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Abstract—Active gueue management (AQM) is an effective
method to enhance congestion control, and te achieve tradeoff
between link utilization and delay. The de facte standard,
Random Early Detection (RED), and most of its variants use
queue length as a congestion indicator to trigger packet
dropping. Despite their simplicity, these approaches suffer from
unstable behaviors, as revealed in many simulation studies.
Some of them introduce adaptive parameter settings to improve
stability; however, there is still no real analvtical stability model
for them. Recent schemes, such as Proportional-Integral (PI},
use both queue length and traffic input rate as congestion
indicators; effective stability model and practical design rules
built on the TCP control medel and abstracted AQM model
reveal that such schemes enhance the stability of a system.
Nevertheless, compared to RED and its variants, the response
time in these schemes often increases, especially within a highly
dynamic network with heavy traffic load, which would cause
continuous buffer overflow or buffer emptiness.

In this paper, we propose an AQM scheme with fast response
time, yet good robustness. The scheme, called Loss Ratio hased
RED (LRED), measures the latest packet loss ratio, and uses it
as a complement to queue length in order to dynamically adjust
packet drop probability. Emploving the closed-form relationship
between packet loss ratio and the number of TCP flows, this
scheme is responsive even if the number of TCP flows varies
significantly. We also provide the design rules for this scheme
based on the well-known TCP contrel model. This scheme’s
performance is examined under various network configurations,
and compared to existing AQM schemes, including PI, Random
Exponentially Marking (REM), and Adaptive Virtual Queue
(AVQ). Our simulation results show. that, with comparable
complexity, this scheme has short response time, better
robustness, and more desirable tradeoff than PI, REM, and
AQV, especially under highly dynamic network and heavy
traffic load.

Keywords—Active Queue Management, Packet Loss Ratio,
Quulity of Service.

I. INTRODUCTION

Buffer management plays an important role in congestion
conirol [1][2]. However, the two main objectives of buffer
management, high link utilization and low packet queuing
delay, are often in conthict with each other. Given that most
end-nodes employ the responsive TCP  window-based
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Addiive Increase and Multiplicative Decrease (AIMD)
control scheme, a small buffer can guarantee low queuing
delay, but it often suffers from packel loss and low link
utilization, and vice versa. Therefore, the kev design problem
here 1s to find a good tradcoft between these vanables.

The traditional scheme for buffer management is First-In-
First-Out (FIFO) Tail-Drop, which drops packets only if there
arc buffer overflows. This passive behavior with longer
queuing delay olten causes correlation among packet drops,
resulting in the well-known “TCP svnchronization™ problem
[3] and, consequently, low link utilization. The long queuing
delay of Tail-Drop also makes it inetficient for delay-
sensitive real-tme applications.

To mitigate such problems, AQM [3] has been introduced
in recent vears. The basic philosophy of AQM is to trigger
packet dropping (or marking, if explicit congestion
notification (ECN) [4] is enabled) before butfer overtlows,
and when drop probability is proportional to the degree of
congestien. In cxisting AQM schemes, link congestion is
estimated through queue length, input rate, events of buffer
overtlow and emptiness, or a combination of these factors.
Queue length (or average queue length) is widely used in
RED [5] and most of its variants [6][7][8], where packet drop
probability 1s oflen linearly proportional o queue length. S-
RED [8] and BLUE [9] trigger to adjust the packet drop
probability when packet buffer is overflow or emptyv. The
traftic input ratc 1s also used in some AQM schemes such as
AV [10] to make them more adaptable to instontaneous
traffic variance and to achieve desired link utility. Some
recent AQM schemes, for example PI [11][12], REM [13],
and SFC [14], jointly use queue length and traffic input rate.

In this paper, we argue that the packet loss ratio is an
important index in designing a buffer management
mechanism. For example, an increasing packet loss ratic is a
clear indication that severe congestion occurs, and that
aggressive packet dropping is needed. On the other hand, a
decrease of packet loss ratio can serve as a signal that
congestion 1s receding and consequently, that packet drop
action can change from aggressive to moderate. Therctore, it
is possible to use the packet loss ratio to design more
adaptive and robust AQM schemes. )

In this paper, we proposc a packet loss ratio-based RED
(LRED) scheme for robust active queue management. In
order to regulate queue length to some expected value, two
prmeiples in LRED to caleulate packet drop probability are:
1) the mismaich of queue length means deviation {rom stable



status and the necessitv of updating the packet drop
probabilitv: 2) large packel loss ratio implies overload,
mdicating that aggressive packel drop 1s needed. According
to the first principle, LRED uses instantancous queue
mismatch as an input variable to calculate the required packet
drop probability each time packets amrive. Calculated packet
drop probability linearly increases with queue mismatch.
According to the second principle, when there is a large
packet loss ratio, LRED will dynamically increase the packet
drop probability. In a summarv, LRED uses the instantaneous
queue length to caleulate the packet drop probability upon the
arrival of each new packet. i.e., over short time scales, while
dvnamicallv adjusting the packet drop probability according
to the measured packet loss ratio over relatively large time
scales. Such a combination enables fast response time and
high robustness.

The performance of our LRED scheme is evaluated through
extensive simulations under various network configurations.
Compared to existing AQM schemes, such as S-RED, BLUE,
ARED, and AVQ, our LRED scheme offers more stable
control of queuc length around the expected value, as well as
the achievement of high link utility. Compared to new AQM
schemes such as PI and REM. our scheme has much faster
response time and better robustness.

The remainder of this paper is organized as tollows. Section
II reviews the important TCP control model and the
characteristic-equation method used in AVQ [10]. We also
discuss basic properties of the combined svstem of TCP and
AQM control, which serves as the basis for the design and
analysis of the proposed LRED scheme. Section III presents
LRED scheme and its stabilitv analvsis. In Section IV, we

. studvy  the performance of LRED through extensive
simulations and compare it to other existing AQM schemes.
Some related research is given in Section V. Section VI
concludes this paper. ‘

II. MoODEL OF COMBINED TCP/AQM SYSTEM

In this section, we describe the general properties of the
combined TCP and AQM control system, based on the fluid
TCP model [11] as well as the characteristic-equation method
[10]. They serve as the basis for designing a stable AQM
scheme, and tor the analysis of our proposed LRED scheme.

A, Existing Model
We use a 3-tuple (N,C, 1) to represent the network status,
where N is the number of TCP [low number., C is the link
capacity, and 7z is the round trip time, which is assumed te be
fixed in the svstem. The svstemn equation about the queue
_ length (g) and the TCP congestion window (w) can be
approximatelyv constructed as follows [11].

pr—1), (1)

" =f(u'_.p)=%—“"([)‘:7#l

. N
q=g(w, p):—r—w(t)—C'_. (2)
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where p is the packet drop probability, and 7>1 . Let

Sor.p)=0 and g(w,p)=0. The congestion window ¢, and the

packet drop pmobability p, in the steady-state can be

calculated as:

=21 <1 3
T

LS A

We=——. P, ~
r 2
N Wo

When 5 =1.5. the steady-state throughput of a single TCP

C 273

flow —=
N TJE
equations in [15].
From Eqs. (1) and (2), il is clear that the combined svsiem
of TCP and AQM is non-linear. Let &r=1—ypq
and dp=p- p, be the mismatches for TCP congestion
window and packet drop probability, respectively. Eqgs. (1)
and (2) can be locallv lincarized around a stable point
(. p,) by assuming wir) =w(r—17) 11}

is consistent with the TCP throughput

éw: ai&"'l'aiap=_[R—1|&"+K1:@(I_T)lf (‘I')
ow Jdp _

&’I:ig_ap-yég_&):[(:l&l‘_ (5)
hr ap
where Ku—za;\l: K= TC: and K‘l"l
rC N*

Applying Laplace transform to Egs. (4) and (5). we have the
system equations for the TCP control mechanism. as follows:

sW(s) =K (8} + K P(S) "] (6)
$Q(s)= Ko (). %

B. General Properties of Praportional AQM Control

In Egs. (6) and (7). there are three unknown variables: 11(s),
P(s). and Q(s). Hence, it is necessary to find one more
equation to solve this problem. This can be achieved by using
the AQM as a bridge for P(s) and O(s). Consider an AQM
control mechanism that calculates the suitable p according to
the instantancous queue length ¢ ¢ — p. As will be shown

later. the proposed LRED is a proportional controller (see Eq.
(25)). We only consider proportional AQM control here to
construct the analysis basis for LRED. The control equation
of the proportional controller can be generally formulated as':

w=H.d (8)

The corresponding sysiem equation can be wrillen as:

"Here. &g =g —g,.and g, is the expected quene fength under stable status.
The proposed LRED scheme solely uses queue length to calculate packet
drop probability. For schemes that use both queue length and input rate, it is
still possible to extend the technicque in this section to analvze them.



P(s)= H.O(s). N

where /7, >0 1s a constant for AQM scheme.
From Eqs. (6)-(9), we can obtain the system characteristic
equation as:

SHRUS+HR H.e " =0, (10

where K.=K:Ku= £
I‘]zV

Solving Eq. (10), the stability of the combined svstem can
be analvzed bv examining whether its root, s = 0 + jw, lies
in the half-complex plane. We now discuss some properties
about Eq. (10) before presenting its stability analvsis.

If the root of Eq. (10) strictly lies in the left halt-complex
plane, the combined system, detined bv the network
parameters (N,C,7) and AQM control parameter ff, . is
stable. Hence, given (N.C, 7). we can choose an H., such
that root s strictly lies in the half complex plane. The system
1s thus stable. On the other hand, given the control parameter
H. . only some of the system (V,C,7) can be stably
controlled. Also note that the root of Eq. (10) continuously
changes in the complex plane when any one of the parameters
N, C, 7, or H,. changes continnously.

When 1 =0, the root of Eq. (10) can be calculated as:

 —KutJKi-4K.H.
S=5= - .

(11)

It can be easily proved that root g, stnetly lies in the left

halt-complex plane imrespective of Ku24K.H. or
Ki<4K.H.. Therefore, the syvstem with zero delay is
stable.

When 7 >0and letting s = 0 + j@ , the root of Eq. (10) can
be calculated as follows
cos(rw) = 0.

@+ KnO+ K. Hee™ (12)

200+ K @0— K. e Tsn(te) =10, (13)

Since 7> 0, the imaginary part (@) of root s is nonzero,
that is, 7 >0 = @ # 0. Otherwise, Eq. (12) will be mvalid.

Based on the above discussion, we can conclude that when
T increases from 7 =10, the root s of Eq. (10) will start at g, .
and then cross the imaginary axis for the first time at 7=7.
As a result, when 0 <7 < 7, the root s strictly lics in the left
half-complex plane, and the svstem of intercst 15 thus stable.
Therefore, the problem is how to find the value of 7 that
makes root s meet the imaginary axis the first time.

We now analyze the stabilitv of Eq. (10). First, we consider
the absolute tmaginarv root (s = jw) with @ > 0 (The case
of @< 0 is similar, because the roots on the imaginarv axis
are complementary.). When 7 >0, Eq. (10} can be re-written
as:

0-7803-8355-9/04/520.00 ©2004 IEEE.

e"K.H. _
s(s+ Kn)

The conditions on magnitude and angles must be guaranteed
as:

T(s) = -1, (14)

[Tja)|=1. £T(jw)= 2k +x. k=0.£L%2

and @ canbe calculated as:

W(N.C.T.H)=w=Jv(N.C.T.H)/2. (13
YN.Cr.H) =KL+ 4KIHI - KL (16)
mw+arctan(——y + L= 2k + . k=012 (7

bt

Since 4, is a decreasing function of r , and K, is
independent of ¢ . we have that w(N,C,7,H.) 1§ an
increasing function of r if A, is independent of or an
increasing function of r . Therefore. solving Eqs. (10) and
(1), the smallcst 7= 7 gives the first lime that a root mects
the imaginary axis. Then, for all 7 <7, the system is locally
asymptotically stable. Now the problem is to determine the
value of & that vields the smallest v, which can be solved
through the foilowing Lemma.

Lemma 1; When k=0 Egs. (15)-(17} vield the smallest
value of T and @, if H. is independent of or an increasing
Junction of T. Eq. (17) can be simplified to.

w Fig
T + arctan(—) = —.
-
1l

(i8)

Proofi The proof is based on contradiction. Assume that
k- (ri.w). k>0, 7,0, and @, >0 . According to Eq.
(17). we have:

D) - arctan(2))

1 B

>2km—7m/2>0.

Te 0 — Totvo = 267 + [arctan(

Assuming 7, <1, . w¢ have @, < @, according to Eqs.
(15) and (16) if . is independent of or an increasing
function of 7. Since 7, <7, and o, £ w,. then 7. @: € Totws -
but this is in contradiction to the above inequality. So the

assumption that 7, <7, doesnothold and r, > 7, . O

Lemma 2. Given network parameters (N, C) and AQM

control parameter [.. Assunte that T satisfies



T+ arclan(_(%}) =T , T>0. (19)

11

where @ is the solution to Egs. (13) and (16). If function
YN, C.t.H.}y in Eq. (16) is an increasing function of T,
then the svstem is stable for all T <7, and T is unique.

The proof for Lemma 2 follows from Lemma I and is thus
omitted here to conscrve space.

Lemma 3: Given network parameters (C.1) and AONM

control parameter H,. Assume that N satisfies

(] T .
w+arctan(—)=—, N>,
T

(20)

where @ is the solution to Egs. (13) and (16). If finiction
WN.C.1.H.) in Eq. (16) is an increasing fimction of T and
a decreasing function of N | then the sysiem is siable for
N> 1\:( .

Proof. Let 1(N) be the solution to LEgs. (10) and (12) with
N>N . If re 7{N), from Lemma 2, the system is stable for
all N> N . Since ¥N.C.r,H.) in Eq. (10) is a decreasing

function of N, we have:

A NY= (N, C.7T.11) < N.C.T,[1.) = & N).

Moreover, 7, 1% an increasing function of N . Hence, we
have:

N . N
w(j\ )) < T N+ ﬂrcmn(-(@) = g .

1 11

T N )+ arctan(

, we have

To guarantee 7(N)o(N)+ arctan[@(N)/ k] = %

7(N) > 1. Theretore, for all ¥ > N , the svstem 1s stable. O

Lemma 4.  Given nerwork parvameters (N.C.7) ., and

assume that H. satisfies:

[} .
@+ arclan(—)=—, H.>0, 21)

T
)
1 -

where @ is as given in Egs. (13) and (16). If function
VN, C,t,H.) in Eq. (16) is an increasing function of both T
and H ., then the system is stable for all . < H?.

The proof follows the same token as that for Lemma 3.

Theorem 1. Let the network parameters be (N, C. 1), and

assume that H; satisfies

0-7803-8355-9/04/520.00 ©2004 [EEE.

. [ N
0+ arctan(—)=—, H.>0, (22

T
)
11 -~
where @ is defined as given in Eys. (13) and (16). If funciion
V(N C.T.H.) in Eq. (16) is an increasing function of T, a
decreasing function of N, and an increasing function of .,

then the system is stable for H . <H., N = N,and t<7.
The proof for Theorem 1 follows from Lemmas 2 to 4.

IIL THE LRED SCHEME

A. Description

As in most existing AQM schemes, LRED also chooses to
drop packets from the tail of the queue. To estimate the
degree of link-congestion, two indices are emploved: packet
loss ratio and queve length. The packet loss ratio is used in
large time-scale to make the scheme more adaptive and
robust, while the queue length is used in small time-scale to
make the scheme more responsive in regulating the length to
an expected value ¢, . In the large time-scale, the basic rule 1s

lo guaraniee that the average packet drop probability is as
close as possible to the packet loss ratio. The design rules in
small time-scale include: 1) when queue length is equal to ¢, ,
the packet drop probability will be equal to the packet loss
ratio; 2) when queue length is larger (or smaller) than g, , the
packet drop probability will be also larger (or smaller) than
the packet loss ratio. '

LRED periodically measures the packet loss ratio, which is
then set as the desired stable packet drop probabilitv p,. To
achieve a stable measurement and vet be adaptive to dvnamic
network conditions, LRED calculates the loss ratio
periodically for every small period (mmp), which should be
bigger than R7T. During each occurrence of a packet loss
ratio calculation, LRED will check the packet loss status for
the AS latest measurement periods, as illustrated in Fig. 1.

Let I(k) be the packet loss ratic during the latest Af
measurement periods, i.e., the ratio of the number of dropped
packets to the number of total arrival packets during the latest

Af measurement perieds. If packets are of different sizes,

/(i) can be calculated as the ratio of the total dropped bvtes
against the total arrival bytes. The measured packet loss ratio
[(k) is calculated at the end of each measurement period as

(see Fig. 1)
m ={(k— 1) *mw+ (1 — mw) * (), (23)

S Natk=i)
k)= ——

2:\"“(]‘_’.)

(24)

where #mw is the measured weight factor, which is set to a
small value in order to track the current loss ratio, A7, (k) 1s
the number of packets dropped in the A-#/r pertod. and v, (&)
15 the number of packets arrived in the A-th period.



After calculating the packet loss ratio, the task is to find
some methods to calculate packet drop probability using
instantaneous queue lenpth as an inpul variable, according to
the design rules for small time scale, as listed above. These
methods should provide that average packet drop probability
is as close as possible to the measured packet loss ratio /(k),
when queue length oscillates about g, , according to the
design rules for large time-scale, as listed above. A siinple
method is to usc the linear function, i.e., p=i(k)+a(y —q,) .
However, it 1s often difficult to choose a perfect value of
parameter ¢ . For example, if /(k) is somewhat large and e
is set too small, the packet drop probability for small queue
length ¢ would stili be some large value, resulting in low link
utility. To avoud this, in LRED, we let @ increase with the
mecasured loss ratio. Packet drop probability is then calculated
as tollows:

p =1+ IR 4~ q,), (25)

where parameter >0 is a pre-configured constant.

In Eq. (25). when the queue length ¢ is equal to the expected
value ¢, , packel drop probability p is equal to loss ratio
@. On the contrary, p will be larger (or smaller) than i(T)
if g is larger (or smaller) than ¢, . In addition, when m 1sa
bit large (or small), p will increase {or decrease) with a large
(or small) slope so as to guarantee that the packet drop
probability in small queue length is much smaller.

In summary. LRED mecasures packet loss ratio in the large
time-scale, and update packet drop probabilitv in small time-
scale at each packet arrival.

B. Stability Analysis

We now derive the design rules of parameter S, and
investigate the stability of LRED. The key assumption in our
analysis is that the measured packet loss ratio can be used to
approximate the stable packet drop probability p,, ie.,

m = p, . IHence, we can rewrite Eq. (25) as:

p=po+ Bpta—1q,). (26)
where p, =nN°/(£C*) (see Eq. (3))
From Eq. (26), we can get:
& = Bp.du. @7

Thus, the system transfer function in LRED can be written
as:

P(s)= A/ p,0Cs). (28)

Then, the constant g7, of LRED is:

0-7803-8355-9/04/$20.00 ©2004 IEEE.
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Fig. 1. Packet loss ratio measurement in LRED

/*nitialization */

arrPRNum=0; dropPktNum=0;
alldrrNum=0, allDiropNum={;
index=0. mw=0.1. mp=1.0: Af=4, A =0.001:

*LossRatioMeasure{)-Called periodically every mp seconds*/

1 drapNum|index}=dropPkiNunr,

2 arriNumfindex]=arrFhiNum:

3 arrPRNum=0;

4 dropPktNum=0

5 index++;

6 iflindex==A) index=1},

7 for(:=0; i<\ i++) allDropNum+= dropNumli].
3 for(i=0; <AL j++) alldrrNum+= arrNum[i].
9 fossRatioTemp= aliDropNunialldrrNum:

10 lossRatio=lossratio*nnw+ lossRatioTemp™( 1-mw).
11 allDropNum=10,

12 alldreNum=0,

/% Enqueue()-Called at each packet arrival*/

1 arrPiINum++.

2 p=lossRatio+ ﬂ\f lossRatio (g —q,}

3 p=max(f), mintl, p).

4 random=uniformRandom(0. 1);

3 if{bulfer is full) {

] Drop the packet;

7 dropPkiNum++:

g 1 elseifirandom>p) { Enquene the packet:
9 1 clse §

10 Drop the packet:

11 dropPkiNum++:

12 ]

Fig. 2. The LRED scheme

He=P$) /0 =8p,. (29)

Substituting the constant ff_ of LRED into Eq. (13) and
(16), we have the tollowing Lemma.

Lemma 5: /n LRED, the function v(N,C, T, H.) in Fy. (15)
is a decreasing finction of N, and an increasing function of

J2 Ny
. Moreover, | < —i——) it is an increasing fiunction
r°C’ &

af 7.
Proof: For LRED, we have P(s)=ﬂJp—OQ(s), and hence

H.=pPJp,. and p,= nf\,; . As a result, w(N,C,7,H.)in
rC”
k2q. (15) can be calculated as:

AN Y g o N2
‘.:\‘)_'_4[1{_‘ —(-"fl).
r'C nr rC

YN.C.z. 7)) =, [( (30)



It can be easily obtained from e (30) that ¥ T= v & und
B T=yvT . Therefore, y»(N.C.t.H.) is a
function of &, and an inereasing function of S .

decreasing

Now we consider 7. First, write the derivative of function v
about 7 as follows.

o8Ny sg (¢t
Fyp ; TAry —
d__ rC !7‘1 +4(:-X) _ fl(f)i_fs(f)‘
a7 ,,\/(M LA T fa(0
vV c ne

To make » be an increasing function of 7, it must satisfy

ay

ar

can be wrillen as:

>0, or equrvalently [fz(r)*fB(r)]:— _ff(r) > which

64 8120QN) - F°Ct)

* 2 ez -
[f* 00 - f1(o ey

L3 2 - r :
Therefore. if A r°C*-27(2N) <0 or f<¥™! ’734“_(2‘;\ ) ;
T

then f,(0)}* /,(7)> f(r) and g'—v>0 . As such,
T
VwN.C.r,[) is an increasing function of 7 when
N2 @NY
B<—r— =
T
Theorem 2. Given network parameters (N.C. £y, and

assuie that 3 satisfies

- 4] T
Tw+ afctan(f) -

. > (31)
1

ﬂ)().

where @ is defined in Egs. (13) and (16), and .= [}‘/E

. L 2n Ny
in LRED. If f < f=min(f. #) . the svstem remains
T

- stable for everv values of N 2 N oand T<t.
_ The proof follows from Theorem | and Lermma 4.

Given the bounds of network parameters, the practical value
of B can then be calculated to guarantee the stability of the

system based on Theorem 2. For exarnple. consider a network
500 bytes. C =2500
packet/second (or equivalentlv. 10Mbps). N =300, and
7 =0.33 seconds. According to Theorem 2, the required
AQM parameter [;’ is 0.00 L. This system is also stable for all

N>Nandr<? if f<f

in which mean packet size =

0-7803-8355-9/04/520.00 ©2004 [EEE.

C. Analysis of Response Time

Since stabilitv and response time are often in conflict with
cach other in svstemn performance, existing schemes such as
PI [12] and REM [13] have tried to find a tradcoff between
them. If network parameters (especially NV and R7TT) are
known a priori, these schemes can adjust their control
constant to obtain the best response property while
guarantecing stability. However. in a dynamic network. it is
difficult to obtain these parameters precisely. Therefore, such
schemes often use a conservative design that first guarantees
stability; the resultant response time would be very long. For
example. the defaunit parameter for Pl (as used in the ns-2
simulation {16]) is based on some small value for V and large
value for R7T. When V increases and/or R7T decreases. it
will vield a long response time while still maintaining
stability.

In this subsection. we present an analvsis for the lower
bound of response time for PI, REM and out LRED.
Through comparison. we show that LRED achieves lower
response time under dynamic network status.

Consider the following scenario: at time =0, N TCP flows
become active simultancously. Assume # is large enough to
make he buffer size (@) fullv filled before the system
converges 10 a steady state with packet drop probability p, .

and expected queue length ¢, .

Let us first investigate the PI scheme. which periodically
updates packet drop probability with the sample frequency
S, (Hz)as:

plky= plk =D +algk)—q]-blgtk - —-¢q). (32)
where @ >0 and >0 are fwo constants, as specified in

[12]. Before reaching the steadv-state. we can assume that
g (k) =0, and p(0)=0. Then p(%) can be also calculated from

Eq. (32) as:
plky=k(a-b)N0—gq,). (33)

Demole p(k,)= p,. The lower bound of the response time
of PI ( RT,,) can be calculated as:

RT, =Ko o o

Py = 34
" fa (O-gXa=b)f, .

In REM, packet drop probability is also periodically
updated with a sample frequency f .., (Hz). as follows | 13):

plky=1-¢™", (35)
u(by=uvlk -+ AqH) - A-a)qk -)-aqg,)). (36)
u(k) = max(0, u(k)), (37)

where ¢ >1. y>0. and o > 0 are three constants. and the
optimal values have been derived in [13]. Before reaching the



steadv-state. we can also assume that ¢(k) = O . #(0)=0, and

u(ky<<]. Then p(k) can be calculated from Eqs. (35)-(37). as
follows:

u(k) = kye(Q—q,). (38)

1w [u(k)Ingl
ply=1=g = =1-2 &)
= u(k)Ing =kyp(Q—q,)Ing.
Let p(k.) = p, - then the low bound of the response time for
REM ( RT,;,, ) can be calculated as:

ko Pa

RTy, = = . (40)
i fx.&u JrREM' W(Q—fio) ln¢

From Eqs. (34) and (40). we can see that the response time
of PI or REM is dependent on their control consiant

parameters, buffer size Q. expected queue length g, . and
desired stable packet drop probability p, (which is an

increasing function of TCP flow V., and a decreasing function
of round-trip time R7T and link capacity C, according to the
TCP throughput model [13]). Under heavy congestion or with
large stable drop probability p,. Pl and REM suffer from a

long response time. In addition. when the buffer size Q is
small. the responsiveness of PI and REM will become worse
as well.

In our LRED scheme. packet drop probability mainly
depends on the measured packet loss ratio. Since the packet
loss ratio is close to the stable packet drop probability p, in

the steady state, the response time of LRED is heavily
influenced by the period (zp) to measure packet loss ratio,
As a result. LRED can somewhat decouple the response time
and packet drop probability, thercby making its response time
almost independent of network siatus. When network
conditions are changed dynamically. LRED can still quickly
regulate the system to the new steady state. On the contrary,
in PI and REM. there would be a much longer response time
before arriving at a new steady state.

Nevertheless, when traffic load is very light (for example, &
is small, and R7T is large). there are verv few packet losses.
and hence more rounds of measurement are required to obtain
the best stable packet loss ratio. In this case, LRED would
experience a slightly longer response time, as compared to PI
and REM. In summary, LRED is most suitable for heavily
congested networks, though its performance is comparable to
PI and REM in a network of light traffic load. In the next
section, we shall further validate tlus finding through
simulations.

IV. SIMULATION RESULTS

In this section, we investigate the performance of LRED
performance through ns-2 [16] simulations. We also compare
its performance with existing AQM schemes, in particular, PI
|12] and REM [13]. For LRED. the parameters for loss ratio
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measurement (Eqs. (23) and (24)} are configured as: »mw=0.1,
mp=1.0s, and A/=4. According to Theorem 2, f is sct to
0.001. We also study LERD performance under the small
value of expected queue length ¢, . and compare it with AVQ
[10]. since it can effectively regulate queue length to a lower
level, thereby achieving expected link utilization
simultancously. For PI and REM. we use the default
parameters in ss-2°.

The network topology for simulatien is the commonlv used
dumb-bell topology (see Fig. 3): there is a single congestion
link from router 1 to router 2, and the capacity of each link is
10Mbps. The link delay between Client (/) and router 1 is
labeled as a 3-tuple (d,.d-.d:.da.ds) with a uwit of

millisccond (ms). All flows are uniformly distributed among
pairs of Client «(/) and Server s(7). The packet size is 500
bvies. and the buffer size of each router is 200 packets. We
run each simulation for 200 seconds. which is long enough to
observe transient as well as steadv-state behaviors of the
AQM schemes. .

In this simulation, we focus on the following kev
performance  metrics:  goodput  (excluding  packet
retransmissions), instantaneous queue length. average queue
length. average absolute queue deviation, and packet loss
ratio. The average queue length is defined as the arithmetic
mean value of instantancous queue length. The average queue
deviation is defined as the absolute deviation between
instandaneous queue length and its mean value.

* In PL a= 0.00001822, b= 0.00001816. sampling frequency is 170Hz. In
REM. ¢=1.001. a=0.1. y=0.001, sampling interval is 2ms.
* In the last section. we obtained the lower response time bound for PI and

REM. As tor LRED. we only deduced that its response time is dependent on
the measurement period. and presented no analysis curve.



200 200 p{il1}

= a0 Z 150 = 51)

5 ¢ | I E; : = 150
= 1 L4 = =

sl 100 | | i | el oo 20 190
5 : \ 5 3
- | -_ —

L : 3 s 2 s
v ¥ ol A3
& ! =4 I &

1 0 1l o

o 0 100 150 200 0 50 100 150 200 [ 50 o 150 200
Time (sec)-PI Time (sec)-REM Time (sec)-LRED
(a): light congestion ( p, =0.0025)
1) g 00 200 g

=z 1 :

L 10 —é_ 150 -é_ 150
= = =

ED 100 Eﬂ 100 Eﬁ 100
o ) 3
— - —l

2 so 2 s 2 50
o ] L=l
& & &

0 [ 0

0 N 16 150 200 ] S0 100 150 200 i 30 100 150 pOln)

Time (see)-Pl

Time (sec)-REM

Time (sec)-LRED

(b): heavy congestion( p, =0.163)
Fig. 5. Exp2: Queue length under two extreme cases

A. Homogenous Traffic: Long-lived TCP flows only
Experiment 1: Varying congestion degree to observe
response time )

In this experiment, all TCP flows are persistent. The
experiment’s purpose is to compare the response time (RT) of
the AQM schemes, which is calculated using the following
approximate method:

if AveQ(r.t+4)<0.1g, and AveQDev(r.t +4) <034,
then RT=t+2

where AveO(r,t +4)and dveQDev(r.f +4) are the respective
average queue length and average absohute queue deviation of
q, during [1. 1+4] s.

In this experiment, the expected queue length g, is set to

100 packets. The link delay between Clients and Router 1
(c\.d-.ds-ds.ds) is configured as (10, 50, 100, 130, 200).

The total number of fows, N, varies from 100 to 1000, to
imitate different congestion degrees. ‘

The results are presented in Fig, 4, where the two dotted
lines are the analyzed lower bound of response time for PI
and REM. respectively, calculated according to Eqs. (23) and
(26). The response time of LRED analvzed in the last section
is only coarsely proportional to the measurement period (mp).
so there is no analyzing curve for LRED in Fig. 4. It can bé
scen that when the packet loss ratio increases (a result of an
increase in the mumber of TCP flosvs). the response time of P1
or REM increases. Although there are some iismatches as
compared to the analvtical lower bound, the simulation
results do show the trend that the response time of PI or REM
is an increasing function of packet loss ratio. On the contrary.

0-7803-8355-9/04/320.00 ©@2004 IEEE.

LRED is nearly irrespective of packet loss ratio; its response
time mainly depends on the measurement period. as analyzed
in the previous section.
Experiment 2: Stability under extreme conditions

In this experiment. the stability of the AQM schemes are
investigated under two extreme cases: 1) light congestion
with a small number of TCP flows V and large RT7, 2) heavy
congestion with a large V and small R7T. In the first case,
N=B0and o, =d.-=ds=d.=d-=250ms . Inthe second case.

N=80 and J,=d.=di=d,=d:=10ms, Other parameters
are the same as those in expenment 1. Fig. 5 presents the
instantaneous queue length of each AQM scheme under the
two cases. It can be seen that. under heavy congestion, LRED
achieves a shorter response time and better stability than PI
and REM. Under light congestion, the queue length of REM
is oscillated and nearly out of control. On the contrary, LRED
and PIT can still stably regulate the queue. In this casc. with
large RTT, LRED has a slightlv increased response time,
because TCP needs more rounds to reach a stable value 137,
of its congestion window {cwrrd) at this time.

In summary, LRED shows better stability and quick
response under either light congestion or heavy congestion

B. Non-Homogenous Traffic: Hybrid flows
Experiment 3: Adding unresponsive UDP flows

In this experiment, we investigate the influence from
unresponsive UDP flows. Besides the 100 persistent TCP
flows, we introduce 100 UDP flows arriving in the interval
[50s, 150s]. Each UDP is an ON/OFF flow; the duration of
ON and OFF state is exponentially distributed with mean
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value 1.0s. The normalized density of the total UDP flow p

is from 0.1 10 0.9. In the ON state. each UDP flow has a bit
rate r = px10A£ /100, The expected queue length and link

delay between client and Routerl are: gq,=100 and
(v =0 ds-dy-ds) = (10.50.100.150.200) .

Fig. 6 presents results of average queue length, average
absolute queue deviation. goodput. and packet loss ratio, as
functions of the UDP traffic density. The goodput is
calculated as the sum of the goodputs of the persistent TCP
flows and the UDP flows.

It can be seen that LRED outperforms PI and REM in terms
of these measures, especially when UDP traffic density is
higher. REM also achieves better performance than PI in this
experiment; however. REM is stable with more restricted
network conditions than PI. as shown in experiment 2.

We show the instantancous queue length for each AQM
scheme in Fig. 7. It can be seen that: 1) The buffer under PI
and REM will be overflowed (or empty) for a long time when
UDP flow arrives after 50s (or stops after 150s), especially if
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p is a large value (for example 09), because of the slow

response in Pl and REM. This results in low goodput and
high loss ratio, as shown in Fig. 6. On the contrary. LRED
has a much shorter response time: hence there is only a
sudden short-term increase (or decrease) at time 30s (or
150s). 2) When p increases, LRED can still regulate queue

length 10 the expected value with much smaller deviation or
overshoot than P1 and REM. In summary, LRED is cffective
in overcoming the disturbance introduced by the
unresponsive UDP flows.
Experiment 4: Adding short-lived TCP flows

Besides unresponsive UDP flows, short-lived TCP flows
can also influence the control effect of AQM schemes. In this
experiment. we introduce short-lived TCP flows, which
arrive in intervals [50s, 150s] according to a Poisson process.
The mean arrival rate A varies from 10/s to 100/s. The length
of cach shori-lived TCP flow is uniformiy distnbuted in
|1.0s, 2.0s]. Other parameters are the same as those in
experiment 3.
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The results of this experiment are presented in Figs. 8 and 9. long time when short-lived TCP flow arrives after 50s (or
The goodput is the sum of the goodputs from TCP flows.  slops after 130s), especially iff 4 is of large value (e.g., 100),
Similar to experiment 3. LRED outperforms PT and REM in  because of the slow response in PI and REM. This results in
terms of average queue length, average absolute queue  low goodput and high loss ratio. On the contrary, LRED has a
deviation, goodput. and packet loss ratio (se¢ Fig. 8). Fig. 9  much shorter response time, and there is only a sudden short-
shows the instantancous queue length for PI, REM. and  tcrm increasc (or decrease) at time 50s (or 150s) in the casc
LRED for 4 =30 and 100. From this figure, it can be seen  of LRED. When A increases, LRED can still regulate queue
that the buffer in PI or REM is overflowed (or cmpty) for a  length to the expected value with much smaller deviation or
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overshoot than PI and REM. Therefore, LRED can
effectivelv overcome the disturbance resulting from short-
lived TCP f{low, thereby achieving better stability and
robustness.

Finally, we compare LRED with AVQ. which is known to
be effective in regulating the queue length and achieving high
link utiization [8]. In AVQ. the desired utility is setat y=1.
and @ =0.003,0.01,0.05,0.10. To make a fair comparison.
we configure g, (in LRED) to small values (20 and 40} to
match the average queue length under AVQ. The resulls are
presented in Fig. 10. It can be observed that LERD can
achicve lower queue length and deviation. higher goodput,
and lower packet loss ratio than AVQ). through choosing a
certain expected queue length. In fact LRED still achicves
good performance and stabie comtrol, even when using a
small queue length.

In summary, LRED has a much smaller response time than
Pl and REM. When the network is extremely congesied,
LRED still shows good stability for a varietv of network
environments. In addition. LRED is effective in overcoming
the interference from unresponsive UDP flows and/or short-
lived TCP flows. It also exhibits good performance ¢ven
when the expected queue length ¢, is set at a smalt value.

V. RELATED WORK

There have been many proposals on AQM. The de facto
standard. RED. uses average queue length to calculate the
packet drop probability and then to regulate the queuve length.
When the average queue length is higher than a pre-
configured threshold (min.), RED begins to drop newly-
arrival packets with a probability proportional to average
queue length and with a siope of max,. Despite its simplicity,
it is difficelt to optimally configure the parameters of RED.
Therefore, many variants of RED have been proposed to
adaptively configure the parameters. For example S-RED {7]
and ARED [8] propose adaptive methods to adjust max,,
respectively, using events of buffer overflow and emptiness,
and event of queue increasing. However, these approaches
introduce additional parameters that need to be configured
again.

BLUE [9] is another type of adaptive scheme. Tt adaptively
calculates packet drop probability based on only two events:
buffer overflows and buffer emptiness. When the buffer is
overflowed (or empty), it increases (or decreases) packet drop
probability by &, (or §.). However it is hard for BLUE to
control the queue length to an expected value.

AVQ [10] uses only input rate x(#) to control packet drop
and to achieve expected link utility p . while keeping low
queue length Packet drop probability is basically
proportional to the mismatch between input rate and expected
link utility y . Through maintaining a virtual queue. AVQ
detenministically drops packets upon the amival of a new
packet, realizing the same effect of probabilistic packel drop.
As shown in [10], AVQ can achieve low average queue
length and high link utility.

Recently. some improved schemes jointly use queue length
and input rate to achieve better stability. An example is PI

0-7803-8355-9/04/320.00 ©2004 IEEE,
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[11][12], which tries to regulate queue length to the expected
value using queue mismatch and its integral. The integral of
queue length musmatch is factually related (o the input rate
mismatch. Packet marking/drop probability in PI is
periodicallv and iteratively updated according to Eq- (21). PI
provides design rules through control-theory analysis to
choose its parameter value. However, when the network
parameters are unknown a priori, PI can only use
conservative design to guarantee stability, vielding long
response time, as shown in our simulation.

REM [13] also tries to control the queue length to the
expected value. It uses the linear combination of queue
mismatch and inpul rate mismatch to calculate marking/drop
probability. In REM, input ratc mismatch is equivalently
simplified to queue vanance between two continuous
samplings. Like P1. packet marking/drop probability in REM
is alsc periodically and iteratively updated according to Eq.
(24). As shown in experiment 2. REM is stable for a more
narrow varicty of network environments than PI and LRED,
atthough it has a quicker response than P1L.

SFC [14] also uses queuc mismatch and input ratc mismatch
as a congesiion index, irving to regulate queune length to the
expected value. Packet marking/drop probability in SFC is
updated upon armrival of a new packet as:

Py = kilgth) - g1+ a[xtk) - Cl, (1)

p(ky=max{0, min[l, p(k)]}. 42)
where the x(k) is the measured traffic input rate at the 4-th
packet amival time, and £, >0 and a >0 are two constams.
Through solving the svstem charactenistic polvnomial, SFC
gives design rules of choosing 4, and a, under the
assumption that dp=p (Eq. 15 in [14]). Such an
assurnption (also made in PI [12]) might be problematic and
ineffective under heavy congestion with a large value of p,.
and will cause slow response. as shown in our simulations.

If network parameters remain unchanged, we can assuine
that Kk +1) =Tk'} . Then Eq. {(23) (for packet drop
probability calculation in LRED) can be simplificd as:

pl+D=pli)+ Sylik) gl +1)—q()]. (43)

Though Eq. (43) is somewhat similar to Eqgs. (32) and (33).
there are important differences between LRED and PI (and
REM). Specifically, in PI, the packet dropping probability is
always iteratively computed. If the stable probability p, is
of a large value (lower RT7, large TCP flow mumber), PI
needs a longer time to make the drop probability p converge
to the p,. as shown in section IV. On the contrary. since
LRED uses packet loss ratio to adjust packet drop probability
(Eq. (25)). its convergence rate and response time are nearly
independent of the stable value p, ., and primarily influenced

by the measurement period. As shown in simulations. after



only several measurement periods. LRED can make the drop
probability p converge to the p,.

When network parameters are dynamic, the required stable
probability p, will be changed correspondingly. However,
LRED can adapt itself quickly to a new stable state through
measuring packet loss ratio. On the contrary, Pl and LLRED
often need a longer time to converge to the new stable state,
which will cause large queue deviation and lower throughput,
as shown in our simulations.

VI. CONCLUSIONS

In this paper. we proposed a new AQM scheme. LRED,
which incorporates packet loss ratio (in addition to queue
length) for congestion estimation. Under LRED., packet drop
probability is updatcd under muitiple time-scalc. At packet
level, LRED uses instantancous queue mismatch to update
packet drop probabilitv upon arnval of new packets. On the
larger time-scale. LRED adjusts the packet drop probability
using the measured packet loss ratio. We analvzed stability

“and response time of LRED. We also conducted extensive
simulations to evaluate its performance. and compared it with
existing AQM schemes such as PI. REM. and AVQ. Our
results showed that LRED has a shorter responsc time than PI
and REM, especiallv under heavy congestion scenarios. More
importantly, LRED achieves better stability and robustness
than PI and REM under dynamic enviromments, where the
mumber of TCP flows & and RT7T varies significantly, or
where there are many short-lived flows or unresponsive UDP
flows. Finally, LRED can effectively control the queue length
to an expected value. It also achieves a better tradeoff
between goodput and queue length than the well-known AV(Q)
scheme. -
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