
134 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004

On Expiration-Based Hierarchical Caching Systems
Y. Thomas Hou, Member, IEEE, Jianping Pan, Member, IEEE, Bo Li, Senior Member, IEEE, and

Shivendra S. Panwar, Senior Member, IEEE

Abstract—Caching is an important means to scale up the
growth of the Internet. Weak consistency is a major approach
used in Web caching and has been deployed in various forms. This
paper investigates some fundamental properties and performance
issues associated with an expiration-based caching system. We
focus on a hierarchical caching system based on the time-to-live
expiration mechanism and present a basic model for such system.
By analyzing the intrinsic timing behavior of the basic model,
we derive important performance metrics from the perspectives
of the caching system and end users, respectively. Based on
the results for the basic model, we introduce threshold-based
and randomization-based techniques to further enhance and
generalize the basic model. Our results in this paper offer some
important insights in a hierarchical caching system based on the
weak consistency paradigm.

Index Terms—Freshness threshold, hierarchy, Internet, ran-
domization, time-to-live (TTL), weak consistency, Web caching.

I. INTRODUCTION

AS Van Jacobson once put it a few years ago, “with 25
years of Internet experience, we’ve learned exactly one

way to deal with exponential growth: caching” [15]. This state-
ment undoubtedly indicates the significance of caching as a
primary means to scale up the Internet. There are significant
advantages of deploying cache systems over the Internet [20]:
1) for end users, a nearby cache server (CS) can often satisfy re-
quests faster than a faraway origin server (OS); 2) for network
providers, the CSs can reduce the amount of traffic over the net-
work; and 3) for service providers, the CSs can distribute the
load that the OSs have to handle and increase reliability in of-
fering the Internet services.

An important issue in the design of a caching system is to
maintain some level of consistency between cached copies of
an object and the object maintained at the OS. Every time the
original object is updated at the OS, copies of that object cached
elsewhere become stale. Caching consistency mechanisms
ensure that cached copies of an object are eventually updated to
reflect changes to the original object. Depending on how soon
the cached copies are updated, cache consistency mechanisms
fall into two major categories: strong consistency and weak
consistency.

Manuscript received November 15, 2002; revised June 1, 2003.
Y. T. Hou is with the Bradley Department of Electrical and Computer En-

gineering, Virginia Polytechnic Institute and State University, Blacksburg, VA
24061 USA (e-mail: thou@vt.edu).

J. Pan is with Fujitsu Laboratories of America, Sunnyvale, CA 94086-3922
USA (e-mail: jpan@fla.fujitsu.com).

B. Li is with the Department of Computer Science, Hong Kong University of
Science and Technology, Kowloon, Hong Kong (e-mail: bli@cs.ust.hk).

S. S. Panwar is with the Department of Electrical and Computer Engineering,
Polytechnic University, Brooklyn, NY 11201 USA (e-mail: panwar@catt.poly.
edu).

Digital Object Identifier 10.1109/JSAC.2003.818804

Under strong consistency, upon an update of an object at
the OS, the OS immediately notifies all CSs about this update.
Example caching applications that require strong consistency
include time-sensitive content delivery (e.g., emergency public
announcements). The main challenge to strong consistency
mechanisms (e.g., invalidation [14]) is that they often involve
high overhead and complexity that could be expensive to
deploy. Nevertheless, strong consistency is an indispensable
approach to deliver mission-critical contents on the Web. On
the other hand, under weak consistency, it is acceptable to
have a user get a somewhat stale object from a CS. A CS only
validates an object’s freshness with the OS periodically and
may lag behind the actual update at the OS. Weak consistency
is particularly useful for those web contents that can tolerate a
certain degree of discrepancy between cached content and the
content at OS as long as it is understood that such discrepancy in
time does not cause any harm. Still, it is important to keep such
discrepancy not to exceed a reasonable period of time. Example
applications using weak consistency include online newspapers
and magazines, personal homepages, and the majority of web
sites—although the original content may be further updated at
the OS, it is still useful (or at least not harmful) to retrieve a
cached copy at a cache or proxy server.1 It has been shown that
weak consistency is a viable and economic approach to deliver
content that does not have a strict freshness requirement [14].

To support weak consistency, the concept of time-to-live
(TTL) is introduced. TTL is an a priori estimation of an
object’s remaining lifetime and can be used to determine how
long a cached object remains useful. Under the TTL approach,
each object is initialized with a TTL value and TTL is supposed
to decrease with time when the object is cached. An object that
has been cached longer than its initial TTL is said to expire
and the next request for this object will cause the object to be
requested (or validated) from the OS or some other CSs that
have a copy with an unexpired TTL. In practice, the TTL-based
strategy is easy to implement (e.g., by using the “expires” or
“last-modified” fields in HTTP header [20]).

There are many alternative approaches to construct a caching
infrastructure. However, it has been shown [9] that a hierarchi-
cally organized caching infrastructure is particularly effective
to scale up with the Web growth since the Internet topology
also tends to be organized hierarchically. In light of this, in this
paper, we focus on a hierarchy-based caching system. We con-
duct an investigation of its performance and behavior under the
weak consistency paradigm, which employs the TTL-based ex-
piration mechanism. Although the current HTTP protocols on
Web caching provide a lot of similar features [11], we intend to

1A user always has the option to reload the fresh content from the OS if he/she
prefers to have the most updated copy of the object.

0733-8716/04$20.00 © 2004 IEEE

HOU et al.: ON EXPIRATION-BASED HIERARCHICAL CACHING SYSTEMS 135

0

1

2

3

level

orgin server

cache server

Fig. 1. Example of a hierarchical caching system based on tree topology.

conduct our investigation on weak consistency in a more gen-
eral setting and will not limit ourselves to the details of the
HTTP implementation. Our objectives in this paper are three-
fold: 1) to provide some fundamental understanding of the be-
havior and performance of a weak-consistency-based hierar-
chical caching system, which is yet not well studied and under-
stood; 2) to demonstrate quantitatively the efficacy of such hier-
archical caching system; and 3) to provide the necessary guide-
lines and insights to service providers on various tradeoffs on
such hierarchical caching systems.

We start with a basic model, which is a generic hierarchical
caching system based on tree topology. Under the basic model,
the root node represents the OS whereas all the other nodes in
the tree represent CSs (see Fig. 1). We assume each node (or
CS) is deployed in a metropolitan region and the user requests2

within this particular metro region always goes to this regional
CS for content service. When the object is not available or its
TTL has expired at a CS, the CS will query its immediate parent
CS, which may further query its immediate parent CS and so
forth, until a “fresh” copy of the object is retrieved or the OS is
reached. Here, a “fresh” copy is defined as a copy of the object
with an unexpired (i.e., positive) TTL. The OS always main-
tains an updated copy of the object and will initialize the TTL
of an object upon request. The TTL value for an object at any
CS decreases with time. Since TTL is a fundamental parameter
that determines the intrinsic behavior of the overall hierarchical
caching system, we analyze the behavior of TTL at each level of
CS under a tree structure. Based on this analysis, we conduct a
performance study for the hierarchical caching system from the
perspectives of both the caching system and end users by de-
riving performance metrics such as hit rate, miss rate, response
time, and network load. We use simulation results to substan-
tiate the accuracy of our analysis and provide insights on var-
ious system design tradeoffs.

Based on our understanding of the basic model, we further
explore possible enhancement of the basic model along several
directions. One possible direction for enhancement is to intro-
duce TTL threshold from user and CS perspectives. The mo-
tivation for introducing threshold is to give further flexibility
to users and the cache system: users can specify their content

2Note that a user may also have a browser cache built in its host. Here, we
only consider those user requests sent to the proxy CS by the user after a miss at
its own browser cache. That is, we only consider the “effective” request sent to
the proxy CS from the user and not consider those requests that can be served
by the user’s own browser cache.

TABLE I
NOTATIONS

freshness requirement and CSs may put a higher demand on the
TTL of objects that they retrieve. A second direction to enhance
the basic model is to introduce randomization into the caching
system, which is motivated by observing certain undesirable be-
havior of the basic model (e.g., inherent miss synchronization)
during simulation studies. It turns out that both enhancement
can also be regarded as the generalization of the basic model.
The results presented in this paper is general and can be ap-
plied to expiration-based caching systems for other application
domains.

The remainder of this paper is organized as follows. In
Section II, we present the basic model for the hierarchical
caching system based on the weak consistency paradigm. We
also analyze the TTL behavior of the basic model and derive
its performance metrics. In Section III, we present simulation
results to substantiate our analytical results for the basic model.
In Section IV, we extend the basic model by introducing
threshold and randomization techniques. Section V discusses
related work and Section VI concludes this paper.

II. SYSTEM MODELING AND ANALYSIS

In this section, we describe the basic model under our study
and analyze its performance behavior. Table I summaries nota-
tions that will be used throughout the paper.

A. Basic Model

In a TTL-based caching system, each cached object is as-
sociated with a TTL value, which was first initialized to max-
imum lifetime by the OS where the object was retrieved. The
TTL value decreases with time and the object expires when TTL
reaches zero. A cached object is considered fresh when its TTL
is positive; otherwise, it is considered stale.

We assume the hierarchical caching system follows a tree
structure (see Fig. 1). Typically, each server is deployed within

136 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004

t

τ

r (t)

Renewal point Renewal point Renewal point Renewal point

h

hT

Th h

h
T

T

Fig. 2. Sample path of the TTL for a level-h CS.

a metro region. At level 0, we have an OS3 , which always
maintains the latest (updated) copy of an object. The OS is log-
ically connected to some child servers which we refer to as
level-1 CSs, each of which are geographically located in dif-
ferent metro regions. A level-1 CS may also connect to some
child servers which we call level-2 CSs, and so forth. Finally,
a CS that does not have any child CS is called a leaf CS. The
maximum number of levels of such hierarchical tree is called
the height of the tree. Fig. 1 shows a simple example of our
caching system based on a tree structure with a height of three.

We assume that the aggregate user requests to the CS within
a metro region follow a Poisson process.4 When a user request
arrives at the CS, if the object already exists at the CS and its
TTL is still greater than zero, the CS will deliver the object di-
rectly to the user. We consider such event a user hit. On the other
hand, when the user request arrives at the local CS, if the object
does not exist or the TTL timer has expired (i.e., decreased to
zero), we consider such event a user miss. When a miss happens,
the CS will generate a request and query its immediate parent
CS to see if it has the object with a valid TTL. If its parent CS
does have this object with an unexpired TTL, we call this event
a system hit since the request is generated by a child CS rather
than directly from a user. Upon a system hit, the object will be
delivered to the CS and will subsequently be delivered to the
user. Otherwise, we have a system miss and the parent CS will
generate a request and further query its own parent CS and so
forth, until the query process reaches the OS, in which case we
assume that the OS always maintains an updated fresh copy of
the object. The OS will deliver the object with a TTL field ini-
tialized to maximum lifetime , where , and the TTL value
decreases linearly as time goes on. Thus, the maximum age that
an object (delivered to a user) can have under such hierarchical
caching system is bounded by . Under the basic model, upon
the event of a system hit, not only the user will be delivered with
a copy of the object with an updated TTL, all the CSs involved
in the query process will also get a copy of this object with an
updated TTL.

Note that we distinguish hit rate and miss rate from user and
cache system perspectives. Such distinction will help us better
understand the details of the system behavior, as we shall soon
find out.

3Note that the OS may consist of a cluster of servers. But we assume that they
all locate at the same site (e.g., an Internet service providers (ISP)’s data center).

4An exact traffic model for individual user is still an open research topic.
However, it is reasonable to assume that, for a large population in a metro region,
the aggregate requests follow a Poisson process.

B. Performance Analysis

In this section, we investigate the performance of the basic
model. We conduct performance evaluation along two dimen-
sions: caching system performance and end user quality of ex-
perience. By caching system’s performance, we refer to the be-
havior and properties of the hierarchical caching structure, such
as the aggregated behavior of TTL, miss rate, hit rate, average
response time, and traffic load at each CS.5 On the other hand,
user’s quality of experience refers to user’s perceived quality in
content delivery, e.g., hit rate, miss rate, average response time,
which only counts requests from end users and does not include
auxiliary traffic within the hierarchical caching system.

1) Average TTL Behavior Analysis: Suppose we are at a
level- CS, , where is the height of the tree.
Denote the (remaining) TTL at the CS as . Then,
is a renewal process [21], with the renewal point starting at
time when just decreases to 0, i.e.,
and (see Fig. 2). It should be clear that when

, then for all , . This is
because that under the basic model, an object maintained at a
parent CS always has its remaining TTL larger than or equal to
the remaining TTL of the same object maintained at its child
CSs.

Referring to Fig. 2, denote the peak value of during each
renewal period as , . Then, we have and

is a random variable defined over for .
We are interested in the average value of , for ,
denoted as , which is a fundamental system parameter in
the basic model.

Due to the nature of the hierarchical tree and TTL-based ex-
piration, there is an important property on TTL that links the
CSs at all levels. In particular, any TTL renewal point at level

, (see Fig. 2) coincides (or synchronizes) with a
renewal point at level 1. However, the converse is not true, i.e.,
a renewal point at level 1 may not be a renewal point at level ,

. This is because that the smaller the for a CS, the
more child servers (and, thus, user population) it will support,
which translates into a smaller idle period (the time period
when remains 0). This observation leads to the fact that
the average renewal period at each level increases with , with
the smallest at level 1 and the largest at level .

Referring to Fig. 3, for each renewal period at level 1, it
is clear that the first request that initiates the TTL triangle
within the renewal period follows a Poisson process with rate

5By aggregated, we count both external user requests, as well as internal re-
quests from child CSs.

HOU et al.: ON EXPIRATION-BASED HIERARCHICAL CACHING SYSTEMS 137

Fig. 3. Sample path of the TTL behavior for a level-1 and level-h CSs.

, which is the sum of all Poisson arrival rates at all CSs of
the subtree with as the root. This Poisson process (with
rate) can be considered as an aggregate of two Poisson
processes: the first with a rate of representing the arrivals at
the subtree with as the root and the second (with a rate of

) representing arrivals from the rest of the tree within
excluding the subtree . Clearly, the probability that the

TTL triangle is initiated by a request from the subtree with root
is and the probability that the TTL is initiated by a

request from the rest of tree (i.e.,) is .
We now look at the time interval at level that corresponds

to the same renewal period at level 1. There are three cases and
the sum of probabilities of these three cases is 1.

Case 1) With probability , the TTL triangle at level 1
is initiated by a request from the subtree with root at

. In this case, .
Case 2) With probability

, the TTL triangle at
level 1 is not initiated by a request from the subtree
with root at and there is a request arrival in the
same renewal period from the subtree with root .
The average in this case is given by

(1)

It can be shown that the average in this case [i.e.,
the right side of (1)] is always greater than (see
proof of Property 1 in the Appendix). This can be
intuitively explained by the Poisson property of the
arrival process.

Case 3) With probability of
, there is

no request arrival in this interval. In this case, there
is no TTL triangle at level in this interval.

To calculate , all we need to do is to take
the probabilistically weighted average of under
Cases 1 and 2. We have

(2)

Property 1: Under the basic model, the average of at level
, , has the following property:

(3)

and

(4)

The proof is given in the Appendix.
A Special Case: In the following, we consider the special

case when . This may correspond to access behavior
for most popular contents, as popular objects typically receive
much more accesses than other unpopular objects [2].6 Under
this case, we assume that with probability 1, there is at least one
request from the user at the leaf level CS during each renewal
period at level 1.7 Under this scenario, the TTLs renewal period
at each level , would be perfectly synchronized
with that at level 1 (see Fig. 4).

Note that within the same renewal period, is in a nonin-
creasing order, i.e., ,
where . Each renewal period at level , ,
starts with a Poisson arrival process with a rate , which equals
to the sum of all the Poisson rates of the subtree with this CS as
its root.8 The idle process ends with a Poisson arrival and the re-
maining TTL at this CS decreases with rate of 1 with time until
it reaches 0 (i.e., the end of the period).

We are interested in finding the properties of ,
. At level 1, we have . To find

for , we observe that (see
Fig. 4), or . But ,
and . We have the following result for

,

(5)

This result can also be verified directly by using the general form
of in (2). That is, given that , or ,
we have since , . When

, becomes negligible and

2) Performance Metrics: We distinguish the performance
metrics along two dimensions: system performance and user

6In particular, it has been shown that the object popularity conforms to a
Zipf-like power law distribution [4], [5].

7This constraint also reflects the general design principle for tuning the value
� in a hierarchical caching system to ensure the leaf CS will serve more than
one request during a renewal cycle.

8For simplicity in our analysis (i.e., to preserve Poisson property), we ignore
impact of the round trip time on the Poisson property here. Note that the typical
setting of maximum TTL (�) is much larger than network round trip time (e.g.,
� is on the order of 24 h [10], while network round trip time is of the order of
100 ms).

138 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004

(a) (b)

Fig. 4. Timing diagram illustrating properties of remaining TTL at different levels of the tree hierarchy when � � 1=� . (a) A sample path demonstrating that
the renewal points, t , t , t , and t , are synchronized at each level. (b) Averaged behavior.

perceived performance. Denote , , and as the system
miss rate, hit rate, and response time at a level- CS, respec-
tively. The system miss rate, hit rate, and response time take
into account of all requests, both from the users in the (local)
metro region and from child CSs (internal dynamics within
the hierarchical caching tree). Similarly, denote , , and

as the user perceived miss rate, hit rate, and response time
at a level- CS, respectively. The user perceived performance
parameters consider only requests generated by the users in
the local metro region and do not consider those requests
forwarded from any child CSs.

Before we calculate the miss rate at level , we make the
following observation [see Fig. 4(b)]: each CS can make at most
one request to its parent CS during any renewal cycle. Denote

the number of request a CS at level receives from its
child CSs during a renewal cycle and the number of child
CSs of this server at level . Then, is a random variable de-
fined over and the probability distribution of is
a combinatorial of exponential distributions since user requests
at a CS of any level follows a Poisson distribution. Therefore,

can be easily calculated explicitly using combinatorics
and .

To calculate the miss rate, , we condition on whether the
first miss (i.e., the request that initiates the TTL triangle) is from
a user within the CS’s metro region or from a child CS. We have

(6)

Note that for a constant and at each level , the miss rate
increases as the level increases.

The system’s hit rate , is then

(7)

Denote as the round trip time (including processing delay
at the CS) between a child CS at level and its immediate parent
CS, and assume the delay between an end user and its local CS
is negligible. The average system response time is

(8)

HOU et al.: ON EXPIRATION-BASED HIERARCHICAL CACHING SYSTEMS 139

0

1

2

3

4

flat chain tree
original server

cache server

aggregated clients

(a) (b) (c)

5

level

Fig. 5. Topologies of caching systems used in the simulation study: (a) flat structure, (b) chain topology, and (c) tree topology.

where is delay until getting a fresh object given that there is
a miss at the local CS. From (8), we have

(9)

On the other hand

(10)

Combining (8)–(10), we have the following recursive relation-
ship for :

(11)

with .
We now calculate the user perceived hit rate , miss

rate , and response time , at a level- CS. These
performance metrics will be slightly different from those
corresponding to the system performance. This is because we
need to filter out the effect of the requests from child CSs
(which represent internal dynamics of the hierarchical caching
system). Again, by conditioning on whether the first request
comes from local users or child CSs, we have

(12)

As , we have for the users’ miss rate

(13)

The response time a user experiences is

(14)

with .
3) Network Traffic Load: So far, we have calculated the hit

rate, miss rate, and response time from both the system’s and
user’s perspectives. There is one more important system perfor-
mance metric that we want to include. This is the traffic load as-
sociated with the hierarchical caching system. As we discussed

earlier, one of the major benefits of a caching system is to reduce
the overall network traffic load and, thus, to achieve scalability
as the Internet continues to grow. Here, we calculate the net-
work load associated with the hierarchical caching system and
in Section III, we will further demonstrate the scalability prop-
erty of the hierarchical caching system comparing to a nonhier-
archical (or “flat”) caching system.

One way to measure network traffic load for the hierarchical
caching system is to perform an accounting on how much traffic
each CS generates to its immediate parent CS. Note that a CS
will initiate a request to its parent CS only when a request (either
from local users in the metro region or from child CSs) incurs
a miss. Denote the average request rate that a CS at level
sends to its parent CS as . By definition, we have

(15)

where is the idle period during a renewal cycle for a CS at
level and .

III. SIMULATION INVESTIGATION

In this section, we use simulation results to demonstrate the
intrinsic properties of a hierarchical caching system. We also
compare its performance with a nonhierarchical caching sys-
tems (i.e., those with a flat structure). The objectives of this
study are to validate our analysis in Section II and to offer fur-
ther insights on the dynamics of such caching systems.

A. Simulation Settings

Our simulation is built on the network simulator ns–2 plat-
form [19]. We define three new objects, namely, OS, CS, and ag-
gregated clients (ACs) as follows. An OS is a reply-only object
which always returns the requested object with its TTL value
initialized to . An AC is a request-only object with a rate of .
For each CS and AC objects at each level of the hierarchy, we
attach a log to them in the simulation to record all requests and
replies events, which will be used for off-line data processing.

Fig. 5 shows the three topologies of caching systems used
in our simulation study. Under the “flat” topology, each CS can
only make requests directly to the OS and, thus, the level number

140 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10

9

8

7

6

5

4

3

2

1

T
T

L
at

 e
ac

h
le

ve
l h

le
ve

l (
h)

time (t)

Fig. 6. Sample path of TTL evolution at level h, 1 � h � 10 under the chain
topology.

only represents distance between a CS and the OS. On the other
hand, the hierarchical “chain” and “tree” topologies represent
two scenarios for the basic model. Note that the chain topology
is a special case for the tree topology with a span of one. For
the tree topology, we consider a binary complete tree (with a
span of two for all nonleaf CSs). For all three topologies, we
set the maximum number of levels . We use the round
trip time between two consecutive levels as a measure of dis-
tance between two consecutive levels and set the round trip time
between two consecutive levels to two units in our simulation.
As an example, under the flat topology, a CS corresponding to
level 4 CS under the chain or tree topology will have eight units
of round trip time between itself and the OS.

In our simulation, we set unit time9 and
per for all (i.e., same user request rate at each level) unless
otherwise stated explicitly.

B. Simulation Results and Discussions

We organize our presentation as follows. First, we examine
the TTL behavior (i.e.,) for CS at each level, which is
the most important parameter in characterizing the dynamics of
the hierarchical caching system. Then, we present simulation re-
sults for the performance metrics from both CSs and user’s per-
spectives. This is followed by a study of traffic load generated
by the CSs. Finally, we examine how the user request patterns
can affect the performance of the caching system.

1) TTL Behavior: To get a clear picture on how TTL be-
haves, we first present a set of simulation results showing the
TTL behavior at different levels under the chain topology. Fig. 6
shows the sample TTL evolution (in connected lines) and re-
quests (cross points) at each level during a time window in
the simulation. As expected, each TTL triangle falls within its
parent CSs TTL triangle, with each renewal point when TTL
decreases to zero being synchronized to a renewal point of its
parent CS. The closer a CS to the OS in the hierarchy, the denser
the TTL triangle within the time window.

We now examine the TTL behavior quantitatively and
compare it with our closed-form result in Section II-B. In

9The scale of time unit for TTL and round trip time (between a child CS and
its parent CS) is different quantitatively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

E
(T

h)

level (h)

flat/ttl.sim
flat/ttl.cal

chain/ttl.sim
chain/ttl.cal
tree/ttl.sim
tree/ttl.cal

Fig. 7. E(T) behavior at each level h, 1 � h � 10 for the flat, chain, and
tree topologies.

Fig. 7, we plot the calculated average TTL, [using
(2)] and from simulations at each level CS for the
flat, chain, and tree topologies, respectively. The connected
lines represent the calculated results from our analysis, while
the disconnected points shows the results extracted from the
simulations. Clearly, our analysis for ,
statistically matches the actual simulations in all cases. With
the flat structure, each CS always gets the object with the
maximum TTL (at the expense of larger response time
and traffic load). Under the chain or tree structure, as expected,
the average TTL at a CS is always lower than that in the
flat structure. A smaller TTL implies that, when an object is
delivered to the a user or child CS, the object is of less freshness
but remains valid under the weak consistency paradigm. Also,
we observe that the TTL behavior for both the chain and
tree topologies follow Property 1, i.e., for ,

and
.

2) Performance Metrics: We now present results from anal-
ysis and simulations for the performance metrics from both CSs
and user’s perspectives. In particular, we show (in Fig. 8) the hit
rate10 and response time (delay) from a CSs (i.e., system) and
user’s perspectives.

In Fig. 8(a), we plot the hit rate at a CS from both analysis
[(7)] and simulation results for the flat, chain, and tree topolo-
gies. Clearly, our analysis matches simulation results very well.
For the flat structure, the hit rate is the same for all CSs at all
levels (i.e., 0.5) since each CS interacts with the OS directly and
independently from other CSs. On the other hand, the hit rate
under chain or tree topology exhibits nonincreasing behavior.
Furthermore, the CS hit rate at most levels (except the leaf level)
for the tree is higher than that for a chain, and the hit rate for a
chain is higher than that for the flat structure. This demonstrates
the effect of request aggregation and object sharing under a hier-
archical caching system. That is, a CS (except the leaf CS) under
the tree topology handles a higher volume of requests than a CS
at the same level under the chain or flat topology. At the leaf CS,

10Since miss rate is the complement of the hit rate, we omit to present its
simulation results to conserve space in the paper.

HOU et al.: ON EXPIRATION-BASED HIERARCHICAL CACHING SYSTEMS 141

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

C
S

 h
it

ra
te

 (
Θ

s h)

level (h)

flat/hit.sim
flat/hit.cal

chain/hit.sim
chain/hit.cal
tree/hit.sim
tree/hit.cal

(a) Hit rate at a cache server at each level.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

us
er

 h
it

ra
te

 (
Θ

u h)

level (h)

flat/uhit.sim
flat/uhit.cal

chain/uhit.sim
chain/uhit.cal
tree/uhit.sim
tree/uhit.cal

(b) User perceived hit rate at each level.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

C
S

 r
es

po
ns

e
tim

e
(σ

s h)

level (h)

flat/rtt.sim
flat/rtt.cal

chain/rtt.sim
chain/rtt.cal
tree/rtt.sim
tree/rtt.cal

(c) Response time at a cache server at each level.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

us
er

 r
es

po
ns

e
tim

e
(σ

u h)

level (h)

flat/urtt.sim
flat/urtt.cal

chain/urtt.sim
chain/urtt.cal
tree/urtt.sim
tree/urtt.cal

(d) User perceived response time at each level.

Fig. 8. Hit rate and response time from caching system’s and user’s perspectives at each level under the flat, chain, and tree topologies.

due to a smaller TTL and less request aggregation and object
sharing, the hit rate under chain or tree topology is even lower
than that under the flat structure. This shows that the system
favors CS closer to the OS and penalizes CS close to leaf CS,
which is an intrinsic limitation of a hierarchical caching system.
In Section IV-B, we show that this problem can be alleviated by
introducing the randomization technique.

In Fig. 8(b), we plot the hit rate experienced by a user at each
level through both analysis [in (12)] and simulation results for
the flat, chain, and tree topologies. We observe similar hit rate
behavior from user’s perspective. Comparing Fig. 8(b) to (a),
we find that, under the chain or tree topology, a CSs hit rate is
always less than the user’s hit rate. This is because once there
is a miss at a CS for a particular user request, this request may
trigger multiple misses at CS(es) along the upstream path toward
the OS, which leads to a higher CS miss rate (or lower CS hit
rate). In Section IV-B, we will introduce a randomization tech-
nique to reduce such multiple miss phenomenon. We also find
that, in Fig. 8(b), the hit rate (as well as the response time to
be discussed shortly) for the leaf CS is the same as that for the
user’s under all topologies. This can be easily explained by the
fact that a leaf CS can only have requests from users (i.e., no
child CS below it).

Fig. 8(c) and (d) shows the response time for a request from
a CS and user’s perspectives at each level, respectively. The re-
sponse time shown in the figure is in unit of time with the round
trip time between two consecutive levels of CS being 2 units
(see Section III-A for our simulation settings). Therefore, the
average response time is proportional to (more precisely, twice)
the average number of levels [or CS(es)] that a request needs to
travel (query) in order to get a hit.

In Fig. 8(c), under the flat structure, the response time in-
creases linearly as the level increases, which is expected. Since
the hit rate is 0.5 based on our simulation settings (i.e.,
and for all levels), the distance (measured in time) be-
tween the leaf CS (at level 10) and the OS is 20 units, the average
response time for a leaf CS is, therefore, 10 units. The response
time under the tree topology is smaller than that under the chain
topology and the response time under the chain topology is
smaller than that under the flat topology. In particular, under the
tree topology, a request only travels less than one hop upward
on average to get a hit. This is a substantial improvement than
that under the flat structure, where the response time increases
linearly with the level number . This demonstrates that, under a
hierarchical caching system, a request can be filled by a nearby
CS along its upstream path (toward OS). Fig. 8(d) shows the re-

142 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10

C
S

 r
eq

ue
st

 d
en

si
ty

 p
er

 u
ni

t t
im

e
(ρ

s h)

level (h)

flat/load.sim
flat/load.cal

chain/load.sim
chain/load.cal
tree/load.sim
tree/load.cal

(a) Aggregate traffic load at each level.

0.0001

0.001

0.01

0.1

1

10

1 2 3 4 5 6 7 8 9 10

no
rm

al
iz

ed
 C

S
 r

eq
ue

st
 d

en
si

ty
 p

er
 u

ni
t t

im
e

(ρ
*s h)

level (h)

flat/nload.sim
flat/nload.cal

chain/nload.sim
chain/nload.cal
tree/nload.sim
tree/nload.cal

(b) Normalized traffic load at each level.

Fig. 9. Traffic load at each level under the flat, chain, and tree topologies.

sponse time from user’s perspective at each level for all three
topologies. We have similar observations as in Fig. 8(c). The re-
sults in Fig. 8(c) and (d) conclusively demonstrate that a hierar-
chical caching system (e.g., chain/tree) can significantly reduce
the response time than a flat caching system.

3) Traffic Load: Another important performance metric for
caching system is the traffic load, in particular, the request and
response traffic traveling the network path and processed by
the CS(es). From a network provider’s perspective, such traffic
measure is an important input for network capacity planning and
traffic engineering. From a service provider (or content delivery
provider)’s perspective, traffic load distribution among CS(es)
is directly related to user perceived latency, as well as an indi-
cation of whether any load balancing is necessary. In this set of
simulation results, we attempt to show traffic load behavior with
analysis [see (15)] and simulation results.

Fig. 9(a) shows the aggregated request traffic volume at each
level, which is the sum of request traffic traversing the same
level for the three topologies. Again due to the request aggre-
gation and object sharing, the hierarchical caching system (i.e.,
chain or tree) has much lower traffic load at most levels (ex-
cept the leaf level) than the flat structure. In particular, under
the flat topology, the closer to the OS, the higher network traffic
load, which poses a potential congestion bottleneck at or near
the OS. In contrast, for the hierarchical caching system under

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

E
(T

h)

level (h)

LR-HL/ttl.sim
LR-HL/ttl.cal
HR-LL/ttl.sim
HR-LL/ttl.cal

Fig. 10. TTL behavior under different request pattern for the chain topology.

the chain or tree topology, network traffic is evenly distributed
at all levels, which fulfills the objective of load balancing for
both the network providers and service providers.

The lump sum network traffic at the same level in Fig. 9(a)
does not fully demonstrate the superior advantage of a highly
aggregated hierarchical caching system such as the tree
topology. This is because the user population supported under
the tree topology is much larger than that under the chain or
flat topology. To illustrate this point, in Fig. 9(b), we plot the
normalized traffic load, defined as the ratio of request traffic
summed over the CS(es) at the same level normalized with
respect to the total number of user requests received at the same
level. For clarity, we use the scale for the vertical axis in
Fig. 9(b) due to the small numerical scale of the result for the
tree topology. In Fig. 9(b), we find that, for the tree topology,
the normalized traffic load per request at each level is several
orders lower than that under the flat topology for upstream
CS(es) [i.e., CS(es) close to the OS]. At the leaf level, the
advantage of tree topology disappears since there is no more
request aggregation and object sharing at leaf CS.

4) Impact of User Request Traffic Pattern: So far our simu-
lation results are based on uniform request pattern at each level
(see Section III-A), where user request rate per for all

. In this set of simulation results, we explore
how a nonuniform user request pattern at each level can affect
the system’s and user’s performance. In particular, we consider
two contrary scenarios.

• Heavy Root-Light Leaf (HR-LL) represents the case where
the closer it is toward the OS, the more user request rate a
CS receives from its local metro region. In our simulation
study, we choose , where and

. That is .
• Light Root-Heavy Leaf (LR-HL) represents the opposite

scenario of the HR-LL scenario. Here, the further away
it is from the OS, the larger the user request rate a CS re-
ceives from its local metro region. In our simulation study,
we choose , where and . That
is .

For illustration purpose, we will only present results for the
chain topology. Fig. 10 shows the TTL behavior for both the
HR-LL and LR-HL user traffic patterns for the chain topology.

HOU et al.: ON EXPIRATION-BASED HIERARCHICAL CACHING SYSTEMS 143

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

C
S

 h
it

ra
te

 (
Θ

s h)

level (h)

LR-HL/hit.sim
LR-HL/hit.cal
HR-LL/hit.sim
HR-LL/hit.cal

(a) Hit rate at a CS.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

U
se

r
hi

t r
at

e
(Θ

u h)

level (h)

LR-HL/uhit.sim
LR-HL/uhit.cal
HR-LL/uhit.sim
HR-LL/uhit.cal

(b) User hit rate.

Fig. 11. Hit rate for the caching system and user under different request pattern
for the chain topology.

We observe that the TTL behavior under both traffic patterns
still follows Property 1, i.e., for ,

and . However, due
to the difference in user traffic patterns, for the HR-LL
case is smaller than that for the LR-HL case when becomes
large. This is intuitive since under the LR-HL case, more user
requests at the leaf CS help to compensate the loss of request
aggregation and object sharing due to its farther distance away
from the OS.

In Fig. 11(a), we plot the CS hit rate at each level for both the
HR-LL and LR-HL cases. We find that the hit rate can have dras-
tically different behavior under different user traffic patterns.
In particular, we observe that the higher user request rate at a
CS, the higher the CS hit rate will be. Fig. 11(b) shows the user
hit rate at each level under the HR-LL and LR-HL traffic pat-
terns. Again, we find that hit rate performance favors the LR-HL
traffic pattern than that for the HR-LL traffic pattern.

Fig. 12(a) shows the response time at CS at different level
under the two traffic patterns (also see Fig. 10). Although the
response time for both cases have different performance for
CS(es) at different level, the CS response time under the LR-HL
traffic pattern is more desirable than that under the HR-LL
traffic pattern due to its concave behavior. Fig. 12(b) shows
the user perceived response time under the two traffic patterns.

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

1 2 3 4 5 6 7 8 9 10

C
S

 r
es

po
ns

e
tim

e
(σ

s h)

level (h)

LR-HL/rtt.sim
LR-HL/rtt.cal
HR-LL/rtt.sim
HR-LL/rtt.cal

(a) Response time at a CS.

(b) User perceived response rate.

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

1 2 3 4 5 6 7 8 9 10

U
se

r
re

sp
on

se
 ti

m
e

(σ
u h)

level (h)

LR-HL/urtt.sim
LR-HL/urtt.cal
HR-LL/urtt.sim
HR-LL/urtt.cal

Fig. 12. Response time for the caching system and user under different request
pattern for the chain topology.

Again, we find that the performance under the LR-HL traffic
pattern is better than that under the HR-LL traffic pattern.

5) Summary of Simulation Results: From the above results
for the TTL behavior, hit rate, response time, traffic load, and
user traffic pattern, we observed some important properties and
tradeoffs for the flat and hierarchical caching system. For a flat
structure, although it can obtain an object with the largest TTL
initialized at the OS, it usually has higher miss rate and larger
response time, and generates more and uneven traffic load (espe-
cially in terms of the per request load) than a hierarchical system
(chain or tree). Under the hierarchical caching system, we ob-
serve that there is a bias against leaf CS, which is due to the loss
of request aggregation and object sharing at leaf CS. Through
our simulation results, we have also conclusively demonstrated
that, for content distribution employing the weak consistency
based caching system, a hierarchical caching system is a scal-
able solution.

IV. EXTENSIONS OF THE BASIC MODEL

In this section, we explore two extensions (using the concepts
of content freshness threshold and randomization) to the basic
model. It turns out that these enhancement can be viewed as a
generalization of the basic model. Such generalizations provide

144 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004

Fig. 13. Feasible region for user required content freshness threshold � and
CS prefetching threshold �.

us further understanding on possible tradeoffs in the design of a
hierarchical caching system.

A. Freshness Threshold

Under the basic model, as long as the user request finds the
object with its remaining TTL greater than zero, the request will
be filled satisfactorily. Similarly, within the hierarchical caching
system, an internal (system) request (from a child CS to its
parent CS) will be filled satisfactorily as long as the object’s
remaining TTL at the parent CS is greater than zero.

We introduce two performance enhancement parameters,
namely, user required content freshness threshold and CS
prefetching threshold to enhance the flexibility from both
the user’s and CS (or system)’s perspectives. More specifically,
let , , be the user predefined (required) minimum
TTL (or freshness) of the object. That is, if the object’s
remaining life is greater than , the object is considered useful
to the user. Otherwise, the CS will forward the request to its
parent CSs until it finds this object with its remaining TTL
greater than . Then, this object will be used to update the TTL
of the initiating child CS, as well as all the intermediate CSs
involved in the query process. The parameter is particular
important when a user needs some time to work on the object
for a minimum period of time before it expires at the user’s
local browser.

The second parameter , which is closely related to , is de-
fined to be a minimum TTL threshold used by a CS to prefetch
an object within the hierarchical caching system. That is, upon
a request arrives at a CS and finds that the object’s remaining
TTL is less than , the CS will initiate a request for this ob-
ject to its parent CSs along its upstream path until the object
with remaining TTL larger than is found. Clearly, we should
have . Note that the basic model discussed in
Section II corresponds to the special case when .

In general, each user may have different freshness require-
ment for an object, and different value for different objects. To
simplify our discussion, we assume that the parameter for an
object is the same for all users within the hierarchical caching
system. Under this assumption, we shall show below how the
TTL behavior and performance metrics can be derived.

τ

τ

t

t

hr (t)

0

φ

φ

r (t)1

Fig. 14. Sample path of the TTL behavior for a level-1 CS and level-h CS with
� = � = �.

Fig. 13 illustrates the relationship between user required con-
tent freshness threshold and CS prefetching threshold . Note
that by introducing these two parameters, we have generalized
the basic model (corresponding to the origin point in Fig. 13)
along two dimensions. Furthermore, the feasible region of and

is characterized by the shaded triangle shown in Fig. 13, i.e.,
. Any point within the triangle represents a

parameter pair for , which determines the behavior and
performance of the hierarchical caching system.

Before we discuss the system’s behavior and performance for
a general setting of pair, we first consider some special
cases for and .

1) Case 1: : This corresponds to the diag-
onal border line of the feasible region in Fig. 13. A sample path
of TTL, , is illustrated in Fig. 14. Since the object freshness
threshold for a user and a CS is the same, the effective TTL for
user and CS is, thus, the current TTL minus (i.e., offset) the
and threshold. That is, the TTL behavior and CS/user perfor-
mance can be analyzed by shifting the horizontal axis upward
by the threshold value. As an illustration, we calculate the re-
maining TTL at each level. We follow the same token for the
development of (2) and denote .

Subcase A. With probability , the TTL triangle at
level 1 is initiated by a request from the subtree with root at CS

. In this case, .
Subcase B. With probability

, the level 1 TTL triangle
is triggered by a request outside the subtree rooted at and
there is a request arrival in the same renewal period from the
subtree with root . The average in this case is given by

Denote the average remaining TTL at level for
. To calculate , all we need to do is to take the

probabilistically weighted average of under cases A and B.
We have (16), shown at the bottom of the next page.

HOU et al.: ON EXPIRATION-BASED HIERARCHICAL CACHING SYSTEMS 145

Since in (2) corresponds to the special case when
in , we have the following property showing the

relationship between and .
Property 2: Let and be defined in (16) and

(2), respectively. Then, we have

(17)

where denotes replacing with for
in (2).

Property 2 can be easily verified and is also quite intuitive.
Since the user required content freshness threshold and the
CS prefetching threshold are the same , the “relative” (or
“effective”) TTL can be considered as the absolute TTL minus
the threshold (see shaded area in Fig. 13).

Once we obtain the , we can follow the same token
as in Section II to obtain other performance metrics, which are
similar to that for the basic model. To conserve space, we omit
to elaborate them further.

We use simulation results to substantiate our analysis. We will
use the chain topology and the same set of simulation parame-
ters used in Section III, i.e., unit, per , and

units. Fig. 15(a) shows the at a CS at each level
, , under different pair. We observe that

the simulation results for match perfectly to our analyt-
ical results (Property 2). In the figure, corresponds
to the basic model. When , it is similar to the flat
case (i.e., without hierarchy) where each CS has to contact the
OS directly. For between 0 and , as users increase their
freshness requirement, the TTL curve is pushed upward (from
the basic model case to the flat case). This corresponds to an
increase in user response time, which is depicted in Fig. 15(b).
This is intuitive and shows the tradeoff between user content
freshness requirement and response time. We also observe that
such tradeoff exhibit uneven behavior. For example, after
have reached , further increase in can only offer a
marginal increase for but with a significant increase in user
response time.

2) Case 2: : A sample path of the
TTL triangle at a CS at each level is similar to that illustrated
in Fig. 14. The difference here is that the number of triangles,
or rather, the triangle density at each level is more sparse than
that under Case 1, due to the fact that requests from local users
(with) will be filled satisfactorily as long as the local
CS’s remaining TTL is nonzero. That is, only when a user re-
quest finds the local CS with a zero TTL will the local CS con-
tact its parent CS. On the other hand, when a CS initiates a re-
quest to its upstream parent server, the request must be filled
by a CS with the object’s remaining TTL greater than . Such

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

E
(T

h)

level (h)

0.0-0.0/ttl.sim
0.0-0.0/ttl.cal
0.1-0.1/ttl.sim
0.1-0.1ttl.cal

0.3-0.3/ttl.sim
0.3-0.3/ttl.cal
0.7-0.7/ttl.sim
0.7-0.7/ttl.cal
1.0-1.0/ttl.sim
1.0-1.0/ttl.cal

(a) TTL behavior at each level.

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10

us
er

 r
es

po
ns

e
tim

e
(σ

u h)

level (h)

0.0-0.0/urtt.sim
0.1-0.1/urtt.sim
0.3-0.3/urtt.sim
0.7-0.7/urtt.sim
1.0-1.0/urtt.sim

(b) User response time at each level.

Fig. 15. TTL behavior and user response time performance under different
(�; �) (� = �) parameter pair for the chain topology.

decoupling of and clearly weakens the synchronization re-
lationship among the TTLs at different levels than that under the
previous case (i.e.,). Although a TTL sample path is still
covered under its parent CS, the relationship between them be-
comes much more complex than the previous case or the basic
model. So far, there does not appear to be a clean closed form
solution to characterize the nonzero TTL behavior at each level
and we leave this as an open problem for future research.

3) General Case: : The general case can be
considered as a composition of the two simpler cases discussed
above (see Fig. 13). For the TTL sample path, we can imagine
first to make a vertical shift of the horizontal time axis to reflect
the nonzero . Once this is done, we are facing exactly the same
problem as in Case 2, i.e., , . Referring to
Fig. 13, this corresponds to moving the pair first along

(16)

146 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

us
er

 h
it

ra
te

 (
Θ

u h)

level (h)

0.0-0.0/uhit.sim/nd
0.0-0.1/uhit.sim/nd
0.0-0.3/uhit.sim/nd
0.0-0.7/uhit.sim/nd
0.0-1.0/uhit.sim/nd

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

us
er

 r
es

po
ns

e
tim

e
(σ

u h)

level (h)

0.0-0.0/urtt.sim/nd
0.0-0.1/urtt.sim/nd
0.0-0.3/urtt.sim/nd
0.0-0.7/urtt.sim/nd
0.0-1.0/urtt.sim/nd

(a) User hit rate.

(b) User response time.

Fig. 16. Impact of prefetching on user perceived performance under the chain
topology.

the diagonally. Then, we fix the value and move
horizontally to its operating point.

Under the general case, when a request (either from local user
or a child CS) arrives at a CS, there are three cases.

• Subcase 1. The remaining TTL of the object at the CS
is less than . In this case, the CS initiates a request to
its upstream CS until it retrieve the object with remaining
TTL greater than .

• Subcase 2. The remaining TTL of the object at the CS is
greater than . In this case, the CS will deliver the object
and the request will be filled satisfactorily.

• Subcase 3. The remaining TTL of the object at the CS is
greater than but less than . Under this case, the proxy
immediately fulfills the request and, at the same time, gen-
erate an independent request to its upstream parent CSs
until it obtains the object with the remaining TTL greater
than . Here, serves as a prefetching parameter for the
CSs.

We use a set of simulation results to demonstrate the impact
of prefetching on user perceived performance metrics and net-
work traffic load. For simplicity, in the following discussions,
we only show the simulation results for the case when
and . Fig. 16 shows some marginal improvement
on user perceived performance metrics (hit rate and response

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9 10

C
S

 r
eq

ue
st

 d
en

si
ty

 p
er

 u
ni

t t
im

e
(ρ

s h)

level (h)

0.0-0.0/load.sim/nd
0.0-0.1/load.sim/nd
0.0-0.3/load.sim/nd
0.0-0.7/load.sim/nd
0.0-1.0/load.sim/nd

Fig. 17. Impact of prefetching on traffic load under the chain topology.

time) when the prefetching parameter increases from 0 to .
Fig. 17 shows the network traffic load when prefetching param-
eter varies from 0 to under the chain topology. We observe
that, with prefetching, a CS becomes more “proactive” to gen-
erate requests in anticipation of future requests. Although this is
some modest improvement in user perceived performance met-
rics (hit rate, response time), the prefetching parameter has to
be chosen carefully (e.g., less than) in order to avoid intro-
ducing excessive request traffic load in the network.

B. Randomization

Under the basic model, the TTL behavior at each level along
a path from the root of the tree has strong synchronization prop-
erty (see Figs. 3 and 6). Such synchronization property may
adversely affect the performance of the hierarchical caching
system. For illustration, in Fig. 18, we plot the probability dis-
tribution for average network delay and number of servers in-
volved to process each request under the basic model given that
there is a miss. We observe that, except at the leaf CS, it is very
likely that a miss at local CS will cause inquiries for all the up-
stream CSs toward the OS.

To minimize the number of upstream CSs involved in pro-
cessing a request, we introduce randomization into the cache
query process as follows. For a CS at level , if there is a miss
at this CS, it will make a query to its upstream CSs at levels 0 to

with a probability , where
. Such randomization enable a CS to “jump over” (or “cut

through”) its immediate parent CSs during the query process
to reach a CS farther away along its upstream path. In Fig. 19,
we give an example illustrating the randomization process. As
shown in the figure, when a user request for an object arrives
at CS 5 and experiences a miss, CS 5 will choose a CS 0 to 4
with a probability. Note that CS 0 is the OS and always has a
fresh copy of the content. Suppose CS 3 is chosen and a miss
happens again. At this time, CS 3 will repeat the same process,
i.e., choosing a CS among CSs 0 to 2, each with a certain prob-
ability. Now, suppose CS 1 is chosen and again there is a miss.
Then, CS 1 will contact CS 0 (with probability 1). When the ob-
ject is retrieved from CS 0 (OS), the object will update copies at
CSs 1, 3, and 5 only along the downstream path, i.e., only those

HOU et al.: ON EXPIRATION-BASED HIERARCHICAL CACHING SYSTEMS 147

Fig. 18. Probability distribution of network delay and number of servers
involved to process a request at each level under given a miss at local CS for
the chain topology.

CSs involved in this query process will get an updated copy of
the object. Note that due to randomization, CSs 2 and 4 will be
bypassed during this query process (i.e., “cut through”).

Such randomization process can also be viewed as a gener-
alization of the basic model and the flat model, both of which
can be regarded as extreme cases under the randomization pro-
cedure. In particular, for each CS at level , , if
we set (i.e., a child CS can only contact its immediate
parent CS), then we have the basic model discussed in Section II.
On the other hand, for a CS at level , , if we
set (i.e., a child CS can only contact the OS), then we
have the flat caching system.

We use some simulation results to illustrate the impact on the
caching system when randomization is employed. In our sim-
ulation, we assume the probability function that a CS chooses
one of upstream parent CSs follows a geometric distribution.
More specifically, when a request experiences misses at a CS of
level , the CS will send the request to the original server (at
level 0) with probability , or to the CS at level 1 with
probability , or to the CS at level with probability

, where . Here,
to ensure . It should be clear that the parameter

determines the randomization behavior. For example, when

Fig. 19. An example illustrating randomization during the request query
process from a CS to an upstream CS.

approaches infinity, it becomes the strict hierarchical case (i.e.,
the basic model). When and , it becomes the
“flat” case, i.e., each CS will contact the OS upon a miss. When

, the probability is uniformly distributed and the CS will
contact one of its parent CSs along its upstream path with equal
probability. In general, when , the request is more likely
directed to the CS which is close to the requesting CS along the
upstream path; when , the request is more likely sent
to the CS close to the OS.

Again, we use the chain topology for our simulation and
use the same set of simulation parameters used in Section III.
Fig. 20(a) shows the probability distribution for network delay
at each level for . Comparing Fig. 20(a) to Fig. 18(a), we
observe that randomization helps shift and balance probability
mass toward upstream CS and reduce network delay. A more
interesting simulation result showing the number of servers
need to be queried for a request is given in Fig. 20(b). Com-
paring Fig. 20(b) with Fig. 18(b) (which shows the number of
servers needed to process a request under the basic model),
we find that randomization technique can significantly reduce
the number of upstream servers involved in a request query
process. This is perhaps the most significant advantage for
employing randomization technique.

Currently, we do not have a utility function to obtain user’s
response time from network delay (i.e., number of hops that a
user request needs to travel along its upstream path) with the
number of upstream servers involved in processing a request.
Since server overload is a critical problem for many popular web
sites (or CSs) over current Internet and, in practice, contributes
to a large fraction of user perceived latency, it is therefore critical
to develop mechanisms to reduce server overhead. The random-
izing technique discussed here is a viable approach to achieve
this objective.

In Fig. 21, we further explore the impact of randomization
parameter on network delay and server overhead (i.e., number

148 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004

Fig. 20. Probability distribution of network delay and number of servers
involved to process a request at each level given there is a miss at local CS.
Randomization parameter r = 2.

of servers involved to process a request). We also include the
results for the basic model as a comparison. In Fig. 21(a), we
observe that when is very small , the average user
response time increases very quickly along downstream direc-
tion. When increases , the increase in user response
time slows down as increases. As discussed earlier, the basic
model can be regarded as the case when approaches infinite.
For the basic model, the average network delay is better for CSs
close to the leaf CS than other cases of . Fig. 21(b) shows the
average number of servers involved to process a request at each
level CS under different settings of randomization parameter .
We observe that the smaller the randomization parameter is,
the less number of upstream servers will be involved in pro-
cessing a request (and, thus, lower server overhead). Fig. 21(a)
and (b) shows that the performance for network delay and CS
overhead head to different direction as the randomization pa-
rameter increases. This suggests that a “suitable” choice of the
randomization parameter is crucial to make a compromise be-
tween network delay and server overhead. In particular, extreme
values of (either too large or too small) should be avoided and
a in the range of 1 to 2 appears desirable since such range gives
a good tradeoff between network delay and server overhead.

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10

ne
tw

or
k

de
la

y
(d

n h)

level (h)

r=0.125
r=0.25
r=0.5
r=1.0
r=2.0
r=4.0
r=8.0
basic

(a) Network delay at each level.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10

se
rv

er
 o

ve
rh

ea
d

(d
s h)

level (h)

r=0.125
r=0.25

r=0.5
r=1.0
r=2.0
r=4.0
r=8.0
basic

(b) Number of upstream servers involved at each level.

Fig. 21. User response time and number of servers involved to process a
request at each level CS given that there is a miss at local CS. Chain topology
is used for simulations.

During our discussion of the randomization technique, we
have implicitly assumed that both the user content freshness
threshold requirement and CS prefetching threshold are
0, i.e., . In general, randomization technique can
work together with freshness threshold in a hierarchical caching
system.

V. RELATED WORK

Caching has long been used in many distributed computer and
database systems [13]. The tremendous popularity and growth
of the web has reiterated the practical significance of caching
systems [3], [23]. Most studies focus on measurement and traffic
characterization for the user client, cache proxy, and web server
in different temporal and spatial scales [1], [18].

Since proxy plays an important role as the intermediate
agent in the “client-proxy-server” paradigm, the performance
and behaviors of proxy in request aggregation (hit and miss),
server selection [7], cache replacement algorithms [25], object
prefetching [6], and inter-cache communications [12] have
been studied in the literature.

Gwertzman and Seltzer [14] examined several existing cache
maintenance schemes experimentally and found that a weak

HOU et al.: ON EXPIRATION-BASED HIERARCHICAL CACHING SYSTEMS 149

cache consistency protocol such as the one used in the Alex file
system [8] could be tuned to achieve less than 5% stall objects.
Chankhunthod et al. [9] studied the hierarchical caching and
consistency problem in the Harvest caching system. Urgaonkar
et al. [22] proposed to maintain the cache consistency among
proxy servers, in addition to consistency with the OS.

On the other hand, Liu and Cao [17] proposed approaches
(adaptive TTL, polling-every-time, and invalidation) to main-
tain strong cache consistency. Yu et al. [26] suggested to convey
the invalidation message over the application-level multicast for
reduced overhead. Other server-based approaches (e.g., volume
lease [24] and validation piggyback [16]) have also been ex-
plored in the literature.

Despite the fact that the TTL-based weak consistency hierar-
chical web caching systems have already been widely adopted
and deployed, current understanding and potential enhancement
on such system are still largely limited to empirical studies. This
paper took an analytical approach on the intrinsic remaining
TTL behavior in such system, and derived performance met-
rics such as hit (or miss) rate and response time from both user
and system perspectives. Based on these results and observa-
tions, this paper further proposed two schemes to enhance and
generalize the the design of a hierarchical caching system, and
provided insights on how to make tradeoffs among object fresh-
ness, response latency, and traffic load.

The most relevant work to ours is the work by Cohen and
Kaplan [10], where the authors focused on the effects of aging
on cache miss rate. Among other things, the authors in [10] con-
sidered a simple tree structure with a height of two and com-
pared its miss rate with other configurations under different re-
quest arrival patterns. Motivated by the work in [10], this paper
aimed to obtain a deeper understanding of an expiration-based
hierarchical caching system with theoretical underpinning. By
casting a hierarchical caching system with a simple model, we
were able to obtain better understanding of the time-domain be-
havior of weak consistency and a comprehensive set of perfor-
mance metrics from both system’s and user’s perspectives.

VI. CONCLUSION

Caching is an important means to scale up with the growth of
the Internet and weak consistency is a major approach used in
Web caching. This paper presented a fundamental study of hi-
erarchical caching systems based on the weak consistency par-
adigm. Although the current HTTP implementations of caching
provide similar features, our investigation of the weak consis-
tency problem was conducted in a general setting and was not
limited to the details of HTTP implementations. The main con-
tribution of this paper are two-folded. First, we presented a basic
model for a hierarchical caching system by using the concept of
TTL expiration mechanism. We analyzed the intrinsic timing
behavior of such system and derived important performance
metrics from both the system’s and user’s perspectives. Second,
we introduced the freshness threshold and randomization tech-
niques, both of which generalize the the basic model and en-
hance its performance. Our simulation results confirmed the ef-
ficacy of our analysis and provided further insights on various
tradeoffs between performance and cost.

APPENDIX

Proof of Property 1

By the nature of the TTL update mechanism at each level
of the hierarchical caching system, we have

. Therefore, we only
need to show that .

To start with, we first show that the expression in (1) is greater
than . To show

is equivalent to showing that

This is equivalent to showing that

or

To simplify notation, we denote and
.

Therefore, all we need to show is that for . Note
that and . Clearly,
for . Since , it follows that for .
Similarly, since , we have for .

With these results for (1), we are ready to prove that
. From (2), we have

We now show that , which is a stronger condition
than since we have shown that .

To show

is equivalent to showing that , which is always true by the
nature of the hierarchical caching system.

ACKNOWLEDGMENT

The authors wish to thank X. Tang of Hong Kong University
of Science and Technology for pointing out a simpler derivation
for the average TTL under the basic model.

REFERENCES

[1] G. Abdulla, “Analysis and Modeling of World Wide Web Traffic,” Ph.D.
dissertation, Dept. Comput. Sci., Virginia Polytechnic Inst. State Univ.,
Blacksburg, VA, 1998.

[2] M. Arlitt and C. Williamson, “Web server workload characterization:
The search for invariants,” in Proc. ACM SIGMETRICS Conf., Philadel-
phia, PA, May 1996, pp. 126–137.

[3] G. Barish and K. Obraczka, “World wide web caching: Trends and tech-
niques,” IEEE Commun. Mag., vol. 38, pp. 178–184, May 2000.

[4] P. Barford, A. Bestavros, A. Bradley, and M. E. Crovella, “Changes in
web client access patterns: Characteristics and caching implications,”
World Wide Web, vol. 2, pp. 15–28, 1999.

[5] L. Breslau, P. Cao, L. Fan, G. Philips, and S. Shenker, “Web caching
and zipf-like distributions: Evidence and implications,” in Proc. IEEE
INFOCOM’99, New York, NY, Mar. 1999, pp. 126–134.

150 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004

[6] P. Cao, E. Felten, A. Karlin, and K. Li, “A study of integrated prefetching
and caching strategies,” presented at the ACM SIGMETRICS’95, Ot-
tawa, ON, Canada, 1995.

[7] R. Carter and M. Crovella, “Server selection using dynamic path charac-
terization in wide-area networks,” in Proc. IEEE INFOCOM’97, 1997,
pp. 1014–1021.

[8] V. Cate, “Alex—A global filesystem,” in Proc. 1992 USENIX File
System Workshop, Ann Arbor, MI, May 1992, pp. 1–12.

[9] A. Chankhunthod, P. Danzig, C. Neerdaels, M. F. Schwartz, and K. J.
Worrell, “A hierarchical internet object cache,” in Proc. USENIX 1996
Tech. Conf., San Diego, CA, Jan. 1996, pp. 153–163.

[10] E. Cohen and H. Kaplan, “Aging through cascaded caches: Performance
issues in the distribution of web content,” in Proc. ACM SIGCOMM
Conf., San Diego, CA, Aug. 2001, pp. 41–53.

[11] A. Dingle. Cache consistency in the HTTP 1.1 proposed standard.
presented at 1st Workshop on Web Caching. [Online]. Available:
http://w3cache.icm.edu.pl/workshop/program.html

[12] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary cache: A scalable
wide-area web cache sharing protocol,” IEEE/ACM Trans. Networking,
vol. 8, pp. 281–293, June 2000.

[13] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satya-
narayanan, R. N. Sidebotham, and M. J. West, “Scale and performance in
a distributed file system,” ACM Trans. Comput. Syst., vol. 6, pp. 51–81,
1988.

[14] J. Gwertzman and M. Seltzer, “World-wide web cache consistency,”
in Proc. 1996 USENIX Tech. Conf., San Diego, CA, Jan. 1996, pp.
141–151.

[15] V. Jacobson, “How to kill the Internet,” presented at the ACM SIG-
COMM’95 Middleware Workshop, Cambridge, MA, Aug. 28, 1995,
[Online]. Available: http://www.root.org/ip-development/.

[16] B. Krishnamurthy and C. Wills, “Study of piggyback cache validation
for proxy caches in the world wide web,” presented at the USENIX
Symp. Internet Technology and Systems (ITS’97), Monterey, CA, 1997.

[17] C. Liu and P. Cao, “Maintaining strong cache consistency for the
world-wide web,” IEEE Trans. Comput., vol. 47, pp. 445–457, 1998.

[18] A. Mahanti, C. Williamson, and D. Eager, “Traffic analysis of a web
proxy caching hierarchy,” IEEE Network, vol. 14, pp. 16–23, May–June
2000.

[19] Network Simulator—NS-2. [Online]. Available: http://www.isi.edu/nsn
am/ns/

[20] M. Rabinovich and O. Spatscheck, Web Caching and Replica-
tion. Reading, MA: Addison-Wesley, 2002.

[21] S. M. Ross, Introduction to Probability Models, 4th ed. New York:
Academic, 1989, ch. 7.

[22] B. Urgaonkar, A. G. Ninan, M. S. Raunak, P. Shenoy, and K. Ramam-
ritham, “Maintaining mutual consistency for cached web objects,”
presented at the IEEE 21st Int. Conf. Distributed Computing Systems,
Mesa, AZ, April 2001.

[23] J. Wang, “A survey of web caching schemes for the internet,” ACM
Comput. Commun. Rev., vol. 25, no. 9, pp. 36–46, 1999.

[24] J. Yin, L. Alvisi, M. Dahlin, and C. Lin, “Volume lease for consistency
in large-scale systems,” Knowl. Data Eng., vol. 11, no. 4, pp. 563–576,
1999.

[25] S. Williams, M. Abrams, C. R. Standridge, G. Abdulla, and E. A. Fox,
“Removal policies in network caches for world-wide web documents,”
presented at the ACM SIGCOMM, Stanford, CA, Aug. 1996.

[26] H. Yu, L. Breslau, and S. Shenker, “A scalable web cache consistency ar-
chitecture,” presented at the ACM SIGCOMM Conf., Cambridge, MA,
Aug./Sept. 31–3, 1999.

Y. Thomas Hou (S’91–M’98) received the B.E. de-
gree (summa cum laude) from the City College of
New York, New York, NY, in 1991, the M.S. degree
from Columbia University, New York, NY, in 1993,
and the Ph.D. degree from Polytechnic University,
Brooklyn, NY, in 1998, all in electrical engineering.

From 1997 to 2002, he was a Research Scientist
and Project Leader in the IP Networking Research
Department, Fujitsu Laboratories of America,
Sunnyvale, CA (Silicon Valley). He is currently an
Assistant Professor in the Bradley Department of

Electrical and Computer Engineering, Virginia Polytechnic Institute and State
University, Blacksburg, VA. His research interests include wireless sensor
networks, multimedia delivery over wireless networks, scalable architectures,
protocols, and implementations for differentiated services Internet, and service
overlay networking.

Dr. Hou has published extensively in the above areas and is a corecipient
of the 2002 IEEE International Conference on Network Protocols Best Paper
Award and the 2001 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR

VIDEO TECHNOLOGY Best Paper Award. He is a Member of the Association
for Computing Machinery (ACM).

Jianping Pan (M’99) received the B.S. and Ph.D. de-
grees in computer science from Southeast University,
Nanjing, China, in 1994 and 1998, respectively.

From 1999 to 2001, he was a Postdoctoral Fellow
and Research Associate with the Center for Wireless
Communications at the University of Waterloo,
Waterloo, ON, Canada. Since September 2001, he
has been a Member of Research Staff at Fujitsu
Laboratories of America, Sunnyvale, CA. His
research interests include transport protocols and
application services for multimedia, high-speed and

mobile networks.
Dr. Pan is a Member of the Association for Computing Machinery (ACM).

Bo Li (S’89–M’92–SM’99) received the B.S. and
M.S. degrees in computer science from Tsinghua
University, Beijing, China, in 1987 and 1989,
respectively, and the Ph.D. degree in computer
engineering from the University of Massachusetts,
Amherst, in 1993.

From 1994 and 1996, he worked on high-perfor-
mance routers and ATM switches in the IBM Net-
working System Division, Research Triangle Park,
NC. Since January 1996, he has been with the Com-
puter Science Department, Hong Kong University of

Science and Technology, Kowloon, where he is now an Associate Professor. He
is also an Adjunct Researcher at Microsoft Research Asia (MSRA), Beijing,
China. His current research interests include wireless and mobile networks sup-
porting multimedia, video multicast, and all-optical networks with WDM. He
has published over 140 technical papers in refereed journals and conference pro-
ceedings. He has been an Editor or a Guest Editor for 14 journals and involved
in the organization of over 30 conferences.

Dr. Li currently serves as the Chair of the Technical Program Committee of
the IEEE INFOCOM 2004. He is a Member of the Association for Computing
Machinery (ACM).

Shivendra S. Panwar (S’82–M’85–SM’00) re-
ceived the B.Tech. degree in electrical engineering
from the Indian Institute of Technology, Kanpur, in
1981, and the M.S. and Ph.D. degrees in electrical
and computer engineering from the University
of Massachusetts, Amherst, in 1983 and 1986,
respectively.

He is a Professor in the Electrical and Computer
Engineering Department, Polytechnic University,
Brooklyn, NY. He is currently the Director of the
New York State Center for Advanced Technology

in Telecommunications (CATT). He spent the summer of 1987 as a Visiting
Scientist at the IBM T. J. Watson Research Center, Yorktown Heights, NY, and
has been a Consultant to AT&T Bell Laboratories, Holmdel, NJ. His research
interests include the performance analysis and design of networks. Current
work includes protocol analysis, traffic and call admission control, switch
performance, and multimedia transport over wireless networks.

Dr. Panwar has served as the Secretary of the Technical Affairs Council of
the IEEE Communications Society (1992–1993) and is a Member of the Tech-
nical Committee on Computer Communications. He is a coeditor of Network
Management and Control, Vol. II, and Multimedia Communications and Video
Coding (New York: Plenum, 1994 and 1996, respectively).

