factor constraints, for all
{i, j} ∈ E . As a result, we obtain a linear programming
relaxation problem L-MR, which can be solved in polynomial-
time.

IV. A SOLUTION PROCEDURE

A. Overview of the Branch-and-Bound Framework

Branch-and-bound is an algorithmic method for solving
optimization problems, especially in discrete and combinato-
rial optimization [13]. Under branch-and-bound, the original
problem is first relaxed using a suitable relaxation technique
to obtain an easier-to-solve, lower-bounding problem. In our
approach, we used RLT to reformulate and linearize OPT-
MR into an LP relaxation L-MR. The optimal solution to this
LP relaxation provides a lower bound LB for the original
problem. Since such an LP relaxation usually yields an infea-
sible solution to the original problem, a local search algorithm
should be employed to obtain a feasible solution to the original
problem. The resulting feasible solution then provides an upper
bound UB for the original problem.

Under branch-and-bound framework, the original problem
O (or OPT-MR) is partitioned into sub-problems, each having
a smaller feasible solution space, based on the solution pro-
vided by the LP relaxation. New sub-problems are organized
as a branch-and-bound tree, while this partitioning or branch-
ing process is carried out recursively to obtain two new sub-
problems at each node of the tree. The sub-problems are also
inserted into a problem list L, which records the active nodes
in the branch-and-bound tree structure. More specifically, in
the beginning, the problem list L is initialized with the original
problem O. At any given iteration, the lower and upper bounds
for O are computed as{

LB = min{LBk : Problem k ∈ L}
UB = min{UBk : all nodes k explored thus far}. (13)

The method proceeds by choosing the next problem to
partition from the problem list. In our approach, the problem
k ∈ L having the smallest LBk is chosen. This problem k
is then partitioned into two sub-problems k1 and k2, which

replace problem k in L. Every time a problem k is added to
the list, LBk and UBk are computed, and the LB and UB
for the original problem O are updated. At any given iteration,
if LB ≥ (1 − ε) · UB, the procedure terminates and we have
an (1 − ε)-optimal solution. Also, for any problem k in the
problem list, if LBk ≥ (1 − ε) · UB, no globally optimal
solution that improves beyond the ε-tolerance can exist in
the sub-space of the feasible region represented by this node.
Therefore, this node can be removed (or fathomed) from the
branch-and-bound tree. In this manner, the branch-and-bound
process can fathom certain branches or nodes of the tree,
eliminating them from further exploration. The effectiveness
of the branch-and-bound procedure depends strongly on that
of the employed fathoming strategy.

B. Details of the Solution Procedure

We now describe the details of the solution procedure,
which we call ALG(ε). The iterative branch-and-bound algo-
rithm terminates when either the lower bound for the original
problem is within (1 − ε) of the upper bound, i.e., LB ≥
(1− ε) ·UB, or the problem list L is empty. The operation of
each step in ALG(ε) is described in the following.

1) Initialization and Relaxation : We start by initializing
the current “best” solution, denoted as ψ∗, with any known
feasible solution ψ̄ (such as a pair of shortest paths or disjoint
shortest paths) and the current “best” upper bound UB as the
objective value obtained using this solution ψ̄.

2) Node Selection : At every iteration, problem k (or the
corresponding node in the branch-and-bound tree) that has the
minimum LBk among all the problems k ∈ L is selected.
As discussed before, this problem is indicative of the lower
bound for the original problem. Subsequent operations of
local search, partitioning and bounding are performed on this
problem k.

3) Local Search : As discussed in Section IV-A, the solu-
tion to the relaxation problem k that is selected in the node
selection step, is usually infeasible to the original problem O.
This is especially true if the original problem involves binary
variables (i.e., the I-variables could be fractions). A local
search algorithm should be used to find a feasible solution
to the original problem starting from the infeasible lower
bounding solution.

Let ψ̂ be the infeasible (or fractional) solution obtained by
solving the LP relaxation of the original problem. Starting
from this fractional solution, we solve for h = 1, 2 the follow-
ing shortest path problem: Minimize

∑
{i,j}∈E

[
−Î(h)

ij

]
·I(h)

ij ,
subject to the flow constraints. Note that for an optimization
variable y, ŷ denotes its value in the infeasible solution
ψ̂. Solving these shortest path problems provides us with a
rounded heuristic solution ψ̄ that has a tendency to round
up relatively higher-valued components of ψ̂ and round down
relatively lower-valued components. The distortion value of
the rounded solution ψ̄ is an upper bound for this subproblem,
i.e., UBk.

4) Partitioning : The objective of the partitioning step is
to find the branching variable that will enable us to split the
feasible solution space Ωk of problem k into two solution
sub-spaces Ωk1 and Ωk2 . In ALG(ε), we need to consider
three classes of optimization variables for partitioning, i.e., the
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binary I-variables, the substitution variables (e.g., z0), and the
logarithm substitution terms.

When partitioning based on the I-variables, we need to
select a variable that will offer the highest gain in terms of
improving the objective value. For this purpose, we should
choose the I-variable which is factional and the closest to
0.5, and partition the problem by fixing it to 0 and 1.

In addition to the I-variables, we also need to examine
branching decisions based on the substitution variables such
as z0 = p

(1)
dj · p(2)

dj . For such variables, we first find the
maximum relaxation error between the substitution variable
and the corresponding product term, say, |p̂(1)

dj · p̂(2)
dj − ẑ0|. We

then verify whether the following condition is satisfied:[(
p
(1)
dj

)
U
−

(
p
(1)
dj

)
L

]
min

[
p̂
(1)
dj −

(
p
(1)
dj

)
L
,
(
p
(1)
dj

)
U
− p̂

(1)
dj

]
≥[(

p
(2)
dj

)
U
−

(
p
(2)
dj

)
L

]
min

[
p̂
(2)
dj −

(
p
(2)
dj

)
L
,
(
p
(2)
dj

)
U
− p̂

(2)
dj

]
.

If this condition holds true, we partition the solution space
Ωk of problem k into two new regions Ωk1 and Ωk2 , by

dividing the range
[(
p
(1)
dj

)
L
,
(
p
(1)
dj

)
U

]
into two subregions[(

p
(1)
dj

)
L
, p̂

(1)
dj

]
and

(
p̂
(1)
dj ,

(
p
(1)
dj

)
U

]
. Otherwise, we partition

Ωk with respect to p(2)
dj in a similar manner.

Finally, the branching decisions also include the logarithm
substitution terms, as described earlier. In such cases, we
first find the variable that gives the greatest discrepancy
between the logarithm value, say, log(φ̂) and the RHS of
its corresponding substitution among all such terms, and then
either bisect the interval of this variable (e.g., [(φ)L , (φ)U ])
evenly, or divide this interval at the point φ̂.

5) Bounding : In the bounding step, we solve the RLT
relaxation for the two sub-problems identified in the partition-
ing step, and obtain their corresponding lower bounds LBk1

and LBk2 , thereby updating the incumbent lower bounding
solution. The corresponding upper bounds, i.e., UBk1 and
UBk2 , are obtained by applying the local search algorithm
starting from the relaxation solutions obtained, and the current
LB and UB values for the original problem O are updated
according to (13). If any of the conditions (1 − ε) · UB >
LBk1 and (1 − ε) · UB > LBk2 are satisfied, we add the
corresponding problem into the problem list L, and remove
problem k from the list.

6) Fathoming : For any problem k in the problem list L, if
LBk ≥ (1− ε) ·UB, then the sub-space corresponding to this
problem does not contain any solution that improves beyond
the ε-tolerance of the incumbent solution. Therefore, we can
prune this problem from the problem list.

V. SIMULATION STUDIES

Our simulation study consists of two parts. In the first
part, we will examine the convergence behavior and com-
plexity issue of the proposed algorithm. In the second part,
we will demonstrate the performance advantage of the pro-
posed cross-layer approach over a non-cross-layer approach.
Throughout our simulation study, we consider a multi-hop
wireless network deployed over a rectangular region, where
the connectivity between the nodes is determined by the radio
transmission range. The source node s and destination node t
are chosen randomly from the nodes in the network. At the
link level, we associate each link with a failure probability,

TABLE I

PERFORMANCE OF THE PROPOSED ALGORITHM (ε = 0.01)

Number of Nodes Mean Computation Time(sec) Variance
20 0.074 0.002
30 0.381 0.282
50 0.858 0.460
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Fig. 2. Convergence behavior for a 50-node network.

available bandwidth, and mean burst length (for packet loss).
Specifically, the failure probability is taken uniformly between
[0.01, 0.3]; the available bandwidth is taken uniformly from
the set [100, 150, 200, 250, 300, 350, 400] Kb/s; and the mean
burst length is chosen uniformly between [2,6]. For ALG(ε),
we set ε = 0.01 (or 1%). We implement the BB/RLT solution
procedure in C program and use the LINDO API 3.0 for
solving the LP relaxation problem.

A. Convergence Behavior of Solution Procedure

We first examine the convergence behavior of the solution
procedure for different network sizes and topologies. We
consider 20-, 30- and 50-node networks within a 300m x
300m, 400m x 400m, and 500m x 500m rectangular regions,
respectively. The transmission range for each node is assumed
to be 150m. The description rates are R1 = R2 = 128 Kb/s.
For each network size, we generate 100 topologies and run 100
computations to obtain the mean and variance of convergence
time. Table I shows the convergence time performance for the
networks with ε = 0.01. The ALG(ε) algorithm was run on a
standard desktop PC with a Pentium-4 2.4 GHz processor and
512 MB memory. As shown in Table I, the computational time
for convergence to ε = 0.01 is very fast for small to moderate
sized network.

To see the iterative convergence behavior of the solution
procedure, we intentionally pick an experiment with a con-
vergence time longer than the average. Figure 2 shows such
an instance for the 50-node network for description rates of
R1 = R2 = 320 Kb/s. For this particular 50-node network, the
gap between upper bound UB and lower bound LB converges
to ε = 1% (i.e., LB ≥ 99% · UB) after the 57th iteration in
about 1.87 s.

B. Comparison with k-Shortest Path Routing

In this section, we compare our cross-layer routing approach
with a popular non-cross-layer approach. For the latter, we
consider the k-shortest path (SP) routing algorithm [6], with
k = 2 or 2-SP for DD video. We use hop count as the routing
metric in the 2-SP algorithm.
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(a) Original (b) 128 Kb/s, ALG(ε) (c) 128 Kb/s, 2-SP (d) 256 Kb/s, ALG(ε) (e) 256 Kb/s, 2-SP

Fig. 3. Frame 278 from the reconstructed video.
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We encode a video sequence in order to transmit the DD
video over the network, and compare the video quality at
the receiver (measured using PSNR) under our cross-layer
approach and the 2-SP approach. An H.263+ like codec is
implemented to generate the two descriptions. This codec
encodes the video sequence into two balanced descriptions
(i.e., R1 = R2). The QCIF sequence “Foreman” (400 frames)
is encoded at 15 fps for each description, with a macroblock
level intra-refreshment rate of 10%. Each Group of Blocks
(GOB) is carried in a different packet. When a GOB is
corrupted, the decoder applies a simple error concealment
scheme by copying the corresponding slice from the most
recent, correctly received frame. We vary the rate of each video
description from 64 Kb/s to 320 Kb/s for the 50-node network
and compare the PSNR performance under our solution and
2-SP. The results are shown in Figure 4. Note that as the
description rate R increases, more links will become ineligible
during path selection process. We find that our cross-layer
approach provides higher PSNR over the 2-SP approach under
all description rates.

To illustrate the quality of video frames, we plot a sample
video frame from the the original video in Figure 3(a) and
compare it to the reconstructed video frames under our ALG(ε)
and 2-SP for R = 128 Kb/s and R = 256 Kb/s, respectively in
Figure 3(b)-(e). The frames under ALG(ε) have a visual quality
very close to the original frame, while the frames under 2-SP
are barely recognizable.

VI. CONCLUSIONS

In this paper, we studied the problem of how to route MD
video over multi-hop wireless networks with the objective of
optimizing the application layer performance. We formulated
this problem into an cross-layer optimization problem with
an application performance metric as the objective function
and routing and link layer considerations as constraints. We

developed a formal branch-and-bound solution procedure and
employed a novel relaxation technique called RLT in the
solution procedure. We showed that this solution procedure is
able to produce a set of routes with an objective value within
(1 − ε) of the optimal value. Simulation results demonstrated
the efficacy of the proposed solution procedure.
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