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Abstract— Event boundary detection is in and of itself a
useful application in wireless sensor networks (WSNs). Typically,
it includes the detection of a large-scale spatial phenomenon
such as the transportation front line of a contamination or the
diagnosis of network health. In this paper, we present FEBD, a
fully distributed and light-weight Fault-tolerant Event Boundary
Detection scheme. FEBD features an enhanced (nonparametric)
statistical model that supports localized detection among neigh-
boring nodes. To enhance detection accuracy, FEBD also intro-
duces an error suppression technique prior to the determination
of boundary nodes. The proposed scheme shows a much better
detection accuracy and fault tolerance properties as compared
to the previous models. The proposed FEBD is evaluated by
extensive simulations, and presents very good detection accuracy,
even when sensor fault probability is as high as 20%.

I. INTRODUCTION

An important application of WSNs is to monitor, detect,

and report the occurrences of events of interest [1], [2], [7],

[8]. For some large-scale spatial phenomena, such as forest

fire, environment temperature, and chemical spills, detecting

the event boundary is sufficient or of more importance than

collecting measurement over the entire event area. Due to the

strict resource limitations (e.g., battery power, bandwidth) of

sensor nodes and the nature of some events, it is not feasible to

collect all sensor measurements and compute event boundaries

in a centralized manner [3], [4]. A localized approach that

allows in-network processing is therefore demanded. Sensor

nodes are expected to collaborate with each other based on

each own local view and provide a global picture for spatially

distributed phenomena with greatly improved efficiency.

Recently, several localized boundary detection schemes

have been proposed [5]–[10]. Nowak and Mitra [9] propose

an edge estimation scheme when there exists a predefined

hierarchical structure within the sensor network. Clouqueur, et.

al. [5] seek algorithms to collaboratively detect the presence

of a target in a region. Each sensor obtains the target energy

(or local decision) from all other sensors in the region, drops

extreme values if faulty sensors exist, computes the average,

and then compares it with a pre-determined threshold for final

decision. Krishnamachari and Iyengar [7] propose several lo-

calized threshold based decision schemes to detect both faulty

sensors and event regions. The 0/1 decision predicates from the

neighborhood1 are collected and the number of neighbors with

the same predicates are calculated. This number is used for

the final decision based on a majority vote. The unique work

1We use “neighborhood” to indicate the one-hop neighbors of a node.

that targets localized boundary detection in sensor networks

is proposed by Chintalapudi and Govindan in [6]. All three

schemes in [6] take as inputs the 0/1 decision predicates from

neighboring sensors. The statistical approach computes the

number of 0’s and 1’s in the neighborhood and a boundary

sensor is detected if its neighbors contain a “similar” number

of 0’s and 1’s. Here the “similarity” is defined based on a

threshold whose value can be obtained based on a lookup

table. Ding et. al. propose another localized statistical approach

that takes as input not only 0/1 decision predicates but also

numbers that abstract sensor readings or sensor behaviors [8].

Liao et. al. also propose a composite hypothesis test based

approach for edge detection [11].

In this paper, we propose a Fault-tolerant Event Boundary

Detection (FEBD) scheme, which detects the event boundaries

in a localized manner with enhanced accuracy. In contrast

to previous schemes, FEBD comes up with a novel error

suppression technique. FEBD follows a decision fusion ap-

proach. Once an event of interest is detected, senor nodes first

exchange their measurements (i.e., 0/1) among neighbors and

each node suppresses its own (possibly) faulty measurements

following a majority rule. A nonparametric statistical boundary

detection model further operates on the error-adjusted mea-

surement results, and identify boundary nodes. FEBD shows a

much higher accuracy and better fault-tolerance as compared

to previous schemes [6]–[8]. The performance of FEBD is

justified by our extensive simulation study.

The remaining part of this paper is organized as follows.

Section II describes the proposed FEBD. Section III then

reports the simulation results on the performance of FEBD.

Section IV concludes the paper.

II. FEBD: THE SCHEME

A. Network model

In FEBD, we adopt a refined event boundary definition

based on those in [6], [8]. Consider a phenomenon (i.e.,

event E) that spans some arbitrarily shaped sub-region of S.

Each sensor can, based on locally collected measurements,

determine whether it belongs to the sub-region covered by

the phenomenon or not. We assume that sensor nodes are

uniformly distributed in the sensor field. Ideally, a boundary

node, say Si, is such a node that every closed disc centered at

Si contains both points in E and E (that is, the boundary node

should be right on the real event boundary, denoted as BR.),

where E is the ground truth of the event covering sub-region
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Fig. 1. An illustration of boundary definition B with r = R
2

, where the event
area is located inside the outer square and circle, and the boundary nodes are
denoted in red ‘*’, faulty nodes are denoted in blue ‘�’ and normal nodes
are denoted in green ‘◦’.

in S, and E represents the remaining region, i.e., E = S − E .

Hence, an event boundary, denoted as B, when represented by

sensor nodes, is simply a collection of such boundary nodes.

However, due to the actual node density in practice, an event

boundary found in this case constitutes only a very restrictive

node set, which is far from enough to approximate/reveal

BR [6]. For this reason, the notion of boundary width r is

introduced with its value 0 < r < R in FEBD, where R is the

communication radius of sensor nodes. In FEBD, we define a

sensor node, Si, as a boundary node,

B =
⋃

i

Si, ∀ i : |Si ⊥ BR| ≤ r, and Si ∈ E ,

where |Si ⊥ BR| denotes the distance between Si and BR.

This definition is illustrated in Fig. 1.

Naturally, the design goal of FEBD is then to identify as

many nodes as possible in B, in the presence of node random

faults. (Here we assume that the sensor fault probability is

symmetric and spatially uncorrelated.) At the same time,

FEBD should include as few nodes as possible that do not

belong to B. We further require that the included bogus

boundary nodes should be as close as possible to the real

event boundary. Therefore, on top of boundary width r, the

notion of tolerance radius is introduced to characterize the

distribution of the boundary nodes detected by FEBD. In

particular, any falsely detected boundary node that has its

distance to real boundary B no more than R−r
2 is said to be

within tolerance radius. We are more interested in the fraction

of falsely detected boundary nodes that are far from the event

boundary B. An illustration of this definition is shown in Fig.

2.

B. The Scheme

The proposed FEBD is designed to be robust against node

random faults, while keeping accuracy in mind. The key idea

of FEBD is that, by allowing each sensor to collect event

Sensor Field

ε

ε
R

B

B
2/R

4/R

Boundary Width
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R

Fig. 2. An illustration of boundary width and tolerance radius with r = R/4

measurements from other nodes in the neighborhood, the

boundary is present; by further requiring sensor nodes to adjust

their measurements based on those of the neighborhood, the

presented boundary can be more accurate and fault-tolerant.

FEBD detects an event boundary in two steps. In Step 1) local
sensing and measurement adjusting, each node exchanges its

event measurement in the neighborhood. Then, every node

adjusts its own measurement result according to the majority
rule. Next, in 2) distributed boundary detection stage, each

node independently determines whether or not it is a boundary

node according to the predefined statistic model and the

updated measurements distribution in its neighborhood.

The observation behind FEBD is two-fold: 1) The original

event measurements collected from neighbor nodes usually

contains faulty measurements due to node measurement error

and fault; if faulty measurements can be suppressed (in the

statistical sense), boundary detection can certainly be more

accurate and thus more tolerant against node random faults.

2) Statistically, a boundary node can be determined by com-

paring the event measurements among its neighbor nodes by

assuming that the neighbor area of a sensor node is so “small”

in comparison to the area covered by the entire event that the

ground truth boundary can be approximated by a straight line

in this area. In particular, a boundary node (i.e., belonging to

B) will always have the difference between the numbers of

‘0’ and ‘1’ measurements in its neighborhood limited by a

certain threshold. The value of the threshold is determined by

boundary width r given uniform node distribution.

In FEBD, the following specific rules are specifically de-

signed to reflect the above observation:

• Majority rule: A node maintains its own measurement

only when this result is the majority result within its

neighborhood. Statistically, this rule could lead to error

suppression, as long as sensor fault probability is less

than 50%. To see this, we give an intuitive explanation

as follows. We show that the adjusted results are at least

no worse than the original ones. Assume that the WSN

is deployed in a grid based manner, that is, each sensor

node is placed with equal distance to each other, as in Fig.

2. In this case, the larger the area is, the more number

the nodes reside in. Then, for every node Si ∈ E where

|Si ⊥ BR| ≥ R
2 , the majority rule obviously yields better
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(at least no worse) results, since sensor fault probability

is less than 50% and we assume node fault probability

is spatially uncorrelated. This is because the majority of

the neighbors that Si has will have the same measurement

of ‘0’. The same argument also goes to the event nodes

whose distances to BR are no less than R
2 . The difference

is that now the majority of the neighbors that Si has will

have the same measurement of ‘1’.

Next, we consider an event node Si nearby the event

boundary, i.e., |Si ⊥ BR| < R
2 . Still, the number of

event nodes in the neighborhood of Si is obviously

larger than that of non-event nodes, assuming sensor fault

probability is 0%. Then, given a non-zero sensor fault

probability, the situation is still the same in the statistic

sense, since the sensor fault probability is symmetric2.

The same argument also goes to the non-event nodes

nearby the boundary, because of the same reason. Hence,

the majority rule always leads to at least no worse results

as compared to original ones in case of the grid-based

deployment. This conclusion can be further extended to

the case of node uniform distribution, since a larger area

still statistically contains a larger number of nodes. Note

that the majority rule has been proved to be optimal based

on an Bayesian fault recognition model in suppressing

node random measurement faults [10]. We refer the

interested reader to [10] for the detailed proof.

• Determination rule: A node recognizes itself as a bound-

ary node only when

1 − n+ − n−
nu

≥ γ, (1)

where n+ is the number of ‘1’ measurements in a node

u’s neighborhood, n− is the number of ‘0’s, and nu =
n+ + n− is the actual neighborhood size. Furthermore,

γ is a preset system parameter, called normalized accep-
tance threshold. The performance of the scheme relies on

an appropriate value of γ. In FEBD, the optimal choice

of γ is not related to the sensor fault probability, which

is in contrast to the previous schemes. In FEBD, we set

γ = 1 − II(r) − I(r)
πR2

, (2)

where the areas of II and I are illustrated in Fig. 3. This

selection of γ is obviously optimal in case of grid-based

node deployment, since the area size directly determines

the number of nodes that are located inside the area.

In case of uniform node distribution, it is still the case

though in the statistic sense.

To the best of our knowledge, this is the first statistic

model that combines faulty data adjustment in event boundary

detection.

III. SIMULATION STUDIES OF FEBD

A. Performance Evaluation Metrics
The following three metrics are used to evaluate the perfor-

mance of FEBD. Let B
′ be the set of boundary nodes detected

2Since the sensor fault probability is symmetric, a sensor node will have
equal probability in giving a ‘1’ when the truth is ‘0’, and giving a ‘0’ when
the truth is ‘1’.

R

r
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)(cos
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−

Boundary
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Fig. 3. An illustration of areas I and II

by FEBD. Let B be the set of actual boundary nodes as defined

in Section II.A. First of all, we want FEBD to detect as many

real boundary nodes (i.e., nodes belonging to B) as possible.

Hence, hit rate is evaluated.

Hit Rate ef : ef represents the fraction of sensors in B that

are correctly detected by FEBD:

ef =
#{B ∩ B

′}
#{B} (3)

False Detection Rate ed: ed represents the fraction of falsely

detected sensors3 with respect to the size of B. Here, only

those falsely detected sensors whose distances to the boundary

are at least R−r
2 are counted. Let A denote the set of falsely

detected nodes whose distances to the boundary are larger than
R−r

2 (cf. Fig. 2).

ed =
#{A}
#{B} (4)

Further, we denote the mean distance of the nodes in B
′ to BR

as dB′ , and evaluate normalized mean distance of the boundary

nodes detected by FEBD.

Normalized Mean Distance ew: ew represents the normal-

ized mean distance of B
′ with respect to boundary width:

ew =
dB′

r
(5)

B. Simulation setup

In all simulations, sensor nodes are located in a 200m by

200m area, their locations drawn from a uniform distribution

over the area. The radio range of all the sensors is 10m and

assumed omni-directional. In all simulations, we arbitrarily

choose the boundary width r = R/2. And γ is chosen to be

1− II(r= R
2 )−I(r= R

2 )

πR2 = 2π−3
√

3
3π ≈ 0.12. Note that our γ value

is independent of sensor fault probability.

We report the results for event regions with ellipses or

straight lines as the boundaries. Straight lines are selected

because when the network area is large, the view of the bound-

ary of one sensor near the boundary is approximated by a line

segment in most cases. An ellipse represents a curly boundary.

3Here the false detection only counts the false positives, i.e., sensors that
are not boundary nodes but are erroneously detected as boundary nodes.
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Fig. 4. Simulation results with respect to three evaluation metrics

Our simulation produces similar results for event regions with

other boundary shapes. The event regions are generated as

follows. For a linear boundary, a line y = kx+b is computed,

where k tan θ is the slope, with θ drawn randomly from (0, π
2 ),

and b is the intercept, drawn randomly over the entire x-axis

within the sensor field. The area below the line is the event

region. For a curly boundary, the event region is within an

ellipse that can be represented by E(a, b, x0, y0, θ) = 0 [6].

Here 2a and 2b are the lengths of the major and minor axes

of the ellipse, with a, b drawn randomly over the length of

the sensor field. (x0, y0) is the center of the ellipse drawn

uniformly over the entire sensor field. θ, the angle between the

major axis of the ellipse and the x-axis, is a random number

between 0 and π.

To examine the impact of density, we chose five values

of node density (i.e., neighborhood size): 20, 25, 30, 40

and 50. To capture the impact of node random faults, we

used a simple bit flipping technique. In this model, a sensor

toggles its event predicate value from its true value with

probabilities pf . We used twelve different choices for pf :

0%, 2.5%, 5%, 7.5%, 10%, 12.5%, 15%, 17.5%, 20%, 22.5%,

25%, and 27.5%. Thus, a single simulation run represents one

line/ellipse chosen randomly, for one value of density and

sensor fault probability. For each given density and sensor

fault probability, the results for the three performance metrics

are averaged over 50 simulation runs corresponding to 50

randomly chosen lines.

C. Simulation results

In this subsection, the simulation results are reported in

details. The three performance evaluation metrics defined in

section V.A with regard to network density and sensor fault

probability are reported in Fig. 4 (a), (b) and (c), respectively.

In contrast to the previous schemes, we do not change any

setting on parameters as sensor fault probability increases from

0% to 27.5%. That is, our simulation results does not rely on

the pre-knowledge of sensor fault probability, which, in fact,

may not be available as a priori in many practical applications.

Firstly, we observe that the proposed FEBD performs very

well, when sensor fault probability equals to zero. In this case,

the hit rate ef is always as high as 95%, no matter what the

network density n′ is. In the previous schemes [6], [8], ef is

generally no more than 85%. Hence, FEBD has the highest hit

rate in the ideal situation as compared to the previous schemes.

Secondly, Fig. 4 (a) shows that 1) the hit rate ef in

FEBD does not rely on network density; this is because we

intentionally used normalized threshold value in boundary

node detection process. 2) FEBD is very good at detecting

boundary nodes: ef remains to be larger than 55%, when

sensor fault probability pf reaches as high as 27.5%. This

result significantly outperforms any of the previous schemes

[6]–[8].

Thirdly, FEBD presents a high security strength as shown

in Fig. 4 (b). When n′ is as low as 20, the false detection rate

ed is still less than 5%, given pf = 12.5%. And for the same

pf , ed can be kept as low as 0.3% when n′ = 50. Further,

given n′ = 50, ed increases very slowly as pf increases; ed

equals to only 0.67%, when pf reaches to 27.5%.

Fourthly, Fig. 4 (c) shows that the detected boundary nodes

by FEBD are very close to the defined boundary B. It is shown

that as long as n′ ≥ 25, the normalized mean distances of the

detected boundary nodes always kept to be around the ideal

value 0.5, given pf ≤ 17.5%.

In summary, the simulation results shown in Fig. 4 indicate

that 1) FEBD performs well until pf is up to 12.5%, even

when n′ is as low as 20; 2) FEBD keeps presenting a very

good performance and security strength even when pf goes

up as high as 25%, given a reasonable high n′; 3) FEBD

significantly outperforms the previous schemes in all the three

metrics [6], [8].

Fig. 5 gives several visualized results to illustrate the

performance of FEBD, where the detected boundary nodes

are denoted in red ‘*’, faulty nodes are denoted in blue ‘�’,

and the normal nodes are omitted in the figure. The left

figure gives the performance of FEBD at low sensor fault

probability. Clearly, when pf 7.5%, FEBD has a very high hit

rate: ef = 85%. The middle figure gives the performance of

FEBD at medium sensor fault probability: ef = 79%, when

pf = 15%. Obviously, the detected event boundaries in both

left and right figure are very good approximations of the real

event boundaries as defined in Fig. 1. In the right figure, we

can find that as sensor fault probability continues to be higher,

the detected boundary presents a larger false detection rate as

compared to the previous ones. But still, we have ef = 60%,

given pf as high as 27.5%.

One can easily see that the performance of FEBD improves

as we require each node to collect more event measurements

from more sensor nodes in its neighborhood. This is because
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Fig. 5. Simulation results: left): ef = 85% with pf = 7.5%; middle) ef = 79% with pf = 15%; right) ef = 60% with pf = 27.5%.

each node can get more samples from both the interior and

exterior of the event, and makes more accurate estimate in

the presence of node random faults. However, collecting more

measurements from more nodes other than the immediate

neighbors incurs much higher communication overhead. As

mentioned in [6], communication overhead increases roughly

quadratically as the neighbor range increases. This will re-

sult in a much higher energy consumption. In FEBD, we

assume that the underlying network is well connected, that

is, neighborhood size is reasonably large to support fine

grained collaborative event detection. Hence, a good energy-

accuracy tradeoff is achieved by letting each node collect the

measurements from their immediate neighbors only. As we

have shown in Fig. 4 (a), ef is larger than 80% with n′ as

low as 20, given pf up to 12.5%.

D. Communication overhead

One can easily see that the performance of FEBD improves

as we require each node to collect more event measurements

from more sensor nodes in its neighborhood. This is because

each node can get more samples from both the interior and

exterior of the event, and makes more accurate estimate in

the presence of node random faults. However, collecting more

measurements from more nodes than the immediate neighbors

incurs much higher communication overhead. As mentioned in

[6], communication overhead increases roughly quadratically

as the neighbor range increases. This will result in a much

higher energy consumption. In FEBD, we assume that the

underlying network is well connected, that is, neighborhood

size is reasonably large to support fine grained collaborative

event detection. Hence, a good energy-accuracy tradeoff is

achieved by letting each node collect the measurements from

their immediate neighbors only. As we have shown in Fig. 4

(a), ef is larger than 80% with n′ as low as 20, given pc up

to 10%.

IV. CONCLUDING REMARKS

In this paper, we have studied a special instance of fault-

tolerance collaborative in-network processing tasks in WSNs,

i.e., distributed event boundary detection. We presented our

Fault-tolerant Event Boundary Detection (FEBD) scheme.

Along with FEBD, we also proposed an enhanced nonpara-

metric statistic model for localized event boundary detec-

tion, which allows faulty measurements adjustment within

the neighborhood, and obtains the decision based on the

adjusted measurements distribution. Our model is much more

accurate and robust against node faults as compared to existing

schemes. Moreover, our model is nonparametric and does not

rely on any a priori knowledge of sensor fault probability,

which, on the other hand, are assumed by existing schemes

to get the optimal results. We also used extensive simulations

to evaluate FEBD, and shows a very good performance and

security strength of FEBD, even when sensor fault probability

achieves as high as 20%.
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