# Closing the Loop for Accountable Interference-free Spectrum Sharing with Passive Radio Receivers

2025 SWIFT PI Meeting Greg Hellbourg, Neal Patwari, Ning Zhang Meles G. Weldegebriel, Tomson Li







# Need: Reactive interference management for sharing protocols

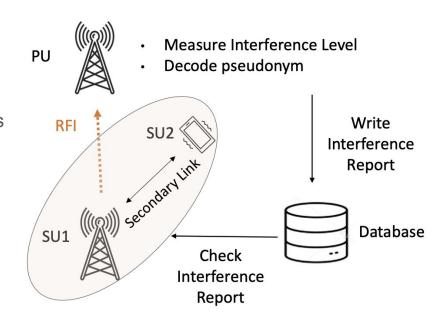
- 1. Modeling: Interference may be more severe than predicted
- 2. Management: When interference occurs, how will it be turned off?

If avoidance is only answer → conservative, inefficient sharing

E.g. lawsuit re: µwave relay & WiFi sharing 6 GHz band [1]

"The FCC has no plan to mitigate the interference when it inevitably occurs. ... it will be impracticable, if not impossible, for the FCC to identify and remove specific devices causing interference."

[1] J. Marsh, <u>AT&T statement on FCC order to allow unlicensed devices in 6 GHz band</u>, April 2020, press release, AT&T Executive Vice President of Regulatory & State External Affairs.


## Pseudonymetry system description

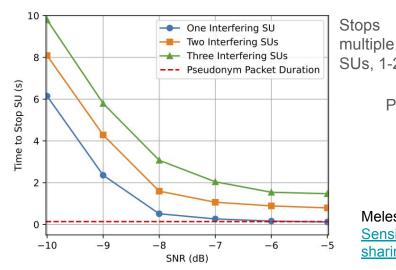
Primary User (PU): Licensed, Priority. E.g., radio astronomy receiver.

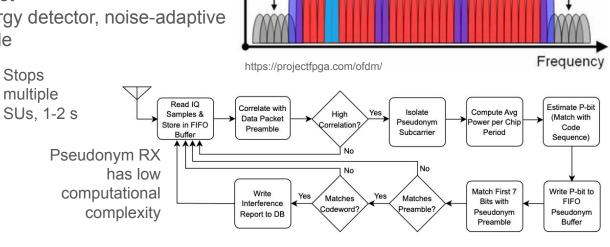
 When interference detected, demodulates pseudonym, writes report to a database

## Secondary User (SU):

- Generates random pseudonym
- Watermarks RF transmissions
- Checks DB to see if its pseudonyms were reported
  - Vacates band if so




Pseudonym
Database:
records PU
interference
reports &
responds to
queries from
SUs for
pseudonym
reports


- [1] Meles G. Weldegebriel, Jie Wang, Gregory Hellbourg, Neal Patwari, Watermarking of OFDM for pseudonymetry: analysis and experimental results, ICC 2024 Workshop on Catalyzing Spectrum Sharing via Active-Passive Coexistence, 9 June 2024.
- [2] Meles Gebreyesus Weldegebriel, Neal Patwari, Ning Zhang, and Jie Wang, Pseudonymetry: Precise, Private Closed Loop Control for Spectrum Reuse with Passive Receivers, 2022 IEEE Intl. Conf. on RFID, 17 May 2022, pages 91-96.

## Pseudonymetry Implementation & Results

Full system OTA 3.4GHz implementation on POWDER https://github.com/StopSec/StopSec-System

- Watermarking: coded on-off modulation of 1 "pseudonym subcarrier" at 1-2 bits per packet
- Pseudonym receiver uses energy detector, noise-adaptive RX, correlation with known code





Pseudonym Subcarrier

Pilot

Guard

Sub-Carriers

Guard

**Sub-Carriers** 

Meles Weldegebriel, Zihan Li, Dustin Maas, Greg Hellbourg, Ning Zhang & Neal Patwari, Sensing and stopping interfering secondary users: validation of an efficient spectrum sharing system, arXiv:2507.13554 [eess.SP], 17 July 2025.

# Security of sharing with reactive management

## Privacy-Preserving:

- Random, self-generated, unlinkable pseudonyms
  - No device identifiers/metadata logged; PU records only {pseudonym, timestamp, channel}.
- Anonymity over time
  - Rotate pseudonym after each completed transmission to prevent tracking/fingerprinting.
  - TTL expiry prunes stale pseudonyms to curb long-term linkability and reduce spurious blocks.

#### Secure Database:

- RBAC + authenticated APIs
  - Only PUs/trusted proxies can write; Others read-only/denied
  - Input validation + write logging for traceability; Valid only if:
    - 1): Correct structure/type of pseudonym (i.e., pseudonym decodes to exactly 26 bits after FEC);
    - 2): Physically/timely plausible (i.e., now t\_report ≤ max propagation/processing window; entry isn't expired; channel matches PU's band; etc.)

# Implications for radio astronomy observatories

## Radio Astronomy & Spectrum Use

- Protected bands are essential but not sufficient for deep sensitivity
- Observations often extend beyond protected bands into spectral gaps
- Some bands remain unexplored due to continuous RFI

### Spectrum Management & RFI Detection

- Dynamic spectrum access enables use of underused bands and fast follow-ups
- Monitoring systems detect RFI but have limited sensitivity
- Telescopes are better suited to pinpoint RFI sources

## Pseudonym Extraction Pipeline

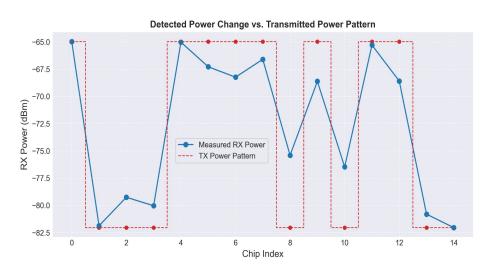
- Telescope data: dynamic spectra, not ideal for signal ID
- I/Q data too heavy for wide bandwidths
- New pipeline extracts signal pseudonyms from spectra in real time

# RFI Identification From Spectrogram Data





Location: Outdoor antenna array with parabolic dishes.


**Transmitter:** Laptop + SDR device used to generate controlled

power change patterns.

**Receiver:** Large radio telescope dishes captured the transmitted

signals.

**Measurement:** Spectrogram data was collected to detect changes corresponding to transmitted patterns.



#### **Initial Results**

Blue line & circles: Detected RX power changes.

**Red dashed line:** Expected transmitted power change pattern.

**Observation:** High-power chip align with RX power peaks.

Low-power chip align with RX valleys.

**Conclusion:** The received power change patterns match the transmitted sequence, validating successful detection and

synchronization in a real-world setting.