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Abstract—In this paper, we consider the problem of how to op-
timally support multiple concurrent video sessions in an ad hoc
network. Specifically, we present a framework on modeling the
end-to-end video distortion as a function of routing layer behavior.
Our formulation seamlessly integrates the interactions of compet-
ing video flows and network layer performance metrics, thus allow-
ing optimal utilization of network resource. We describe a detailed
solution procedure based on genetic algorithms (GAs), which al-
lows joint determination of near-optimal routes and rates for the
video sessions. We also present a greedy heuristic algorithm that
can produce near-optimal solutions and speed up the GA compu-
tation. Through simulation results, we demonstrate the superior
performance of the GA-based approach.

Index Terms—Ad hoc networks, cross-layer optimization, ge-
netic algorithms (GAs), routing, video communications.

I. INTRODUCTION

W ITH advances in digital video technology and wireless
ad hoc networking, there is a compelling need to sup-

port real-time multimedia communications in ad hoc networks.
Unlike wired networks (e.g., the Internet) or infrastructure
based wireless networks, ad hoc networks do not require an in-
frastructure and can be deployed under harsh or denied areas. As
a result, such networks may have frequent node and link failures
and pose unique difficulties for multimedia communications.

There has been considerable research on enabling video ser-
vice in wireless ad hoc networks [1]–[8]. Video applications
have also been successfully demonstrated with ad hoc network
testbeds [9], [10]. However, these prior efforts mainly focus
on end system-based techniques, rather than optimal routing
for video sessions. Many efficient protocols have been pro-
posed for quality of service (QoS) routing in ad hoc networks,
e.g., [11]–[14]. These efforts mainly focus on the optimization
of one or more network layer metrics, such as throughput, de-
lay, loss, or path correlation, and are therefore termed network
centric routing throughout this paper. Although these protocols
are shown to be quite effective for data communications, they
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may not provide good video quality due to the fact that video
distortion is a highly complex function of multiple network
layer metrics [15]. Optimizing network layer metrics does not
necessarily guarantee optimal video quality.

It is important to consider the routing for multiple video ses-
sions. This is because video flows compete for limited network
resources. Such interactions make the performance of an indi-
vidual flow coupled with that of other flows. By jointly consider
the routing of concurrent sessions, we can optimize the network
resource allocation among all flows and maximize a common
performance objective.

In this paper, we consider the problem of supporting mul-
tiple concurrent video sessions in ad hoc networks. The first
contribution of this paper is the formulation of an optimiza-
tion problem from a cross-layer perspective by considering the
application layer performance metric (i.e., average video distor-
tion) as a function of network layer behavior (routing of each
session). This formulation unifies video distortion with packet
loss (due to node/link failures) and delay (due to congestion),
while jointly considering the routing for concurrent sessions.
The problem formulation exhibits a highly complex objective
function and constraints, which renders this problem substan-
tially more difficult than traditional QoS routing problems. We
believe that the problem is NP complete, although its proof is
not given in this paper.

The second contribution of this paper is the development of
a highly competitive solution method based on metaheuristics,
namely, genetic algorithms (GAs) [16]. GA-based algorithms
have an intrinsic capability to handle a population of solutions,
which perfectly suits the nature of our cross-layer concurrent
routing problem. GA-based approaches have the unique strength
of identifying promising search regions and have less of a ten-
dency to be trapped at a local optimum, as compared with other
single solution-based trajectory methods [16]. We find that the
complex network wide optimization problem provides the per-
fect setting for a GA-based method. The complexity due to the
interaction among concurrent sessions can be handled rather
naturally by GAs because they are intrinsically parallel. Multi-
ple session routing and flow interactions increase computational
effort only linearly as compared with single session routing.
We demonstrate the superior performance of the GA-based ap-
proach over other approaches through simulations, and present
a distributed implementation.

The remainder of this paper is organized as follows. In
Section II, we formulate the optimal routing problem with a
cross-layer approach. We propose a solution procedure based on
GAs in Section III and describe a fast greedy heuristic algorithm
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in Section IV. Simulation results are presented in Section V. We
discuss distributed implementation in Section VI and related
work in Section VII. Section VIII concludes this paper.

II. PROBLEM FORMULATION

In this section, we formulate the routing problem for multiple
concurrent video sessions in a wireless ad hoc network. We
assume a wireless link exists between nodes i and j if nodes i
and j can communicate with (i.e., within the radio transmission
range of) each other. Consequently, the ad hoc network can be
modeled as a time-varying, directed graph G(N ,L), where N
is the set of vertices, representing mobile nodes, and L is the set
of wireless links in the network.

In the graph, we characterize each wireless (directed) link
{i, j} ∈ L by the following two parameters: 1) cij is the avail-
able bandwidth of link {i, j}; and 2) pij is the mean packet loss
probability of link {i, j}, due to transmission errors or link fail-
ures. We assume lower layer dynamics (e.g., interference and
fading) could be translated into the network layer metrics.

Consider a set of concurrent video sessions, denoted as E .
Each session σ ∈ E has a source node sσ and a destination node
dσ . The rate of a video stream, Rσ , is bounded by Rσ ≤ Rσ ≤
R̄σ , σ ∈ E . The lower and upper bounds of Rσ are determined
by the specific video coder and the video sequence encoded at
the source node sσ or the user requirement on received video
quality. The decoding deadline for session σ packets is ∆σ . The
optimal routing problem aims to find a set of paths for the video
sessions, such that the total distortion of all video sessions is
minimized.

In Section II-A, we derive the end-to-end delay and packet
loss rate for a session. In Section II-B, we link video distortion,
which is an application-level performance metric, to network
level delay and loss parameters. In Section II-C, we formulate
the cross-layer optimal routing problem. Table I summarizes the
notation used in the paper.

A. Network Layer Performance Metrics

1) Load on a Link: Let P̄ ij
σ denote the upstream partial path

of Pσ from the source node sσ to the link {i, j}, exclusive. Note
that P̄ ij

σ = ∅ if link {i, j} /∈ Pσ . Then, the average aggregate
traffic load on any link {i, j} ∈ L is

λij =
∑
σ∈E

Rσ ·
∏

{m,n}∈P̄ i j
σ

(1 − pmn ). (1)

That is, the average traffic load of link {i, j} is the sum of the
average rates of the video sessions that pass through this link,
decreased by the losses incurred in their upstream links before
reaching link {i, j}. The average capacity utilization of link
{i, j} is ρij = λij /cij , {i, j} ∈ L. For stability, a feasible set of
routes {Pσ}σ∈E should satisfy ρij < 1, {i, j} ∈ L.

2) Delay on a Link: We model each link {i, j} as a general
queuing system with an average input rate λij [defined in (1)]
and a service capacity cij . Let the queueing delay on link {i, j}
be tij and its probability density function be fij (y). We assume
all moments of tij are finite, which is true for most queueing
systems. For example, when the video traffic is a constant bit

TABLE I
NOTATION

rate (CBR) that exhibits short-range dependent (SRD) charac-
teristics, we could model the queueing delay via an exponential
distribution, that is

fij (y) = αij · e−αi j y , for y ≥ 0 (2)

where αij
def= (cij − λij ) is the link’s residual capacity. How-

ever, for a variable bit rate (VBR) video that exhibits long-range
dependent (LRD) characteristics, we could model the link as a
fractional Brownian motion (fBm) queueing system, where tij
has a heavy-tailed Weibull distribution [17].

3) End-to-End Delay: The end-to-end delay of session σ,
denoted by Tσ , σ ∈ E , is the sum of the queueing delay on each
link along path Pσ , that is

Tσ =
∑

{i,j}∈Pσ

tij , ∀σ ∈ E . (3)

We apply the large deviation approximation to obtain an accu-
rate estimate of the overdue probabilities. For the sum of a small
number of independent random variables, an estimate based on
the Chernoff bound [18] is known to be accurate and compu-
tationally efficient [19]. In the following, we illustrate such an
approximation when link delays are exponentially distributed.

We first derive the moment generating function of tij as

Mij (s) = E[esti j ] =
αij

αij − s
, for s < αij . (4)

Assuming delays on the links are independent, the moment
generating function of Tσ is

Mσ (s) =
∏

{i,j}∈Pσ

Mij (s), for s < min
{i,j}∈Pσ

{αij}. (5)
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Define a function Fσ (s) as

Fσ (s) = s∆σ −
∑

{i,j}∈Pσ

log Mij (s). (6)

Because F ′′
σ (s) < 0, for s < min{i,j}∈Pσ

{αij}, Fσ (s) is a
strictly concave function with a unique maximum at s∗σ . If
∆σ > E(Tσ ) (i.e., the decoding deadline is larger than the av-
erage end-to-end delay on the path), we can determine s∗σ by
solving

F ′
σ (s) = ∆σ −

∑
{i,j}∈Pσ

1
αij − s

= 0. (7)

Because F ′
σ (min{i,j}∈Pσ

{αij}) = −∞ < 0 and F ′
σ (0) =

∆σ − E(Tσ ) > 0, we have that 0 < s∗σ < min{i,j}∈Pσ
{αij}.

From the Chernoff bound [19], the tail distribution of Tσ can be
approximated as

Pr{Tσ ≥ ∆σ} ≈ exp{−Fσ (s∗σ )}
s∗σ δ(s∗σ )

√
2π

, (8)

where δ2(s) = (∂2 log Mσ (s)/∂s2).
Note that the moment generating function of a heavy-tailed

Weibull random variable does not exist (although all its mo-
ments are well defined). Therefore, the above Chernoff bound
approach cannot be applied to delays having such distribu-
tions. However, the overdue probability can be computed by
taking advantage of the sub exponential property. For example,
for an independent and inentically distributed (i.i.d.) sequence
of heavy-tailed Weibull random variables {X1, . . . , Xn}, we
have that Pr[

∑n
k=1 Xk > x] ≈ Pr[max{1≤k≤n}{Xk} > x] ≈

n · Pr[X1 > x] [20].
4) End-to-End Loss Rate: Assuming the packet loss pro-

cesses on the links are independent, the end-to-end loss proba-
bility of session σ can be computed as

pσ = 1 −
∏

{i,j}∈Pσ

(1 − pij ), ∀σ ∈ E . (9)

B. End-to-End Video Rate-Distortion Model

In [15], Stuhlmuller et al. developed an empirical rate-
distortion model for a hybrid motion compensated video en-
coder. For a video sequence encoded at a target coding rate
Rσ , the average end-to-end distortion De

σ consists of the en-
coding distortion caused by the lossy video coder Denc

σ and the
distortion due to transmission errors, including the distortion
caused by overdue packets (i.e., congestion) Dcg

σ , and the dis-
tortion caused by lost packets (i.e., caused by link failures or
transmission errors) Dloss

σ . That is

De
σ = Denc

σ + Dcg
σ + Dloss

σ . (10)

From [15] and the results derived in Section II-A, we have

De
σ = D0 +

ω

Rσ − R0︸ ︷︷ ︸
D enc

σ

+κ · (1 − pσ ) · Pr(Tσ > ∆σ )︸ ︷︷ ︸
D cg

σ

+ κ · pσ︸ ︷︷ ︸
D loss

σ

(11)

where D0, ω,R0, and κ are constants for a specific video codec
(with fixed encoding parameters) and video sequence, which
can be determined by training and curve matching. Because the
model in (10) takes into account the effects of INTRA coding
and spatial loop filtering, it matches simulation results closely
[15].

C. Global Optimal Routing Problem

For delineating an end-to-end path Pσ from sσ to dσ , σ ∈ E ,
we define the following index variables:

xσ
ij =

{
1, if {i, j} ∈ Pσ , {i, j} ∈ L
0, otherwise, {i, j} ∈ L.

(12)

We can now mathematically formulate the problem of
application-centric optimal routing for multiple concurrent
video sessions.

OPT-CLR

Minimize: D =
∑
σ∈E

De
σ (13)

subject to:

Rσ ≤ Rσ ≤ R̄σ , for σ ∈ E (14)

ρij ≤ 1 − ε, {i, j} ∈ L
for some stability tolerance ε (15)∑

j :{i,j}∈L
xσ

ij −
∑

k :{k,i}∈L
xσ

ki

=

{ 1, if i = sσ

−1, if i = dσ

0, otherwise
i ∈ N , σ ∈ E (16)

∑
j :{i,j}∈L

xσ
ij

{
≤ 1, if i �= dσ

= 0, if i = dσ
, i ∈ N , σ ∈ E (17)

xσ
ij ∈ {0, 1}, {i, j} ∈ L, σ ∈ E . (18)

In Problem OPT-CLR, the objective function (13) is the sum
of the average distortion of all concurrent video sessions. Min-
imizing (13) achieves a best utilization of network resources,
as well as the best overall quality for the video sessions. When
optimizing the performance of multiple users, efficiency and
fairness are usually orthogonal objectives (i.e., maximizing one
may lead to significant decrease in the other). In this work, we
choose efficiency as our optimization objective to better use
the scarce network resources in ad hoc networks. It is worth
noting that choosing a different objective function, such as
min max{De

σ} or an objective function in the form of a utility
function

∑
σ f(De

σ ), does not change the solution procedure,
which is presented in the next section.

There are two sets of optimization variables that form the
space of feasible solutions: 1) the set of routing vectors {Xσ}σ∈E
and 2) the set of rates of video sessions {Rσ}σ∈E . The set of
inequalities in (14) gives the range of feasible rates for each
video session. In the case of streaming stored video, we have
that Rσ = Rσ = R̄σ because the rate is fixed. Inequality (15)
is the stability constraint, which ensures that the link delays are
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Bounded. The remaining constraints [i.e., (16)–(18)] guarantee
that each path Pσ is loop free.1

The objective function (13) is a highly complex ratio of high-
order polynomials of the x-variables. The objective evaluation of
a set of feasible paths involves identifying the joint and disjoint
links of the paths (to compute the traffic load on each link), which
is only possible when all paths are completely determined. Wang
and Crowcroft [21] proved that QoS routing problems having
multiple additive and/or multiplicative metrics are NP complete.
Our problem has an additive delay metric and a multiplicative
loss metric. In addition, our problem has much more complex
relationships pertaining to the contribution of any link to the
objective function, as well as coupled session delays (rather
than constant link delay metrics, as in [21]). As a result, we
conjecture that problem OPT-CLR is NP complete, although its
proof is not given here. In the rest of this paper, we present an
effective heuristic algorithm to address this problem.

III. GENETIC ALGORITHM-BASED SOLUTION PROCEDURE

A. Preliminaries

GA is a population-based metaheuristic that is inspired by the
survival-of-the-fittest principle, as derived from its natural evo-
lution context. It has the intrinsic strength of dealing with a set
of solutions (i.e., a population) at each step, rather than working
with a single, current solution. In each iteration, a number of
genetic operators are applied to the individuals of the current
population to generate individuals for the next generation. In
particular, GA uses genetic operators known as crossover to re-
combine two or more individuals to produce new individuals,
and mutation to achieve a randomized self-adaptation of individ-
uals. The driving force in GA is the selection of individuals based
on their fitness (in the form of an objective function). Individuals
with a higher degree of fitness will be more likely to be chosen
as members of the population for the next generation. The basic
assumption within this paradigm is that good solutions often
share parts with optimal solutions. The survival-of-the-fittest
principle ensures the overall quality of the population increases
as the algorithm progresses from one generation to the next.

The potential of GA is best explained by comparing GA with
alternative approaches, such as simulated annealing (SA) [22]
and tabu search (TS) [23]. Although these methods have spe-
cific strengths in solving complex optimization problems, their
performance, when applied to our problem, is sensitive to the
neighborhood structure definition. In addition, such approaches
have a stronger tendency of being trapped at a local optimum
and have slow convergence, which could be attributed to the
fact that only a single solution is handled at each iteration. We
illustrate this point in Section V.

B. GA-Based Multiple-Session Routing

Fig. 1 depicts the flowchart for our GA-based approach to
Problem OPT-CLR. Note that both crossover and mutation are

1A feasible solution to these constraints could admit circuits whose edges
are disconnected from the produced loop-free paths. However, the objective
function would automatically prohibit this occurrence.

Fig. 1. Flowchart for GA-based routing procedure.

Fig. 2. (a) Example ad hoc network with dashed lines representing wireless
links. (b) Feasible solution.

performed with certain probabilities (θ and µ, respectively) on
the individual solutions. The termination condition in Fig. 1
could be based on the total number of iterations (generations),
the maximum computing time, or a threshold of desired video
distortion. In what follows, we use the example ad hoc network
in Fig. 2(a) to illustrate the steps in the GA approach. There
are three video sessions in the network, with source-destination
pairs {1, 9}, {2, 10}, {3, 8}, respectively.

1) Representation and Initialization: To encode a feasible
solution in the genetic format, we need to define a gene first
and then map a solution to a sequence of genes (chromosome).
Naturally, we define a node as a gene and an end-to-end path can
be represented as a sequence of genes. Then, for the concurrent
routing problem, each feasible solution (or individual) consists
of a number of paths and, thus, a set of chromosomes [e.g., see
Fig. 2(b)].

Then, we need to generate a set of initial solutions (or a
population). A simple approach would be to randomly append
feasible elements (i.e., nodes with connectivity) to a partial
solution. Under this approach, a construction process would
start with the source node sσ . It would then randomly choose
a link incident to the current end node of the partial path and
append this link with its corresponding head node to augment
the path, until the destination node dσ is reached. It is important
to ensure the intermediate partial path is loop free during the
process. After generating a certain set of paths for each {sσ , dσ}
pair independently, a population of individuals for our problem
can be constructed by randomly selecting paths from the set and
verifying for stability conditions. Our numerical results show
that a properly designed GA has a good exploratory power and
is not very sensitive to the quality of the individuals in the initial
population.

2) Evaluation: The fitness function h(x̄) of an individual
(i.e., x̄ = [P1,P2,P3]) is closely related to its objective function
value (i.e., the total distortion D). Because the objective is to
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Fig. 3. Crossover operation.

Fig. 4. Mutation operation.

minimize the total distortion [see (13)], we have adopted a fitness
function that is defined as the inverse of the distortion value [i.e.,
h(x̄) = 1/D(x̄].

3) Selection: During this operation, we select individuals
that have a better chance or potential to produce “good” off-
spring in terms of their fitness values. We use the popular Tour-
nament selection scheme [16], which randomly chooses m in-
dividuals from the population each time, and then selects the
best of these m individuals in terms of their fitness values. By
repeating this procedure multiple times, a new population can
be selected.

4) Crossover: Crossover mimics the genetic mechanism of
reproduction in the natural world, in which genes from parents
are recombined and passed to offspring. The crossover opera-
tion may create new individuals, exposing the search process
to a new area of the fitness landscape. Fig. 3 illustrates one
possible crossover implementation. For two parent individuals
x1 = [P1,P2,P3] and x2 = [P4,P5,P6], we could randomly
pick a session, say session 2 (P2 in x1 and P5 in x2). If one
or more common nodes exist in these two chosen paths, we
could select the first such common node that exists in P2, say
gr , gr /∈ {s2, d2} (node 5 in Fig. 3). We can then concatenate the
nodes {s2, . . . , gr} from P2 with the nodes {gr+1, . . . , d2} in
P5 (where gr+1 denotes the next downstream node of gr in P5)
to produce a new path P25. Likewise, using the first such node
gr ′ in P5 that repeats in P2 (which may be different from gr ),
we can concatenate the nodes {s2, . . . , gr ′ } from P5 with the
nodes {gr ′+1, . . . , d2} inP2 to produce a new pathP52. The two
new individuals generated in this manner are [P1,P25,P3] and
[P4,P52,P6], as illustrated in Fig. 3. If P2 and P5 are disjoint,
we could swap the entire path P2 with P5 instead.

5) Mutation: The objective of the mutation operation is to
diversify the genes of the current population, which helps pre-
vent the solution from being trapped at a local optimum. Fig. 4
illustrates the mutation of an individual x̄ = [P1,P2,P3]. First,
we choose a path Pσ , σ ∈ {1, 2, 3}, from x̄ using equal proba-
bilities of selection. Then, we randomly select an integer value r
in the interval [2, |Pσ | − 1], where |Pσ | denotes the cardinality
of Pσ , and let the partial path {sσ , . . . , gr} be Pu

σ , where gr

is the rth node along Pσ . Finally, we could use any construc-
tive approach to build a partial path from gr to dσ , denoted
as Pd

σ , that does not repeat any node in Pu
σ (other than gr ). If

no such alternative segment exists between gr and the destina-
tion node dσ , we keep the path intact. Otherwise, a new path
can now be created by concatenating the two partial paths as
Pu

σ ∪ Pd
σ . For the example in Fig. 4, P1 is chosen for mutation,

and node 6 is chosen to be the mutation point, yielding a per-
turbed path P̂1 that replacesP1. The new individual thus created
is x̂ = [P̂1,P2,P3].

C. Determining Video Rates

As discussed in Section II, the search space of Problem OPT-
CLR is the Cartesian product of the set of feasible paths and
the set of feasible video rates. The optimal values of these pa-
rameters jointly produce the lowest total distortion. In the GA-
based approach, the optimal session rates are determined when
evaluating the individuals. More specifically, we first use the
procedure described in Fig. 1 to evolve a population, assuming
each session uses its minimum rate Rσ , σ ∈ E . Then, during
each iteration, we determine the corresponding optimal rates
for each individual and use this rate to compute its fitness value.

Because an individual is a solution with a given set of feasible
paths {Pσ}σ∈E , the problem of finding optimal video rates for
a set of given paths (OPT-Rate) can be expressed as follows.

OPT-Rate

Minimize: D(xk ) =
∑
σ∈E

De
σ (19)

subject to: Rσ ≤ Rσ ≤ R̄σ , ∀σ ∈ E (20)

ρij ≤ 1 − ε, ∀{i, j} ∈ L. (21)

Note that we do not need to solve OPT-Rate for streaming
stored video because the video rates are fixed for such appli-
cations. OPT-Rate is a nonlinear optimization problem with
nonlinear constraints. It can be efficiently solved using an itera-
tive procedure based on the sequential quadratic programming
(SQP) method, which is considered one of the most effective
methods for solving nonlinear programming problems due to
its superlinear convergence performance [24].

IV. GREEDY ALGORITHM FOR INITIAL SOLUTIONS

In this section, we present an efficient greedy algorithm for
Problem OPT-CLR. The algorithm is based on the observation of
the key characteristics of the video distortion model. It computes
low loss and low congestion paths for the video sessions using
an empirical compound routing metric.

Before describing the greedy algorithm, we first examine the
total end-to-end distortion De

σ of a session σ ∈ S [see (10) and
(11)]. The distortion due to encoder, Denc

σ , is a monotonically
decreasing function of video rate Rσ . The distortion due to con-
gestion, Dcg

σ , however, is a monotonically increasing function
of Rσ , as well as the rates of all other sessions Ri , that share one
or more links with session σ. Both terms are constrained by the
stability constraint (15) and are thus determined by the available
bandwidths of the path links. The third term Dloss

σ , the distortion
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Fig. 5. Greedy algorithm for computing initial solutions.

caused by lost packets, is an increasing function of the link loss
probabilities. To minimize the video distortion for session σ, we
need to find paths having the highest end-to-end bandwidth, the
minimal congestion, and the lowest end-to-end loss rate.

We also observe that the Denc
σ curve is concave: when Rσ

increases beyond a certain threshold, further increasing Rσ will
only cause marginal reduction in Denc

σ . For example, for an
H.263 coder with typical settings (e.g., intra rate 1/15 and
frame rate 30 ft/s) using the quarter common intermediate for-
mat (QCIF) formatted “Foreman” sequence, there is a decrease
of about 100 in Denc

σ when Rσ increases from 40 to 150 kb/s.
When Rσ further increases from 150 kb/s to ∞, the correspond-
ing total reduction in Denc

σ is only about 20. A high rate will
cause congestion in the bottleneck link, resulting in a much
larger increase in Dcg

σ . For practical Rσ values, reducing con-
gestion conditions in the network would be more effective than
increasing video rates in improving the overall video quality.

In Fig. 5, we describe a greedy heuristic (called GREEDY) for
Problem OPT-CLR. In GREEDY, an empirical compound link
cost cij (1 − pij ), which we call the effective available band-
width, is used. For a given path, its end-to-end effective available
bandwidth is the minimum among those of its links. By comput-
ing the path with the maximum effective available bandwidth,
GREEDY finds the current “widest” path for a session, which
has the potential of supporting higher video rates and having low
loss rates. Because both link capacity and loss probability are
considered in the compound link cost, GREEDY may produce
near-optimal solutions to Problem OPT-CLR, as is shown in
Section V. For each session, the maximum effective-available-
bandwidth path could be computed using the algorithm pre-
sented in [25], with a time complexity of O(|L| · log∗ |N |),
where log∗ n is the iterated logarithm function. The overall
time complexity of GREEDY is O(|S| · |L| · log∗ |N |).

For the set of computed paths xk = {Pσ}σ∈S (which poten-
tially has the minimal congestion and path loss), we solve the
nonlinear optimization problem OPT-Rate, which further re-
duces the overall video distortion by finding the near-optimal
video rates for the sessions. It can be easily verified that the
path set found by GREEDY is realizable (i.e., it satisfies all
the constraints of Problem OPT-CLR). Therefore, the resulting
distortion is an upper bound of the optimal distortion. The com-
putational complexity of GREEDY is much lower than GA. It
could be used to compute a good initial solution for GA and
thus speed up the GA convergence. In practice, GREEDY can
be used to quickly compute a set of near-optimal paths for the
video sessions. Then, the GREEDY solution could be included

Fig. 6. Distortion versus decoding deadline.

into the GA initial population to be further improved, if possi-
ble. When GA terminates, the video sessions could switch to
the refined routes for better performance.

V. SIMULATION RESULTS

In this section, we present simulation results. In each ex-
periment, an ad hoc network is generated at random within a
rectangular region. Each video session has a rate between 100
and 400 kb/s. We use an H.263+ codec and the 400-frame, QCIF
“Foreman” video sequence. The video is encoded with an intra
rate of 1/15 and a frame rate of 30 frames/s. The corresponding
rate-distortion parameters are obtained from [15]. Failure prob-
abilities of the wireless links are uniformly distributed between
[1%, 10%]; the bandwidth of a link is uniformly distributed
between [100 kb/s, 400 kb/s]. For all results reported in this
section, the exponential model (2) is used.

As discussed, there are three key parameters for the proposed
GA approach: the population size, the crossover rate θ, and
the mutation rate µ. Through simulation studies, we find that
the performance of the GA-based routing is quite stable for a
wide range of parameter settings. For the results reported in this
section, the population size is seven, θ = 0.4, and µ = 0.2. The
greedy algorithm presented in Section IV is used to generate
an initial solution, where as the remaining initial solutions are
generated using the random constructive method discussed in
Section III-B.

A. Dissecting End-to-End Distortion

In Fig. 6, we plot the average distortion versus decoding dead-
line for a 15-node network with four concurrent video sessions.
We set the same decoding deadline value for all sessions. It can
be observed that the average distortion is a decreasing function
of decoding deadline. For small decoding deadline values, most
of the video packets are overdue, resulting in high distortion.
As decoding deadline increases, the average distortion quickly
decreases because more and more packets are now received in
time, contributing to an improved video quality. As the decoding
deadline further increases, the real-time application essentially
reduces to an elastic data application, where any received packet
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TABLE II
AVERAGE DISTORTION VALUES FOUND BY THE ALGORITHMS

is useful for improving video quality. The same trend exists for
all cases we simulated, although the specific “knee-point” de-
pends on the network and video parameters.

As discussed, the end-to-end distortion of a video session
consists of three components: encoding distortion Denc, distor-
tion due to packet losses Dloss, and distortion due to congestion
Dcg. In Fig. 6, the dash dotted (lowest) curve is for Denc. From
the empirical distortion model (11), Denc is a function of the
target encoding bit rate, which is determined by the end-to-end
bandwidth and the congestion condition of the path (i.e., the
rate is computed by solving Problem OPT-Rate). It is relatively
constant for various decoding deadlines in this experiment.

In Fig. 6, the dashed curve is the average distortion computed
using both packets that are received in time and packets that
are overdue. The difference between the two lower curves cor-
responds to Dloss, which is determined by the end-to-end loss
rate. Note that Dloss decreases gradually as decoding deadline
increases. This is because for very tight delay constraints, the
GA-based routing may give more preference to delay over loss
to meet the delay constraint. That is, GA-based routing may
choose a path having a lower end-to-end delay, even though the
path may have a higher end-to-end loss. As the delay constraint
gets relaxed, GA is allowed to choose paths having a lower end-
to-end loss rate while still satisfying the delay constraint. The
difference between end-to-end distortion and the dashed curve is
Dcg. When congestion occurs, packets experience large delays
and many of them arrive beyond the decoding deadline, causing
high distortions. As decoding deadline increases, the end-to end
distortion curve converges to the dashed curve, which indicates
that congestion has little impact on video distortion when the
delay constraint is relaxed.

B. Performance Bounds

One interesting question regarding the GA-based routing is
how close its solutions are to the optimal solution. For small net-
works, it is possible to find the optimal solution in a reasonable
amount of time by using an exhaustive search (ES), which, how-
ever, is infeasible when network size becomes large. In Table II,
we compare the GA solutions to the global optimal solutions
computed by exhaustive search, for small networks with three
concurrent video sessions. The decoding deadline ∆σ is set to
0.1 s for all video sessions. GA runs for about 50 iterations in
each simulation, and each GA distortion value is the average of
30 runs. In Table II, the normalized difference is computed as
|GA-ES|/ES.

We find that GA performs consistently well in comparison to
the optimal solution. In every case, GA either finds the exact

Fig. 7. GA versus trajectory methods. (a) 11-node network, four video sessions
(b) 50-node network, ten video sessions.

global optimal or finds a near-optimal solution with a negligi-
ble normalized difference. Moreover, for the distortion values
obtained by 30 executions using the same network, the standard
deviation is very small for all cases examined, indicating that
the GA performance is very stable. Finally, the GA computa-
tion time (a few hundred milliseconds, on a Pentium4 2.4-GHz
computer with 512 MB memory) is only a tiny fraction of the
time required to perform the exhaustive search (2.5–9.1 h).

We also present the GREEDY results in Table II. We find that
the GREEDY solutions are also quite competitive. In topolo-
gies 2 and 4, GREEDY finds the exact global optima; in the
remaining four cases, the GREEDY distortions are close to the
the global optima.

C. Comparison With Trajectory Methods

For comparisons, we implement two representative trajectory
metaheuristic methods, namely, SA [22] and TS [23]. For best
performance, we set the initial temperature T in SA to 1 and the
temperature decaying ratio γ to 0.5. The tabu tenure for the TS
implementation is chosen to be five units.

In Fig. 7, we plot the evolutions of the total distortions ob-
tained by GA, SA, and TS. Fig. 7(a) is obtained using an
11-node network with three concurrent video sessions (for
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which the global optimum could be found by ES) where as
Fig. 7(b) is obtained for a 50-node network with ten concur-
rent sessions. Simulation time for all three algorithms is 1 s.
The decoding deadline is set to 0.5 s for the 50-node network
simulations, and 0.1 s for the 11-node network simulations.

From Fig. 7, we observe that GA converges to the global op-
timal very quickly, where as both SA and TS are trapped at local
optima (i.e., no improvement after a large number of iterations).
This is due to the fact that GA could explore the fitness landscape
in parallel by evolving a population of solutions, where as trajec-
tory methods only maintain a single solution and have a higher
tendency of being trapped at a local minimum (despite the fact
that they all incorporate explicit strategies to avoid such events).

D. Comparison With Network Centric Routing

We compare GA-based routing with traditional network cen-
tric routing in solving Problem OPT-CLR. We implement a
shortest path (SP) routing algorithm using hop count as routing
metric, and a disjoint shortest path (DSP) routing algorithm us-
ing loss rate as routing metric [26], both based on Dijkstra’s algo-
rithm. In DSP, the link cost is set to log(1/(1 − pij )), {i, j} ∈ L.
As a result, the minimum cost path has the highest end-to-end
success probability. In both network centric algorithms, we first
find the optimal set of paths using the minimum video rates
{Rσ}σ∈S and then solve Problem OPT-Rate over the path set
to compute the corresponding optimal video rates. To meet the
link stability condition in SP, each time when a path is found, we
subtract the minimum rate of the corresponding video session
from the capacity of each link along this path, where as the next
path is found in the “reduced” graph. The computation time of
GA is between 500 to 900 ms, whereas the computation time for
SP or DSP ranges from tens of milliseconds to about 200 ms.

1) Overall Performance: Fig. 8(a) plots the average distor-
tions found by the three algorithms (i.e., GA, SP, and DSP) for
various decoding deadlines. The network consists of 50 nodes
with ten video sessions. We find that for very small decoding
deadlines, the delay requirement is so stringent that all three
schemes yield high distortion. However, for very large decod-
ing deadlines, the delay requirement is so loose that all three
schemes can achieve a low total distortion, as long as the stabil-
ity condition is satisfied. The more interesting region, however,
lies between these two extremes, where a well-designed routing
scheme can achieve a better performance by finding optimal
routes for the video sessions. Within this region, GA outper-
forms SP and DSP by a significant margin. In Fig. 8(a), the
GA average distortion quickly decreases as decoding deadline
increases, where as the SP and DSP average distortions are per-
sistently high for small and medium decoding deadlines (indi-
cating that most of the video packets are overdue in these cases).
For example, when ∆ = 0.2 s, the difference between the aver-
age distortions achieved by GA and DSP is 683.8, which trans-
lates to a 9.03 dB reduction in PSNR. Similarly, GA achieves a
449.6 reduction in total distortion over SP, which is a 7.49 dB
improvement in average PSNR. These improvements are sig-
nificant, because generally a half decible difference in PSNR is
noticeable [27].

Fig. 8. GA versus SP and DSP approaches. (a) Average end-to-end distortion
versus decoding deadline. (b) Total distortion versus number of video sessions.

In Fig. 8(b), we examine the impact of video traffic load on the
routing performance. We compare the total distortions found by
GA, SP, and DSP, while increasing the number of video sessions
in the 50-node network. The decoding deadline is 0.5 s for all
video sessions. As expected, both SP and DSP produce higher
total distortions than GA, due to the fact that they only use
network layer metrics in routing. More specifically, SP does
not consider the interaction of the video sessions. Although it
computes the shortest path for each session, different sessions
may share bottleneck links, resulting in congestion and high
packet overdue rates. However, DSP goes to the other extreme
by not allowing the sharing of any links, even when a link
has abundant bandwidth and a low loss rate. As a result, some
“bad” links (i.e., low capacity or high failure probability links)
or paths having a large number of hops will be used to satisfy
the disjointedness requirement, resulting in an increased total
distortion. Another interesting observation from Fig. 8(b) is that
the total distortion obtained by GA increases linearly with the
number of sessions, which implies that the average distortion
for each session is relatively constant, even though the video
traffic load has increased nearly tenfold.
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Fig. 9. Average distortion values for each video session in a ten-session,
50-node network obtained by different algorithms.

2) Performance of Individual Sessions and Frames: So far,
we have investigated the impact of optimal routing on total video
distortion. Now, we examine the quality of individual video
sessions. Specifically, we transmit encoded video on those paths
found by GA, SP, and DSP, respectively, and compute PSNRs
for decoded video frames that are possibly corrupted due to
transmission errors and congestion.

The distortion values for the individual sessions obtained by
the three algorithms are plotted in Fig. 9 for a 50-node network
with ten video sessions. We find that for most of the sessions (ex-
cept for sessions 4 and 7), GA achieves a much lower distortion
than the two networkcentric algorithms. Although for sessions
4 and 7 the GA distortion is higher than that of SP or DSP, the
difference is negligible in both cases. The session distortions of
SP and DSP are highly diverse, whereas the GA sessions have
relatively even distortions, despite the fact that only the total
distortion is minimized. The total distortion achieved by GA is
943.2, which is much lower than those achieved by SP (1956.0)
and DSP (1738.4).

The PSNRs of decoded frames for session 5 are plotted in
Fig. 10. The frames sent on the GA paths have much higher
PSNR values than those sent on the SP or DSP paths. The
average session 5 PSNR (over the 400 frames) achieved by the
GA-based routing is 31.16 dB, where as the average PSNRs
obtained by SP and DSP are 25.93 and 26.06 dB, respectively.
Such significant gains (over 5 dB in both cases) are due to the
fact that the application layer video quality (rather than network
layer metrics) is explicitly optimized and the routing for multiple
sessions is jointly optimized.

VI. DISTRIBUTED IMPLEMENTATION

Existing ad hoc protocols can be roughly categorized into
proactive, whereby a consistent and up-to-date view of the net-
work is always maintained, and reactive, whereby route dis-
covery is performed on-demand. We find that the proposed
GA-based routing is highly suitable for the proactive routing
paradigm. This choice is also motivated by the fact that a rout-

Fig. 10. PSNRs of decoded frames for fifth video session.

ing decision must be made quickly for a new request to reduce
response time.

The core of a distributed implementation is to build and main-
tain network topology and link statistic databases at each node.
To this end, we find that several components in the class of
link state-based ad hoc routing protocols, such as the optimized
link state routing protocol (OLSR) [28], are suitable for this
purpose.

Fig. 11 depicts an implementation architecture of the rout-
ing protocol at an ad hoc node. With this architecture, each
node should detect its one-hop neighbor nodes (e.g., by peri-
odic HELLO messages). Furthermore, each node measures the
quality of its links, such as bandwidth, loss rate, and delay. Sev-
eral effective algorithms (e.g., those proposed in [14]) could be
used for this purpose. As in other link state routing protocols,
LSAs are periodically broadcast to distribute network topology
information and link statistics. A new type of LSA could be
used to distribute video session information (e.g., source and
destination nodes, and other session specific parameters). To
minimize the flooding of control messages, we could use the
multipoint relay (MPR) technique (RFC 3626) [28], which has
been proved to be quite effective for this purpose [28]. Link
state and topology information learned from received LSAs are
pooled in a link state database.

Finally, the GA-based concurrent routing module is built on
top of the link state database to compute near-optimal routes
for video sessions. Note that the GA-based routing uses several
video/codec specific parameters for computing distortion [see
(11)]. Usually, the codec-related parameters are readily avail-
able, video specific parameters could be measured in advance,
or some average values could be used based on the type of the
video to be transmitted (video conferencing, sports, etc.).

VII. RELATED WORK

As discussed, the problem addressed in this paper differs
from network-layer QoS routing for ad hoc networks [11]–[14].
Most of these prior efforts did not explicitly formulate the
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Fig. 11. Distributed implementation architecture at an ad hoc node.

objective function with an application layer metric via a
cross-layer approach.

Several path/server selection schemes have been developed
for video streaming on the Internet. Specifically, in [29], the au-
thors present three heuristics on selecting multiple description
(MD) video servers in a content delivery network (CDN). Al-
though shown to be quite effective for CDNs, these algorithms
only select servers based on some performance metrics. It is not
clear how to determine the paths to the servers for minimizing
video distortion. In a recent work [30], Begen et al. study the
problem of path selection for MD video streaming in service
overlay networks. The optimal routing problem is solved via
ES, which could have an exponential complexity. Subsequently,
the authors proposed an improvement algorithm in [31] by tak-
ing advantage of the special structure of the underlying network.
This improvement algorithm may not be feasible for ad hoc net-
works that are infrastructureless and have dynamic topologies.
Finally, it is worth noting that the interaction of concurrent video
flows is not considered in these prior works.

There exist several prior efforts on applying GA to address
network layer problems (e.g., shortest path routing [32], [33]
and multicast QoS routing [34]). The research presented in this
paper builds on these earlier efforts and explores GA’s potential
to address the more complex cross-layer, video centric opti-
mization problem. The problem investigated in this paper is
substantially more difficult because it exploit the design and
optimization space across the layers.

VIII. CONCLUSION

In this paper, we studied the problem of how to optimally
support multiple concurrent video communication sessions in an
ad hoc network. We formulated a networkwide optimal routing
problem that minimizes the total distortion of all video sessions.
We modeled the end-to-end video distortion as a function of
routing layer behavior. Our formulation seamlessly integrates
the interaction of competing video flows and network layer
link metrics, which allows for computing of optimal routes and
for determining the optimal rates for the video sessions. We
developed a highly effective solution procedure based on the
GA framework for computing near optimal solutions. Through

extensive numerical results, we demonstrated that the GA-based
approach has clear advantages over other approaches.
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Switzerland: Birkhäuser, 1998, pp. 435–459.

[21] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting
multimedia applications,” IEEE J. Sel. Areas Commun., vol. 17, no. 8,
pp. 1488–1505, Aug. 1999.

[22] E. Aarts and J. Korst, Simulated Annealing and Boltzman Machines.
New York: Wiley, 1989.

[23] F. Glover and M. Laguna, Tabu Search. Boston, MA: Kluwer-Academic,
1997.

[24] E. R. Panier and A. L. Tits, “A superlinearly convergent feasible
method for the solution of inequality constrained optimization prob-
lems,” SIAM J. Control Optim., vol. 25, no. 4, pp. 934–950, Jul.
1987.



MAO et al.: ROUTING FOR CONCURRENT VIDEO SESSIONS IN AD HOC NETWORKS 327

[25] N. Malpani and J. Chen, “A note on practical construction of maxi-
mum bandwidth paths,” Inf. Process. Lett., vol. 83, pp. 175–180, Aug.
2002.

[26] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algo-
rithms. Cambridge, MA: MIT Press, 1990.

[27] T. Wiegand, N. Frber, K. Stuhlmller, and B. Girod, “Error-resilient
video transmission using long-term memory motion-compensated pre-
diction,” IEEE J. Sel. Areas Commun., vol. 18, no. 6, pp. 1050–1062, Jun.
2000.

[28] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol,” IETF
RFC 3626, Oct. 2003.

[29] J. G. Apostolopoulos, T. Wong, W. Tan, and S. Wee, “On multiple descrip-
tion streaming in content delivery networks,” in Proc. IEEE INFOCOM,
New York, Jun. 2002, pp. 1736–1745.

[30] A. C. Begen, Y. Altunbasak, and O. Ergun, “Multi-path selection for
multiple description encoded video streaming,” EURASIP Signal Process.
Image Commun., vol. 20, no. 1, pp. 39–60, Jan. 2005.

[31] A. C. Begen, Y. Altunbasak, and O. Ergun, “Fast heuristics for multi-
path selection for multiple description encoded video streaming,” in Proc.
IEEE ICME, Baltimore, MD, Jul. 2003, pp. 517–520.

[32] C. W. Ahn and R. S. Ramakrishna, “A genetic algorithm for shortest
path routing problem and the sizing of populations,” IEEE Trans. Evol.
Comput., vol. 6, no. 6, pp. 566–579, Dec. 2002.

[33] M. Gen and R. Cheng, Genetic Algorithms & Engineering Optimization.
New York: Wiley, 2000.

[34] N. Banerjee and S. K. Das, “Fast determination of QoS-based multicast
routes in wireless networks using genetic algorithm,” in Proc. IEEE ICC,
Helsinki, Finland, Jun. 2001, pp. 2588–2596.

Shiwen Mao (S’99–M’04) received the B.S. and
M.S. degrees from Tsinghua University, Beijing,
China, in 1994 and 1997, respectively, both in elec-
trical engineering. He received the M.S. degree in
system engineering and the Ph.D. degree in electrical
and computer engineering from Polytechnic Univer-
sity, Brooklyn, NY, in 2000 and 2004, respectively.

From 1997 to 1998, he was a Research Mem-
ber at the IBM China Research Lab, Beijing. During
the summer of 2001, he was a Research Intern at
Avaya Labs-Research, Holmdel, NJ. Currently, he is

a Research Scientist at the Bradley Department of Electrical and Computer En-
gineering, Virginia Polytechnic Institute and State University, Blackburg. He is
the coauthor of a textbook entitled TCP/IP Essentials: A Lab-Based Approach
(Cambridge University Press, 2004). His research interests multimedita and
wireless networking.

Dr. Mao is a corecipient of the 2004 IEEE Communications Society Leonard
G. Abraham Prize in the Field of Communcations Systems.

Sastry Kompella (S’04) received the B.E. degree
in electronics and communcation engineering from
Andhra University. Visakhapatnam, Andhra Pradesh,
India, in 1996 and the M.S. degree in electrical en-
gineering from Texas Tech University, Lubbock, in
1998. He is currently a Ph.D. student in the Bradley
Department of Electrical and Computer Engineering,
Virginia Polytechnic Institute and State University,
Blacksburg.

He has worked as a Project Applications Engineer
from 1998 to 2003 in Austin, TX. His research fo-

cuses on multimedia delivery over wireless networks.
Mr. Kompella received the TTU Competitive Scholarship in 1996 and 1997

and the Outstanding Bachelors Student Award (Gold Medal) in 1996.

Y. Thomas Hou (S’91–M’98–SM’04) received the
B.E. degree from the City College of New York, in
1991, the M.S. degree from Columbia University,
New York, in 1993, and the Ph.D. degree from Poly-
technic University, Brooklyn, NY, in 1998 all in elec-
trical engineering.

From 1997 to 2002, he was a Research Scien-
tist and Project Leader at Fujitsu Laboratories of
America, IP Networking Research Department, Sun-
nyvale, CA. Since the fall of 2002, he has been an
Assistant Professor with the Bradley Department of

Electrical and Computer Engineering, Virginia Polytechnic Institute and State
University, Blacksburg. His research interests are in algorithmic design and op-
timization for network systems. His current research focuses on wireless sensor
networks and multimedia over wireless ad hoc networks. In the recent years, he
has worked on scalable architectures, protocols, and implementations for dif-
ferentiated services Internet, service overlay networking, multimedia streaming
over the Internet, and network bandwidth allocation policies and distributed
flow control algorithms. He has published extensively in these areas.

Dr. Hou is a corecipient of the 2004 IEEE Communications Society Multime-
dia Communications Best Paper Award, the 2002 IEEE International Conference
on Network Protocols (ICNP) Best Paper Award, and the 2001 IEEE Transac-
tions on Circuits and Systemfor Video Technology (CSVT) Best Paper Award.

Hanif D. Sherali is a W. Thomas Rice Endowed
Chaired Professor of Engineering in the Industrial
and Systems Engineering Department, Virginia Poly-
technic Institute and State University, Blacksburg.
His area of research interest is in discrete and con-
tinuous optimization, with applications to location,
transportation, and engineering design problems. He
has published almost 200 papers in operations re-
search journals, coauthored four books in this area,
and serves on the editorial board of eight journals.

Mr. Sherali is a member of the National Academy
of Engineering.

Scott F. Midkiff (S’82–M’85–SM’92) received the
B.S.E. and Ph.D. degrees from Duke University,
Durham, NC, and the M.S. degree from Standford
University, Standford, CA, all in electrical engineer-
ing.

He worked at Bell Laboratories and held a visiting
position at Carnegie Mellon University, Pittsburgh,
PA. In 1986, he joined the Bradley Department of
Electrical and Computer Engineering, Virginia Poly-
technic Institute and State University, Blacksburg,
where he is now a Professor. His research interests

include system issues in wireless and ad hoc networks, network services for
pervasive computing, and performance modeling of mobile ad hoc networks.


