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Ab.sbucf-Active queur management (AQM) is an effective Additive Increase and Multiplicative Decrease (AIMD) 
control scheme, a snlall buffer can euarantcc lo\r queuing mrthod to rnhance congcstian control, and to nchirvc tradeoff 

hetween link utilization and delay. The de f a d o  stnndnrd, 
Random Early Detection (RED), and most of its variants use 
queue length PS a congestion indicator to trigger packet 
drnpping. Despite their simplicity. thrsr nppinachcs suffer from 
unstable k h a u i o n ,  as rewaled in many simulation studics. 
Some nf them introduce adaptive parameter settings to improve 
stability; however, there is still no rcal nnalytical stnbility model 
far them. Recent schemes, such ns Proportional-Integral (PI), 
use both queue length and traffic input ratc as congestion 
indicators; effective stability model and practical design rules 
hnilt on the T C P  control model and abstracted AQM model 
reveal that such schemes enhance the stnbility of a system. 
Nevertheless, campnrcd to RED nnd its variants, the response 
time in these schemes often increases, cspecinlly within B highly 
dynamic network with heavy traffic l oa4  which would cause 
continuous huffpr overflow or buffcr cmptiness. 

I n  this paper, we propose an AQM scheme with fast response 
time, yet good rnhustness. The scheme, called L o s  Rntio hnncd 
RED (LRED), measures the lntest packet loss rutiu. and uses it 
as n complement to queue length in order to dynunically adjust 
packet drop prohability. Employing the closed-form relationship 
hehvwn packet lass ratio and thc numhcr o f  TCP flaws, this 
scheme is respunsive even if thc number uf TCP flows varies 
significantly. We also provide the design rules for this scheme 
hascd on the well-knawn T C P  control model. This scheme's 
performance is examined under various network configurations, 
and compared to existing AQM schemes. including PI, Random 
Erponentially Marking (REM), and Adaptive Virtual Queue 
(AVQ). Our rimuhtion results show thst. with comparable 
complexity. this scheme has short response time, hctter 
rubnstness, and more desirable tradeoff than PI, REM. and 
AQV, especially undrr highly dynamic network and hcavy 
trsffirc lusd. 

h-u.wurrlr-Active Queue Management, Packet Loss Ratio, 
Quality of Service. 

1. INTRODUCTION 

- ~ 

delay; but it often suffers from packet loss and low link 
utilization, and vice versa. Thcreforc. thc key design problem 
herc is to find a good tradcofbetween these variables. 

The traditional scheme for buffer management is First-In- 
First-Out (FIFO) Tail-Drop; which drops packets only if there 
arc buffer oveiilows. This passive behavior with longer 
queuing delay olien causes correlation among packet drops; 
resulting in the well-hiown "TCP nchronization" problem 
131 and, consequently; low link uti1 ation. The long queuing 
delay of 'Tail-Drop also makes it inefficient for delay- 
sensitive I-eal-lime applications. 

To mitigate such problcms, AQM [3] has been introduced 
in recent years. The basic philosophy of AQM is to trigger 
packet dropping (or marhng, if explicit congestion 
notification (FCN) 141 is enahlcd) before huffer overflows, 
and when drop probability is proportional to the depee of 
congcstion. In existing AQM schcmcs: link congcstion is 
estimated through queue length. input rate, events of buffer 
overtlow and emptiness; or a combination of these factors. 
Queuc length (or average queue length) is widely used in 
RED [j] and most of its variants [6][7][8]; where packet drop 
prohahility is oflen linearlv proporlionel to queue length. S- 
RED [XI and BLUE [Y] trigger to adjust the packet drop 
probability when packet buffer is ovaltlow or empty. 'The 
traffic input ratc is also used in somc AQM schemcs such as 
AVQ [IO] to make them more adaptable to instantaneous 
traffic variance and to achieve desired link utility. Some 
recent AQM schemes, for example PI [11][1?], REM [13], 
and SFC [I/l],jointly us2 queue length and traffic input rate. 

In this paper, we xgua that the packet loss ratio is an 
important index in designing a buffer nianagement 
mechanism. For example. an increasing packet loss ratio is a 
clear indication that severe congestion occurs. and that 
ngFessive packet dropping is needed. On the other hand; a 
decrease of packet loss ratio can senze as a signal that 
congestion is receding and consequently, that packet drop 
action can change from lo moderate, ~ h ~ ~ ~ f o ~ ,  it 
is poss,hle to use the loss ratio to design more 
adantjve and ro~,,,z, A(,M schemes 

Buffer management plays an important role in congestion 
control [1][2]. However. thc Iwo main objectives of buffer 
management, high l i k  utilization and low packet queuing 
delay, are oflen in conllict wilh each  other^ Given that most 

(LRED) scheme for robust active aueue manaeement. In 
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status and the necessity of updating the packet drop 
probability; 2 )  large packet loss ratio implies uverload; 
indicating that aggressive packet drop is needed. According 
to the first principle, LRED uses instantaneous queue 
mismatch as an input variahle to calculate the required packet 
drop probability each time packets arrive. Calculated packet 
drop prohahility linearly increases with queue mismatch. 
According to the second principle, when there is a large 
packet loss ratio, L E D  will dynamically increase the packet 
drop probability. In a summan., LRED uses the instantaneous 
queue length to calculate the packet drop prohahility upon the 
arrival of each new packet, i .e.> over short time scali:~, while 
dynamically adjusting the packet drop probability according 
to the measured packet loss ratio over relatively large time 
scales. Such a combination enables fast response time and 
high robustness. 

The performance of our L E D  scheme is evaluated through 
extensive simulations under various network configtirations. 
Compared t<i existing AQM schemes. such as S-RED: B1,tJE~ 
ARED, and AVQ, our LRED scheme offers more stable 
control of queue lcngth around the cspccted valuc, as wcll as 
the achievement of high linh utility. Compared to new AQM 
schemes such as PI and REM_ our scheme has much faster 
response time and hetter 1.obustness. 

The remainder~of this paper is organized as follorvs. Section 
I1 reviews the importent TCP control model and the 
characteristic-equation method used in AVQ [IO].  We also 
discuss basic properties of the combined 

tro1; which sewes as the basis 
f the proposed LRED scheme. Section I11 presents 

LRED scheme and its stability anal!. In Section IV. we 
study the pedormance of LRED through extensive 
simulations and compare it to other existing AQM schemes. 
Some related research is given in Section V. Section VI 
concludes this paper. 

11. MODEL OF COMBINED TCP/AQM SYSTEM 

In this section; we describe the general properties of the 
combined TCP and AQM control tem; based on the fluid 
TCP model [ I  I ]  as wel l  as the charactetistic-cquation method 
[IO].  They s m e  as the hasis for designing a tah le  AQM 
scheme, and for the analysis of our proposed L E D  scheme. 

A. Existing Model 
We use a i-tuple (h',C, r )  to represent the network status; 

where I\' i s  the number of TCP llo\v number: C is the link 
capacitv, and r is the round tiip time, which is assumed to he 
fixed in the system. The system equation ahout the queue 
length (y) and the TCP congcstion window (IV) can be 
approximately consti-uctcd as follows [.I I]. 

,\' 

T 
q = p(1v. p )  = - ll'(f) - c. (2) 
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where p is the packet drop probability. and q >  I . Let 
/(w,p)=O and p(w.p)=O. The congestion windon. and the 
packet drop probability p,, in the steady-state can be 
calculatcd as: 

( 3 )  

When 17 = 1.5. the steady-state throughput of a single TCP 

flow - = ~ JETS is consistent wit11 tile TCP tlirougliput 
JV T J L  

equations in [IJ]. 
From Eqs. (1) and (2). it is clear tlwt the combined syslem 

of TCP and AQM is non-linear. Let &I.= I I ' - I V "  

and @= p -  po be the mismatches for TCP congcstion 
window and packet drop probability. respectively. Eqs. (1) 
and (2) can bc locally lincarizcd around a stable point 
(11,~. p,) by assuming w ( f )  = w(f  - r )  [I I]: 

Applying Laplace transform to Eqs. (4) and (5).  nF lave the 
system equations for the TCP control mechanism as follows: 

srv(s) = - [ I ; ~ , I P ( ~ ) + ~ ; , ~ P ( ~ ) ~ ~ " I .  ( 6 )  

.YO(S) - = K>$IP(S). (7) 

B. Generul Prope&.es of Proporfionul AQM Control 
In Eqs. (6)  and (7). there are tluee unknonmvariables: W@). 

P(s ) .  and Q(s). Hence. it is necessay to find one inore 
equation to solve this problem This can be aclueved by using 
the AQM as a bridge for P(s) and Q(s). Consider an AQM 
control mechanism that calculates the suitable p according to 
thc instantaneous queue length q: q + p . As will be shown 
later. the proposed LRED is a proportional controller (see Eq. 
(25)). We only consider propoltional AQM control here to 
construct the analysis hasis for L E D .  The control equation 
of the proportional controller can be generally fonnulated as': 

$ = H , s Y .  (8) 

The corresponding system equation can be written as: 



P(s )  = H,Q(.y). (9 

where I f ,  > 0 is a constant for AQM scheme. 

equation as: 
From Eqs. (6)-(9)? we can obtain the system characteristic 

s l +  h u s  + h , f f , e - "  = 0, (10) 

C' 
JllV 

where R, = h-,:KZt = - . 

Solving Eq. (10); the stability of thr: combined 
be analyzcd by examining whether its root; s = U + .jw lies 
in the half-complex plane. We now discuss some properties 
about Eq. (10) bcforc prcscnting i t s  stability analysis. 

ctly lies in the left half-complex 
plane, the combined em; defined by the nehvork 
parameters ( V , C , r )  and AQM control parameter 11, is 
stahle. Hence, given (X,C, 7) we can choose an H , ,  such 
that root s strictly lies in the half complex plane. The system 
is thus stable. On the other hand, given the control parameter 
H ,  only some of the svstem (?V,C,T) can be stably 
controlled Also note that the root of Eq. ( I O )  continuously 
changes in the complex plane when any one of the parameters 
:\I, C; r , or H, changcs continuously 

If the root of Eq. (10) 

When r = 0: the root ofEq. ( I O )  can he calculated as. 

It can be easily proved that root so strictly lies in the IeR 
half-complex plane irrespective of nf t 4 K e f f ,  or 
A-: < 41;,ff, . Therefore; the svstem with zero delay is 
stahlc. 

When r>Oand le t t i ngs=cr+ , jw ,  therootofEq. (10)can 
he calculated as follows 

0: - (0' + K,, U + 6, H,e-"cOs(TO) = 0. (12) 

?oo+1; ,~r t , -~~11,~~"sin(~~t , )=0.  ( 1 3  

Since r > 0 ,  the imaginap part ( 0 )  of root s is nonzero; 
that is, r > 0 3 w t 0 .  Otherwise, Eg. (12) will be invelid. 

Based on the ahove discussion, we can conclude that when 
r increases frum r = 0 .  the root s of Eq. (10) will start at sa . 
and then cross the imagina? axis for the first time at r = ? 
As a result_ whcn 0 2 T < ?, thc root s strictly lics in thc lcft 
half-complcx plane; and thc svstcm of intcrcst i s  thus stahlc. 
Therefore; the problem is how to find the value of i that 
makes roots meet the imaginary axis the first time. 

Wc now analyzc thc stability of Eq. (10). First. wc considcr 
the ahsolute imaginary root (s = j o  ) with CO > 0 (The case 
of o c 0  is similar; because the roots on the imaginai? axis 
are complementan..). When T > 0 ELI. (10) can he re-\rntten 
as: 

The condition? on magnitude and angles must be guaranteed 
as 

lT(lo)l=l.  LT( /w)=(Zk+l)z .  1 = O . * L * 2  

and w can be calculated as 

. ~ ( A J . C . ~ . H ~ )  = , l . . - ~ i , .  (16) 

10 z rw+arctan(-)+-=(2k+l)z, k =0.1.2. (17) 
KIZ 2 

Since h,, is a decreasing function of r . and K,  is 
independent of 7 . we have that w(N,C , r ,HJ  is an 
increasing function of r if H. is independent of or an 
increasing function of r . Therefore. solving Eqs. ( I O )  and 
( I  l), thc sinallcst T = i givcs thc first time that a root meets 
the imaginar?. axis. Then for all T < ? ~ the ?stem is locally 
asyniptotically stahle. Now the problem is to detennine the 
value of k that yields the smallest r . wluch can be solved 
tluough the following Lemma. 

Lemma 1: lv/ten k=O, Eqs. (15)-(171 ,yield the .sninllest 
\ d u e  of r a17d CO,  if H ,  is independent afar on incrensing 
Jii~cfJon i f  r . Eq. ( I  7) con be sitnpliJied to: 

(18) 
W K  rru+arctan(-) = -. 

K , ,  2 

Proof The proof is based on contradiction. Assume that 
k + ( T ~ .  0,). k > 0.  r, > 0 .  and 0, > 0 . According to Eq. 
(17). we have: 

Assuming 7,s lo . wc havc wk < M, according to Eqs. 
(15) and (16) if H ,  is independent of or an increasing 
fnnction of r . Since rk 5 lo and cot 5 cob. then rk cot S rowo . 
but this is in contradiction to the above inequality So the 
assumption that rh 5 Tu does not hold and rr > 5" 0 

Lemma 2: G11~7 nerwork pornmeters ( N .  C )  ond ilQM 
conrrolpararneter 11,. :lssrrnte that t sotisJes 
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where (U is ~ f e f i r j d n s  given hi Eqs. ( l j j  arid (161. Iffmcriorl 
? ( N ; C ; T _ H ~ )  in Eq. (16) is a17 ir7creasir7p.prr~ctior~ of T ,  a 

decr~ea.sirgfi~~ictior7 qf .I' , arid a17 ir~cr.ensirgfir17criorl o f f / < ,  

die17 rlre .s.v.sresr is smble for. H ,  < H ;  , A' 2 I<I ,  arid 7 < f. 
The proof for Theorem 1 follows from Lemmas 2 to 4. 

111. THE LHED SCIiEhtE 

A. Drscripfion 
As in most existing AQM schemes, LKED also chooses to 

drop packets from the tail of the queuc. To estimate the 
depee  of linh-congestion; two indices are employed: packet 
loss ratio nnd queue length The packet loss ratio is used in 
large time-scale to make the scheme more adaptive and 
robust, while the queue length is used in small time-scale to 
make the scheme more responsi\-e in regulating the length to 
an expected value yo.  In the large time-scale, the basic rule is 
to guarantee that the average packet drop probability is as 
close as possible to the packet loss ratio. The d e s i p  rules in 
small time-scale include: I )  whcn queue length is equal to qa 

the packet drop prohahility will be equal to the packet loss 
ratio; 2) whcn queue length is larger (or smaller) than q,, , the 
packet drop probability will be also larger (or smaller) than 
the packet loss ratio. 

LRED periodically measures the packet loss ratio, which is 
then set as the desired stable packet drop probability p a .  To 
achieve a stable measurement and yet lw adaptive to dynamic 
network conditions. L E D  calculates the loss ratio 
pcriodically for cvcq  small period (rrrp), which should he 
higgrr than RTT. During each occumcncc of a packet loss 
ratio calculation, LRED will check the packet loss status for 
the AI latest measurement periods. as illustrated in Fig. I 

Let I(k) he the packet loss ratio during the latest \ I  
measurement periods, i .e. ,  the ratio of the number of dropped 
packets to the number of total arrival packets during the latest 
dl measurement periods. If packets 3re of different sizes, 
l (k )  can he calculated as the ratio of the total dropped bytes 
against the total arrival bytes. The measured packet loss ratio 
I(k) is calculated at the end of each measurement period as 
(see Fig. I): 

- 

_ _ ~  
l (L- )=l (k-  I ) * n i w + ( l - n i M ~ ) * / ( X ) :  (23) 

where w is the .sol~rlion lo Eq,x (151 and (161. (ffiincrion 
.v(!V_ C. 5. H,)  in E9. (161 is 017 i17crensi11g Jiincticn of T , 

Ihen die +wrerr i.s .slohle,fiir all 7 < i , and T i,v ~rniqire. 
The proof for Leiruna 2 follows from Leinina I and is thus 
omitted here to conserve space. 

Lemma 3: G ~ W I  nenlork paranieters (C.7) mid .4QA1 

cu17rro1pnra17rerer H ,  . .4ssarrre r /mr  N satisfies 

(U ?z . 
rfu + arctan-) = - , W > 0, (20) 

K,> 2 

wliew m is the .soh~~ior~ 10 Eqs. (15) aid (16). Iffiniciion 
y(:V?C, s , ~ , )  i n  Eq. (161 is an hcrcasi,~~frtnctior~ nf I a17d 

a rlecreasi17g fii17C1~0Ii oJ' X , rhen h e  .vvs[erri i s  srahk J w  

Proof: Let T ( V )  he the solution to Eqs. ( I O )  and (12) with 

hJ > .\I . If r < T ( X )  from Lemma 2, the ?stem is stable for 

a11 X > 1 i r .  Since >,(:\',C,7.,4,) in Eq. ( IO)  is a decreasing 
function of .\i we have: 

<v > !IF 

Nil') = &fN,C>7;1/<) < q! i I>c2r>IIJ  = c4!\:). 

Moreover, Kl,  is an increasing function of !\J . Hence, we 
have: 

K Tu guarantee 7 ( V ) m ( P +  srct;~n[o(A')/K,,] = T ,  we have 

T ( U )  > T . Therefore; for all A' > ?ir , the system is stable. 0 

Lemma 4: Giveii r~etwork pmnnietrrs (X ,C,r )  , arid 

- 

assenre rl7ar H ;  sati.<jer: 

where RIW is the measured weight factor, which is set to a 
small value in order to track the current loss ratio; ?\I,,(k) is 
the number of packets dropped in the L--th period, and ,v.(h-) 
is the number of packets arrived in the k-th period. 
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After calculating the packet loss ratio, the task is to find 
some rncthods to calculate packet drop prohabili? using 
instanlaneow qticue lcngth as an input variable3 xcording to 
the design rules for small time scale, as listed above. These 
methods should provide that average packet drop probability 
is as close as possible to the measured packet loss ratio / ( k ) ,  
when queue length oscillates about qo , according to the 
design rulcs for large time-scale, as listed ahove. A simple 
method is to use the linear function, i.e., p = I ( k )  + a(q - qJ 
Howcvcr, it is often difficult to choosc a pcrfcct value of 
parametera. For example; if I ( k )  is somewhat large and a 
is set too small. the packet drop probability for small queue 
lengthy would still he somc large value, resulting in low link 
utility. 'Io avoid this, in LKED. we Ict a increase with the 
mcasurcd loss ratio. Packet drop prohahilit\. is thcn calculated 
a5 follows: 

- 

- 

- 

(25) 

where parameter p > 0 is a pre-configured constant 
In Eq. (25); when the queue length q is equal to the eipectcd 

value qo , packet drop probability p is equal to loss ratio 

/ ( k ) .  On the contraq, p will be larger (or smaller) than / ( k )  

if y is larger (or smaller) than qo . In addition, when I(k) is a 
bit large (or small), p will incrcase (or dmrcase) with a large 
(or small) slope so as to guarantee that the packet drop 
probability in small queue length is much smallcr. 

In summan. L E D  mcasurcs packct loss ratio in tha largc 
time-scale, and update packet drop probability in small time- 
scale at each packet arrival. 

- - 

- 

B. Stabilii). Analysis 
We now d ~ v e  the design rules of parameter ,B , and 

investigate the stability of LKED. 'The hey assumption in our 
analysis is that the measured packet loss ratio can he used to 
approximate the stable packet drop probahility p. , i .e. ,  

I (k )  = po . Hence, we can rewrite Eq. (25) as: 
- 

P = P" + P L ( Y  - qo)> (26) 

where p o  = rlN'/(T'C') (sec Eq. (3)) 
Froin Eq. (26);  we can get: 

% = P G & .  (27) 

Thus; the system transfer function in LRED can he witten 
as: 

P ( s )  = P&iQ(s). (28) 

Then, the constant H, of LRED is: 

I, ICAIJ 4 

Fig. 1. Packet loss ratio measurement in LRED 

Fig. 2. The LRED scheme 

H, = P(s) /Q(s)  =/I&. (29) 

Substituting the constant 11, of LRED into Eq. (15) and 
(l6), we have the following Lemma. 

Lemma 5: I n  I.RED, rhrJiriiciioii ,V(I\',C,T,H?) in  Ey. (IS) 
is n ~ecluasiiig.fiiiiciioii of .N. aid mi iiiorasirigJir,iciioii of 

p.  ~\forr""ei: If p < , 11 I S  an iiicr+.asiiigfiiircri"ii 
f i ( 2 N ) ~  , , 

T'C' 
? f T .  

Proof For LWD,  we have P(s) = P&Q(s) and hence 

H, = P & i .  and po=-. As a result; y(A',C,r,ffJ in 
T - c '  

k:q. ( IS)  can he calculated as: 

rl w' 

5 



I t  can he easily ohtained from Eq. (30) that :\ T= ? 1, and 
,ll y ? . Therefore_ y ( i v : c > 7 . H c )  is a dccrcasing 
function of A', and an increasing function of /I 

Now we consider 7 .  First, write the derivative offunction y 
about 7 as follows. 

To make? be an increasing function of T , it must S&h. 

- > 0 ;  m. or equivalently ~ f 2 ( T ) * f j ( 7 ) ~ ' - / ~ ( T ) > 0 ;  which a? 
can be written as: 

C. Anti&sis of Response linte 
Sincc stability and rcspoiw time are often in conflict with 

each other in system perfornlance. existing schemes sucli as 
PI [ I21  and REM [I31 I w e  tried to find a tndcoff bctween 
them. If network parameters (especially A' and R77J are 
known n priori. these scliemes can adjust their control 
constant to obtain tlie best response property while 
guaranteeing stability. However. in a dynamic network it is 
difficult to obtain these paranieters precisely. Therefore. such 
schemes often w e  a conscnative design that first gwantees 
stability: the resultant response tiiiic would be v e y  long. For 
example. the default paranieter for PI (as used in tlie 17.7-2 

simulation [16]) is based on some sinill value for I\' and large 
value for RTT. When :V increases and/or RTT decreases. it 
\vi11 yield a tong response time n-lulc sti l l  imintiining 
stability. 

In tlus subsection we present an analysis for the lower 
bound of response t ine for PI. REM and out L E D .  
Tluough comparison we shorn tllat LRED achiex-es lower 
response time under dyilamic network status. 

Considcr tlic following sccnario: at timc 1=0_ N TCP flows 
become active simultaneously. Assume A' is large enough to 
m?ke the buffer size (0) fully filled before the Vstein 
converges to a steady state with packet drop probability po . 
and expected queue length q, 

Let us first investigate the PI scheme. which pcriodically 
updates packet drop probabilit?. with tlie sample frequency then f 2 ( 7 ) * J 3 ( 7 ) > f , ( 7 )  and *>0 . As such. ar  

.v(N.C.7.H,) is an increasing function of 7 when f ,  (Hz) as' 

where n > 0  and h > 0 are h w  constants. as specified in 
[ 1 2 ] .  Before reaclung the steady-state. we can assume that 
y(k) = 0 .  and p(O)=O. Then p(k)  can be also calculated from 
Eq. (32) as: 

^ ^  

Theorem 2: Giw7 nettvork pnroriierers (:V.C. t )  , and 

nssitvie t/mt sntisfiev 

stnbkfor e w n l  i.nliies of !\' t N nnd T < 2. 
The proof follo\vs from Theorem 1 and Lemma -I 

Given the bounds of network parameters, the practical value 
of p can tllen be calculatcd to guarantce the stabilil?: of the 
system based on Theorem 2. For example. consider a network 
in wlucli mean packet size = 500 bytes. =2500 
packetlsecond (or cquivalcntly. IOMbps). j? =300. and 
? =0.35 seconds. Accordmg to Theorem 2. the required 

AQM parameter is 0.00 I .  This s?-stem is also stable for all 

A' Z I < ~  and 7 5 2. if p 5 

Denote p(x,) = p a .  TIE lower bonnd uT tlle response time 
of PI ( R T , )  can be calculated as: 

(34) 

In REM. packct drop probability is also periodically 
updated with a sample frequency f , ,  (Hz). as follo\vs 1131: 

p ( k )  = 1 -@-"'A', (35) 

o ( k )  = it(k -I)+ f lq(k) - ( l -a)q(k-  - I ) - a q J ] .  (36) 

o ( k )  = mas(0. U@)) .  (37) 

where @ > 1 . y > 0 .  and a > 0 are three constants. and the 
optimal values lnvc bccn dcrivcd in [13]. Before rcaclung thc 
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steady-state. nF can also assume tlnt q ( k )  = 0 ~ rt(0)=0. and 
u(k)<<l .  Tlienp(k) can be calculated from Eqs. 0 3 - 0 7 ) .  as 
follo\vs: 

= n ( k )  In) = kyn(Q - 9,) In). 

Let p(k,)  = p o .  then tlie low bound of the response time for 
REM ( RT,,, ) can bc calculatcd as: 

From Eqs. (31) and (10). we can see that the response time 
of PI or REM is dependent on their control constant 
parameters. buffer size 0. exTected queue length 9. .  and 
desired stable packet drop probability pa (which is an 
increasing function of TCP flow X. and a dccreasing function 
of round-trip time RTT and link capacity C. accordmg to the 
TCP throughput model [ 151). Under heaw congestion or with 
large stable drop probability p ,  . PI and REM suffer from a 
long response time. In addition. when the buffer size 0 is 
small. the responsiveness of PI and REM will become worse 
as well. 

In our LRED scheme. packet drop probability mainly 
depends on the measured packet loss ratio. Since the packet 
loss ratio is close to the stable packet drop probability p,! in 
tlie steady state. the response time of LRED is heavily 
influenced by the period (sip) to measure packet loss ratio. 
As a result. LRED can somewhat decouple the response time 
and packet drop probability. thercb? inaking its rcsponsc timc 
almost independent of network ~Lltus. When network 
conditions ~IE changed dynamically. LRED can still quickly 
regulate the system to the new steady state. On the con-. 
in PI and REM. there would be a much longer response time 
before arriving at a iiew stead? state. 

Nevertheless. when traffic load is very light (for example. I\' 

is small. and RTT is large). there arc \.en few packet losses. 
and hence more rounds of measurement are required to obtain 
the best stable packet loss ratio. In this case. LRED mould 
experience a slightly longer response time. as compared to PI 
and REM. In summary. LRED is most suitable for heavily 
congested networks, though its performance is colnpdnble to 
PI and REM in a network of light tnffic load. In the next 
section we s l d l  futher validate this finding tluough 
simulations. 

w. SIRIULATION RESULTS 

In this section we investigate the performance of LRED 
pcrfomincc through ns-2 [ 161 siniulations. Wc also comparc 
its performance with existing AQM schemes. in particular. PI 
1121 and REM [HI. For LRED. Ihe parameters for loss ratio 

1 
Do! U *  I) I, " 2  

Packet Loss Ratio 

Fig. 4. Expl: Response time for each AQM scheme3 

ineasurenlent (Eqs. ( 2 3 )  and (24)) are confgured as: nrii,=O.l, 
nrp=I.Os. and Af=4. According to Theorem 2. is set to 
0.001. We also study LERD performance under the small 
value of expected queue length qo . and compare it with AVQ 
[IO], since it can effectively regulate queue length to a lower 
level. thereby achieving ehpected link utilization 
simultaneously. For PI and REM. we use the default 
parameters in ns-7'. 

The network topology for simulation is the commonly used 
dumb-bell topology (see Fig. 3): there is a single congestion 
link from router 1 lo router 2 ,  and the capacity of each link is 
IOMbps. The link delay between Client c( i )  and router 1 is 
labeled as a 5-tuple (d, .d2>d3.d,.dJ with a unit of 
millisccond (ins). All f l o w  are uniformly distributed among 
pairs of Client 4;) and Sewer s(i).  The packet size is 500 
bytes. and the buffer size of each router is  200 packets. We 
run each simulation for 200 seconds. which is long enough to 
obsene tmnsient as well as steady-state bellaviors of the 
AQM schemes. 

In th~s sinmlation me focus on thc following key 
performance metrics: goodput (excluding packet 
retransmissions). instantaneous queue length avenge queue 
length avenge absolute queue deviation and packet loss 
ratio. The average queue length is defined as tlie aritlunctic 
mean value of instantaneous queue length The average queue 
deviation is defined as the absolute deviation between 
instantaneous queue length and its mean value. 

In PL a= 0.uouoIXZ2, b= 0.00001816. snipling freqosnc?. is 170Hc. In 
R E M  # =  1.001. a = O . I .  y=0.001. samplin~htetcnd is 2ms. 
' In the last section. we obtained the lower response time bound for PI and 
R E M  .As for LRED. we only deduced that its respuosc l ime  i s  dependent on 
lliz me;ls~~rr)menl period. and presented no snalysis curve. 
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(a): liglit congestion ( p. =0.0025) 
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(b): lieavy congestion( p ,  = 0.165) 
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Fig. 5. Esp2. Queue length under two estrenie cases 

07803-8355-9/04620.00 02004 IEEE. 8 

A. Homogenous Traj'Jic: Long-lived TCPflows on$ 
Erperiment 1: Var>-ing congestion degree to obser\'e 
respnnse time 

In this experiment. all TCP flows are persistent. The 
esperiment's pulpose is to coinpare tlie response time (RT) of 
the AQM schemes, n.luc11 is calculated using the following 
approximate method: 

mliere .4weQ(r,r + 4) and .4i@Dei>(t.t +1) are tlle respective 
avenge queue length and average absolute queue deviation of 
qo during [t. r+4] s. 

In tlus .cqmiinent. .the e\QeCted queue length qo is set to 
100 packets. The link delay between Clients and Kouter I 
( d , . d ? . d . d d , )  is configured as (10. 50, 100. 150. 200). 
Tlie total number of flows. hr. varies from 100 to 1000. to 
imitate different congestion degrees. 
Tlie results are presented in Fig. 4. where the two dotted 

lines 'are the analyzed lower bound of response time for PI 
and E M .  respectively. calculated according to Eqs. (23) and 
(26). The response time of LRED analyzed in the last section 
is only coarsely proponional to the measurement period (rnp). 
so there is no analyzing c w e  for L E D  in Fig. 4. I t  can be 
seen tlwt wlien the packet loss mtio increases (a result of an 
increase in tlie number of TCP flows). the response time of PI 
or REM increases. Although there are some mnisnwtches as 
compared to the analytical lower bound. tlie simnnlation 
results do slmow tlie trend that the response time of PI or REM 
is an increasing function of packet loss ratio. On the contray. 

LFED is nearly irrespective of packet loss ntio: its response 
time mainly depends on the mneasurenieut period. as analyzed 
in the previous section. 
Erperiment 2: Stability under extreme conditions 

In tlus experiment. the stabiliw of the  AQM schemes are 
investigated under two ehTreine cases: I )  light congestion 
with a SIMII number of TCP flows :V and large RTT. 2 )  heap? 
congestion with a large and small R T .  In tlme first case. 
M=80 and d ,  = = d ,  = = dl = 250111s. In tlme second case. 
N=80 and = d l  = & = d, = d 5  = IOrns . Other pamneters 
are tlie same as those in esperiment I. Fig. 5 presents tlie 
instantaneous queue length of each AQM sclieine under tlme 
two cases. It can be seen that. under Ilea\? congestion, L E D  
aclueves a sboner response time and better stabilip tlwn PI 
and REM. Under light congestion. tlie queue length of REM 
is oscillated and nearly out of control. On the contran. L E D  
and PI can still stably regulate tlle queue. In this case. with 
large R n .  L E D  has a slightly increased response time. 
because TCP needs more rounds to reach a stable value W O  
oCicS congeslion window (cwd)  at t l us  tinie. 

In summary. LRED sIioi\,s better stabiliR and quick 
response under either liglit congestion or lieax? congestion 

B. Non-Homogenous Traffic: H.ybridflows 
Experiment 3: Adding unresponsive UDP flows 

In this e~pxi inent_ we investigate the influence from 
umspousive UDP flows. Besides the 100 persistent TCP 
flows. we introduce 100 UDP f l o w  arriving i n  tlie in ten4  
[50s. 150sl. Each UDP is an ONiOFF floly tlle dnmtion of 
ON and OFF state is exponentially distributed with mean 
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UDP Dmsit?-(n) UDP Dznsify-(h) UDP Densit)-(c) UDP Dcnrity-(d) 
0 0 :  a *  Or 0 s  I 

Fig. 6. E.\p3: Goodput. average queue length and deviation and packet loss ntio for each AQM scheme 

5 0  100 150 ?a" 0 5" 10" 150 1"" 0 i o  LOO 1" 10" 
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(a): UDP traffic density ( p ) is equal to 0.5 
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(b) UDP traffic density ( p ) is equal to 0.9 
Fig. 7. Esp3: Queue length for each AQM scheme 

value 1.0s. The nonnalized density of the total UDP flow p 
is from 0.1 to 0.9. In the ON state. each UDP flow Ins a bit 
rate r = pxI0~\1/100. The expected queue length and link 
delay between client and Router1 are: q,=l00  and 
( c / , . c / 2 . d , ~ d , . d J  = (10.5O.lOO.l50.200) 

Fig. 6 presents results of average queue length. avenge 
absolute queue deviation goodput. and packet loss ratio. as 
functions of the UDP traffic densih. The goodput is 
calculated as the sum of the goodputs of the persistent TCP 
flows and the UDP flows. 

It can be seen that LRED outperfonns PI and REM in tcnns 
of these measures. especially when UDP traffic density is 
higher. REM also achieves bener perfornume than PI in this 
experiment: however. REM is stable with more restricted 
network conditions tlnn PI. as shown in esFeriment 2. 

We show the instantaneous queue length for each AQM 
sclieme in Fig. 7.  It can be seen tba :  I )  The buffer under PI 
and REM will be overflowed (or empty) for a long time when 
UDP flow arrives after 50s (or stops after 150s). especially if 

p is a large value (for example 0.9). because of the slow 
response in PI and REM. Tlus results in low goodput and 
high loss ratio. a shown in Fig. 6. On the contrary. LRED 
has a much shorter response time: hence there is only a 
sudden sbon-term increase (or decrease) at time 50s (or 
150s). 2) When p increases. LRED can still regulate queue 
lcngtli lo tlic cspected value with much smaller deviation or 
ovcrshoot than PI and REM. In summary. LRED is cffective 
in overconung the disturbance introduced by [lie 
unresponsive UDP flows. 
Experiment -I: Adding short-lived TCP flows 

Besides unresponsive UDP flows. slwrt-lived TCP flows 
can also inlliicnce the control effect or AQM schemes. In t lus 
experiment me introduce slmrt-lived TCP flows. nhicli 
arrive in intervals [50s. 150~1 according to a Poisson process. 
The mean arrival rate 1 varies from l0is to 100is. The length 
of each short-lived TCP flow is uniformly distributed io 
11.0s. 2.0~1. Other parameters are the same as those in 
experiment 3 .  
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Fig. 8. E+: Goadput. average queue length and deviation and packet loss ratio for each AQM scheme 

0 5" 100 ,io 10" 0 i o  I O U  1'0 100 '0 11,o 150 200 

Time (wc)-PI Time (scc)-REX1 Time (=c)-LRED 

(a): shon-li\red TCP amval rate (1 ) is equal to 30 

Tlie results of this experiment are presented in Figs. 8 and 9. 
Tlie goodput is the snni of the goodputs from TCP flows. 
Similar to ekperiment 3. LRED outperforms PI and REM in 
tenns of average queue length average absolute queue 
deviation_ goodput. and packet loss ratio (see Fig. 8). Fig. 9 
shows the instantaneous queue length for PI. REIM. and 
LRED for 1 =30 and 100. From this figure. it can be seen 
that the buffer in PI or REM is overflowed (or cinpty) for a 

long t h e  when short-lived TCP flow arrives after 50s (or 
stops 'after 150s). especially if 1 is of large value ( e . g .  Ion), 
because of llie slow response in PI and REM. Tlis results in 
low goodput and Iugh loss ratio. On the contmry. LRED has a 
much shorter response tinie. and there is only a sudden sliort- 
tcnn incrcasc (or dccrcasc) at tinle 50s (or 150s) in thc casc 
of LRED. When 1 increases. LRED can still regulate queue 
length to the expected value with much sinaller deviation or 
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overshoot than PI and REM. Therefore, LRED can 
effectively overcome tlie distuhance resulting from sliorr- 
l i x d  TCP flow. thereby achieving better stability and 
robustness. 

Finally. we compare LRED with AVQ. which is known to 
be effective in regulating the queue length and achieving high 
link utilization 181. In AVQ. the desired utility is set at y =  I .  
and n=0.00~,0.OI,0.05~O.I0. To make a fair comparison. 
we configure q. (in LRED) to sinal1 values (20 and -10) to 
match the average queue leugli under AVQ. TIE results are 
presented in Fig. 10. It can be observed that LERD can 
achieve lower queue length and devialion lugher goodput. 
and lower packet loss ratio than AVQ. lhrougb choosing a 
certain expected queue length. In fact LRED still aclueves 
good performance and stable control. even when using a 
sniall queue length. 

In summan.. L E D  lms a much smaller response time than 
PI and REM. When the network is extremely congested. 
LRED still shows good stability for a variety of network 
environments. In addition LRED is effective in overcoming 
the interference from unresponsive UDP flows and/or short- 
lived TCP flows. It also exhibits good performance even 
when tlie espected queue length q, is set at a small value. 

V. RE1,ATLD WORK 

Tlierc IMVC been many proposals on AQM. Tlie de Jacro 
standard. RED. nses average queue length to calculate the 
packet drop probability and then to regulate the queue length 
When tlie average queue length is higher than a pre- 
confignrcd Ihreslold (nrin,h). RED begins to drop newly- 
,arrival packets with a probability proportional lo average 
queue length and with a slope of maxP Despite its simplicity, 
it is difficult to optimally configure tlie parameters of RED. 
Therefore. many variants of RED Iia\:c been proposed to 
adaptively configure tlie parameters. For example S-RED [7] 
and ARED [SI propose adaptive methods to adjust iiraxp 
respectively. using events of buffer overflow and emptiness. 
and event of queue increasing. However. these approaches 
introduce additioixtl pammeten that need to be conligured 
again. 

BLUE [!I] is another type of adaptive scheme. It adaptively 
calculates packet drop probability based on only two events: 
bnffer overtlows and buffer emptiness. When tlie buffer is 
overflowed (or empty). it increases (or decreases) packet drop 
probability by 6, (or 6, ). However it is hard for BLUE to 
control tlic quene length to an expected value. 

AVQ [IO] uses only input rate .tQ) to control packet drop 
and to achieve expected link utility y . while keeping low 
queue length Packet drop probability is basically 
proportional to the mismatch bctwccn input ratc and cxpected 
link utiliv y . Tlmugh maintaining a virtual queue. AVQ 
deteniunistically drops packets upon tlie arrival of a new 
packet. realizing tlie mine effect of probabilistic packet drop. 
As shown in [ I O ] .  AVQ can achieve low average queue 
length and high link utility 

Recently. some improved schemes jointly use queue length 
and input rate to aclueve better stabilih. An example is PI 

[ll][l2l. nlucb tnes to regulate queue length to the expected 
value using qneue mismatch and its integral. Tlie integral of 
queue length iiusnxatch is factually related to tlic input mte 
mismatch. Packet mnarking/drop probability in PI is 
periodically and iteratively updated according to Eq. (21). PI 
provides design d e s  through control-tliwn. analysis to 
choose its parameter value. However. when the network 
parameters are unknown a priori, PI can only use 
conservative design to guarantee stability. yielding long 
response time. as shown in our simulation. 

REM [I.;] also tries to control the queue length to the 
expected value. It uses tlie linear combination of queue 
mismatch and input rate mismatch to calculate marking/drop 
probability In REM. input ratc inismatch is equivalently 
simplified to queue v&ance between two continuous 
samplings. Like PI. packet mnarking/drop probability in REM 
is also periodically and iteratively updated accorditlg to Eq. 
(24). As shown in experiment 2. REM is stable for a more 
M ~ W  varieh of network environments tlmn PI and L E D .  
although it has a quicker response than PI. 

SFC [I?] also uses queue misnmtch and input ratc m~smnatch 
as a congestion index. trying to regulate queue len@b to the 
espected value. Packet markingdrop probability in SFC is 
updated upon arrival o fa  new packet as: 

p(k)  = max{O_ min[l.p(k)]}. (42) 

mliere the x ( k )  is the measured traffic input rate at the k-rh 
packet arrival time. and kl  > 0 and n > 0 are two constants. 
Tluough solving the ystem characteristic polynomial. SFC 
gives design d e s  of choosing k ,  and a_ under the 
assumption tlmt $= p (Eq. 15 in 1141). Such an 
assnmption (also made in PI [12]) might be probleimtic and 
ineffective under hen\? congestion with a large value of p. ~ 

and will cause slow response. as shown in our simulations. 
If network panrnetcrs remain unchanged we can assume 

that l ( k + l ) = / ( k )  . Then Eq. (253 (for packet drop 
probability calculation in LRED) can bc siinplificd as: 

_ _ _  

p ( i + ~ ) = P ( i ) + ~ ~ [ q ( i + ~ ) - g ( i ) l .  (-13) 

Though Eq. (43) is somewhat similar to Eqs. (32) and (33). 
there are important differences between LRED and PI (and 
REM). Specifically, in PI. the packet dropping probability is 
always iteratively computed. If tlic stable probability po is 
of a large value (lower RTT. large TCP flow number). PI 
needs a longer time to make the drop probability p converge 
to tlie pa. as shown in section IV. On the conman., since 
LRED uses packet loss ratio to adjust packet drop probability 
(Eq. (25)) .  its convergence rate and response time are nearly 
independent of tlie stable value p.. and primarily influenced 
by the measiucnient period. As shown in simulations. 'after 
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only several nieasureinent periods. LRED can make the drop 
probability p converge to the po 

When network paramiieten are dynamic. the rcquired stable 
probability p o  will be changed correspondingly. However. 
L E D  can adapt itself quickly to a new stable state through 
measuring packet loss ratio. On the contran.. PI and LRED 
often iieed a longer time to comwge to the new stable state. 
~vbich will cause large queue deviation and lower tluougllpuL 
as shown i n  our simulations. 

VI. CONCLUSIONS 

In tlus paper. we proposed a new AQM scheme. LRED. 
which incorporates packet loss ratio (in addition to queue 
length) for congestion estimation Under LRED. packet drop 
probability is updated under inultiple time-scale. At packet 
level. LRED uses instantaneous queue mismatch tc, update 
packet drop probability upon arrival of new packets. On the 
larger time-scale. LRED adjusts the packet drop probability 
using the measured packet loss d o .  We analy7~d stability 
and response time or LRED. We also conducted extensive 
simulations to evaluate its perfonnance. and compared it with 
existing AQM schemes such as PI. REM. and AVQ. Our 
results showvcd that LRED has a shortcr response tiinc: than PI 
and REM. especially under heac?. congestion scenarios. More 
importantly. LRED achieves better stability and robustness 
than PI and REM under dynamic enviromnents. where the 
number of TCP flows I\; and R7T varies significantly_ or 
where there are numy short-lived flows or unresponsive UDP 
floas Finally, LRED can effectivel! control the queue length 
to an expected value. It also achieves a better tmdeoff 
between goodput and queue length than the \vell-knomn AVQ 
scheme. 
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