Rely on Domain Knowledge or Handoff to Machine Learning Models?
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Data Augmentation

l~~ Deep learning is powerful, but fundamentally limited by
the availability, quality, and diversity of data

== Unlike CV and NLP, RF data collection is time-consuming
and costly, and
=>» Collected data is often noisy and sparse,
=> ... spans spectral, temporal, and spatial dimensions
=>» Diversity of environment is often limited

=>» Variability in the RF signal representations across different types

of devices
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Leverage Advances in Other Fields

|2 Example: Functional Data Analysis (FDA)

= Wireless data belong to the class of functional data, which can Machine Learning is not just glorified Statistics

be represented by curves or functions
=» The process that generates wireless data naturally follows a
stochastic function
=» Many spectrum-related problems can be more effectively Statictics
addressed when the data are treated as functions
=>» Unlike black-box approaches, FDA can provide interpretable
results, such as performance guarantees
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