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Abstract- Base station location has significant impact on
network lifetime performance for a sensor network. For a multi-
hop sensor network, this problem is particular challenging as
we need to jointly consider base station placement and data
routing strategy to maximize network lifetime performance. This
paper presents an approximation algorithm that can guarantee
(1 -) optimal network lifetime performance for base station
placement problem with any desired error bound £ > 0. The
proposed (1 -) optimal approximation algorithm is based on
several novel techniques that enable to reduce an infinite search
space to a finite-element search space for base station location.
The first technique used in this reduction is to discretize cost
parameters (with performance guarantee) associated with energy
consumption. Subsequently, the continuous search space can be
broken up into a finite number of subareas. The second technique
is to exploit the cost property of each subarea and represent it by
a novel notion called "fictitious cost point," each with guaranteed
cost bounds. This approximation algorithm offers a simpler and
in most cases practically faster algorithm than a state-of-the-art
algorithm and represents the best known result to this important
problem.

Index Terms- Theory, approximation algorithm, base station
placement, network lifetime, sensor network.

I. INTRODUCTION

An important characteristic for wireless sensor networks is
the so-called network lifetime performance, which is highly
dependent upon the physical topology of the network. This is
because energy expenditure at a node to transmit data to an-
other node not only depends on the data bit rate, but also on the
physical distance between these two nodes. Consequently, it is
important to understand the impact of location related issues
on network lifetime performance and to optimize topology
during network deployment stage.

This paper considers the important base station placement
problem for a given sensor network such that network lifetime
can be maximized. Specifically, we consider the following
problem. Given a sensor network with each node i producing
sensing data at a rate of ri, where should we place the base
station in this sensor network such that all the data can be
forwarded to the base station (via multi-hop and multi-path if
necessary) such that the network lifetime is maximized?

In Section V, we give a comprehensive review of related
work on network lifetime and node placement problems and
contrast their differences with this work. The most relevant
work on this problem is done by Efrat, Har-Peled, and
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Mitchell in [7], which represents the state-of-the-art result on
this problem. However, the computational complexity of the
algorithm in [7] is higher than the one to be presented in this
paper for most cases.

The main idea in our approximation algorithm is to exploit
a clever way to discretize cost parameters associated with
energy consumption with tight upper and lower bounds. As a
result, we can divide the continuous search space into a finite
number of subareas. By further exploiting the cost property
of each subarea, we conceive a novel idea to represent each
subarea with a so-called "fictitious cost point," which is an N-
tuple cost vector with each component representing the upper
bound of cost to a sensor node in the network. Based on these
ideas, we can successfully reduce an infinite search space for
base station location into finite "points" upon which we can
apply a linear programming (LP) to find the corresponding
achievable network lifetime and data routing solution for each
of these points. By comparing the achievable network lifetime
among all the fictitious cost points, we show that the largest
is (1 -) optimal. We also show that placing the base station
at any point in the subarea corresponding to the best fictitious
cost point is (1 -) optimal. We analyze the complexity of
our approximation algorithm and show that it is practically
faster than the algorithm proposed in [7] for most cases, which
was the best known result on this problem. As a result, the
algorithm presented in this paper represent the best known
result to the base station placement problem.

The rest of this paper is organized as follows. Section II
presents the network model used in this study and describes the
base station placement problem. Section III presents the main
result of this paper, which is a (1-) approximation algorithm
for the base station placement problem. In Section IV, we
present some numerical results illustrating the efficacy of
the proposed algorithm. Section V reviews related work and
Section VI concludes this paper.

II. NETWORK MODEL AND PROBLEM DESCRIPTION

A. Network Model

We consider a static sensor network consisting of a set of
A' sensor nodes deployed over a two-dimensional area. The
location of each sensor node is fixed and the initial energy on
sensor node i is denoted as ei. Each sensor node i generates
data at a rate ri. We assume there is one base station that
needs to be deployed to collect sensing data.
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In this paper, we focus on the energy consumption due
to communications (i.e., data transmission and reception).
Suppose sensor node i transmits data to sensor node j with
a rate of fij b/s. Then we model the transmission power at
sensor node i as

(1)pti = cij * fii .

cij is the cost on link (i, J), and can be modeled as

Cij= /31+/32 dij, (2)

where Q1 and 32 are constant coefficients, dij is the physical
distance between sensor nodes i and j, a is the path loss index,
and 2 < a < 4 [8].
The power consumption at the receiving sensor node i can

be modeled as [8]:

(3)
k7i

Pi = P EZ fki

kcAr

where fki (also in b/s) is the incoming bit-rate received by
sensor i from sensor k. It is easy to observe from (1), (2), and
(3) that the location for the base station and data routing in the
network both have a profound impact on energy consumption
among the nodes.
The above transmission and reception energy model as-

sumes a contention-free MAC protocol, where interference
from simultaneous transmission can be effectively avoided.
For deterministic rate traffic pattern model in this paper, a

contention-free MAC protocol is fairly easy to design (see,
e.g., [13]) and its discussion is beyond the scope of this paper.

Table I lists all notation used in this paper.

B. Problem Description

The focus of this paper is to investigate how to optimally
place a base station to collect data in a sensor network so that
the network lifetime can be maximized. The network lifetime
is defined as the time until any sensor node uses up its energy.

To achieve optimality, the data generated by each sensor node
is allowed to be routed to the base station via multi-hop or

multi-path. Also, power control at a node is allowed.
Assume that base station B is located at a point p. Denote

(XB, YB) the position of point p and T the network lifetime.
Then a feasible routing solution achieving this network life-
time T should satisfy both flow balance and energy constraints
at each sensor node. These constraints can be formally stated
as follows. Denote fij and fiB the data rates from sensor node
i to sensor node j and base station B, respectively (since we
allow multi-path). Then the flow balance for each sensor node
t is

k7i
fki + r

kcAr
E fij fB ,

.EA

i.e., the sum of total incoming flow rates plus self-generated
data rate is equal to the sum of total outgoing flow rates. The
energy constraint for each sensor node i is

k7Xi j7Xi

E p fkiT+ cijJ iT+ciB(p) fiBT < ei, (5)
keA jeAf

TABLE I

NOTATION

i.e., total consumed energy due to receiving and transmission
over time T cannot exceed its initial energy ei. By (2), we

have

CiB(P) = 1 +Q2 [1xB -S) + (YB y)3]

which is a non-linear function of base station location
(XB, YB).

It is not hard to see that the above formulation will lead to an

optimization problem in the form of non-convex programming.

III. ALGORITHM DESIGN

A. Optimal Routing for A Given Base Station Location

As discussed earlier, the maximum network lifetime de-
pends on both base station location and data routing. To start
with, we show that for a given base station location, we can

find the corresponding maximum achievable network lifetime
and optimal routing via a single linear programming (LP) [1].
The objective function is network lifetime T and the con-

straints are given in (4) and (5). Multiply both sides of (4) by
T and denote Vij = fijT and ViB = iBT, where Vij (or ViB)
can be interpreted as the total data volume from sensor node
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Symbols Definitions
A The search space for the base station, which can be

the smallest enclosing disk to cover all sensor nodes
Am The m-th subarea in the search space
B The base station
cij Power consumption coefficient for transmitting data
(or CiB (P)) from sensor i to sensor j (or base station B at point p)
Cnun, Cmax Lower and upper bounds of CiB (P)
C[h] =31 (1 + ) h the transmission cost for the h-th circle
dij Distance between sensor i and sensor j
(or diB) (or base station B)
ei Initial energy at sensor i
fij Data rate from sensor i to sensor j
(or fiB) (or base station B)
Hi Number of circles at sensor node i for a given £
K Number of total circles for a given £
M Number of subareas for a given £
N Number of sensor nodes in the network
JA Set of sensor nodes in the network
OA The center of A
Pm Fictitious cost point for the m-th subarea
Popt The best location among all points in A
p The best location among M fictitious cost points
PE A point in the subarea corresponding to p*
'ri Sensing data rate produced at sensor i
RA The radius of A
Tm Maximum achievable network lifetime by pm
Topt Optimal network lifetime achieved by Popt
T* = max{Tm: m = 1, 2,. M}
TE (1-) optimal network lifetime achieved by pE
viv iTotal data volume from sensor i to sensor j
(or ViB) (or base station B)
a Path loss index

i,32 Constant terms in transmission power modeling
E Desired small approximation error, £ > 0
p Power consumption coefficient for receiving data
V)Opt The best routing solution for Popt
__ _ Routing solution for p* obtained via LP



to sensor node j (or base station B). We have

Max T
j7ii

E Vi - ViB = 0 (i C )
jeA

iiY CijVij + CiB(P)ViB <e C

.(EA
(i C A/-) (6)

T,Vij,V B> (i,j_JV,i j).

It should be note that for a given base station location, CiB (p)'s
are constants. Once we solve the above LP, we can obtain
optimal routing solution for fij and fiB by fij = VT and

XV_BiTfiB =

B. Our Approach

Although for a given base station location, we can find
the corresponding maximum achievable network lifetime via
a single LP, it is not possible to examine all points (infinite)
in the two-dimensional plane and select the point with the
maximum network lifetime among all the points. Our approach
to this search problem is to narrow down the search space to a

finite set of points, among which there exist at least one point
with (1 -) optimal network lifetime.
As a first step, we show that it is only necessary to consider

points inside the so-called smallest enclosing disk (SED),'
which is a unique disk with the smallest radius that contains
all the N sensor nodes in the network and can be found in
O(N) time [5]. This is formally stated in the following lemma,
which can be easily proved via contradiction [12].

Lemma 1: To maximize network lifetime, the base station
location must be within the smallest enclosing disk A that
covers all the N sensor nodes in the network.
Now we have narrowed down the search space for base

station B from a two-dimensional plane to SED A. However,
the number of points in A remains infinite. It is tempting
to divide A into small subareas (e.g., a grid-like structure),
A1,A2,, up to say AM, i.e.,

M

A U Am

m=l

When each subarea is sufficiently small (i.e., M is sufficiently
large), we can use some point qT C ATm to represent Am,

m = 1,2, ,M. By applying an LP on each of the M
points, we can select the best location among all points and
obtain a good solution for base station placement. However,
such approach is heuristic at best and does not provide any

theoretical guarantee on performance.
The key to provide a theoretical guarantee on performance

is to divide the subarea in such a way that tight bounds can

be guaranteed on any point in the subarea. If this is possible,

1In fact, we can consider points in an even smaller area, i.e., the convex hull
of all sensor nodes. However, using convex hull cannot reduce the order of
complexity of our algorithm. On the other hand, the use of SED can simplify
the discussion.

D[1/ D[2]X D[3])D33
12

Fig. 1. A sequence of circles with increasing costs with center at node 4.

then we may be able to exploit such properties and develop an

approximation algorithm that yields provably (1 ) optimal

network lifetime performance. In the following section, we

show a novel technique to divide SED A into subareas where

each subarea can be represented by a point with a set of

tight bounds. Consequently, a (1 ) optimal approximation

algorithm can be developed.

C. Subarea Division and Fictitious Cost Points

1) Subarea Division. The proposed subarea division (with

guaranteed performance bounds) hinges upon discretization of

the cost parameters. A close look at the energy constraint in (6)

suggests that the location of the base station is embedded in the

cost parameter CiB(p)'s. In other words, if we can discretize
these cost parameters, we may also discretize the location for

the base station.

Since the search space is narrowed down to the SED A, we

can limit the range for the distance between a sensor node

to the possible location for the base station. Denote OA and

RA the origin and radius of the SED A. For each sensor node

1 JV, denote Di,QoA the distance from sensor nodeii to the
origin of disk A (see node 4 in Fig. as an example). Denote

Drrn and Dmothe minimum and maximum distances between

sensor node t and possible location for the base station B,

respectively. Then we have

Diman

Dmax

0,

DiQA + RA.

Corresponding to DmBn and D,aX, denote C"" and C,aX the
minimum and maximum cost between sensor node i and base
station B, respectively. Then by (2), we have

Cimn
B

ramax
WiB

/31, (7)

1+32(D"x) Q=1 +132 (Di,oA+RA)% (8)

Given the range of diB e [D n-1n DmaX] = [0, Di,0A + RA]
for each sensor node i, we now show how to divide disk
A into a finite number of subareas with the distance of
each subarea to sensor node i C A' meeting some tight
bounds. Specifically, from a sensor node i, we draw a se-

quence of circles centered at this sensor node, each with in-
creasing radius D [1], D [2],... D [Hi] corresponding to costs

514

k7i
s.t. ZVki+riT

kcAr
k7i

Z PVki +
kcAr



So when the base station B is at any point p C Am, we have

Fig. 2. An example of subareas within disk A that are obtained by
intersecting arcs from different circles.

C[1], C[2],... C[HJ] that are defined as follows.

C[h] =CiB(1 + )h = (1 + )h (1 < h < Hi) (9)

The geometric series C[h] (with a factor of (1+ )) is carefully
chosen and will offer tight performance bounds for any point
in a subarea (more on this later). The number of required
circles Hi can be determined by having the last circle in the
sequence (with radius D[Hi]) to completely contain disk A,
i.e. D[Hi] > DmBax or equivalently,

C[H7] > Cma

This will set the limit Hi as

H n(Crax/Cmn )
H, - Iln(1 + E)

)~~~~~~(0
in(1+d oln(I+ (10)

For example, for node 4 in Fig. 1, we have H4 3, i.e., D[3]
is the circle centered at node 4 that will completely contain
the disk. As a result, with sensor node i as center, we have a
total of Hi circles, each with cost C[h], h = 1, 2, , Hi.

The above partitioning of SED A is with respect to a specific
node i. We now perform the above process for all sensor
nodes. These intersecting circles will cut disk A into a finite
number of non-uniform subareas, with the boundaries of each
subarea being either an arc (with a center at some sensor node
i and some cost C[h], 1 < h < Hi) or an arc from SED A.
As an example, the SED A in Fig. 2 is now divided into 28
subareas.
We now show that under our subarea partitioning technique,

for any point in a given subarea, its cost to each sensor node
in the network can be tightly bounded.

Note that in regard to every sensor node i, a subarea AAm
must be within some ring (with a center at sensor node i).
Denote the index of this ring (w.r.t. sensor node i) as hi(A4m).

(1 1)
C[hi,(A)]where we define C[O] = C7' = Q1. Since C[hj(A.) 1]

1 + E by (9), we have a very tight upper and lower bounds for
CiB (p) (now we see the benefit of our discretization technique
for cost and distance).

2) Fictitious Cost Point: To represent each subarea Am,
m =1, 2, , M, with a point, we introduce a novel concept
called fictitious cost point.

Definition 1: Denote the fictitious cost point for subarea
AAm (m = 1,2, , M) as Pm, which is represented by an
N-tuple vector with its i-th element (i = 1, 2,. , N) being
upper cost bound for any point in subarea Am to the i-th
sensor node in the network.

That is, the N-tuple cost vector for fictitious cost point pm
is [C1B (Pm), C2B (Pm), , CNB (Pm)], with the i-th component
CiB(Pm) being

CiB(Pmn) = C[hi(Anm)] : (12)

where hi(A,m) is determined by (11).
As an example, the fictitious cost point for subarea with

corner points (ql, q2, q3) in Fig. 2 can be represented by
4-tuple cost vector [C1B(Pm), C2B(Pm), C3B(Pm), C4B(Pm)] =

[C [2], C[3], C[2], C[3]], where the first component C[2] rep-
resents an upper bound of cost for any point in this subarea
to sensor node 1, the second component C[3] represents an
upper bound of cost (which is loose here) for any point in this
subarea to sensor node 2, and so forth.
We emphasize that the reason we use the word "fictitious"

is that a fictitious cost point pm may not be mapped to a
physical point within the corresponding subarea Am. This
happens when there does not exist a physical point in subarea
AAm that has its costs to all the N sensor nodes equal (one
by one) to the respective N-tuple cost vector embodied by
Pm simultaneously. As an example, any point within the dark
subarea bounded by corner points ql, q2, and q3 cannot have
its costs to the four sensor nodes in the network equal to the
respective element in [C[2], C [3], C[2], C [3]] simultaneously,
where [C [2], C[3], C[2], C[3]] is the cost vector of the fictitious
cost point for this subarea.

Using "fictitious" points to represent subareas and to con-
struct a finite search space is a key step in design our low
complexity approximation algorithm. As a contrast, in [7],
the authors use physical points to construct a finite search
space. Thus, they cannot discretize cost directly. Instead, they
consider how to discretize transmission energy, flow rate, and
network lifetime such that cost can be discretized. The number
of discretized costs is the product of the numbers of discretized
transmission energies, flow rates, and network lifetimes. We
will show that the complexity associated with the algorithm
in [7] is higher than ours for most cases.
The following important property for fictitious cost point

Pm will be used in the proof of (1 -) optimal of the
approximation algorithm.
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Property 1: For any point p C AAm and the corresponding
fictitious cost point Pm, we have

CiB(Pm) < (1 + -)CiB (P)
Proof: By (11) and definition of fictitious cost point pm

(see (12)), we have

CiB(Pm) = C[hi(Anm)] = (1 + E) * C[hi(A4m) - 11
< (1+£)CiB(P),

where the inequality follows from (11). This completes the
proof. U

D. Summary of Algorithm and Example
By discretizing the cost parameters and the corresponding

distances, we have partitioned the search space (SED A) into
a finite number (M) subareas. By introducing the concept of
fictitious cost points, we can represent each subarea with a
point. As a result, we can now readily apply the LP approach
discussed in Section III-A to examine each point and choose
the point that offers the maximum network lifetime. The
complete approximation algorithm is outlined below.

Algorithm 1:
1) Find the smallest enclosing disk A that covers all the
N nodes.

2) Within A, compute the lower and upper cost bounds
C7n and C7BX for each node i CJVA by (7) and (8).

3) For a given E > 0, define a sequence of costs C[1],
C[2], .. C[HJ] by (9), where Hi can by calculated by
(10).

4) For each node i, draw a sequence of Hi- 1 circles
corresponding to cost C[h] centered at node i, 1 < h <
Hi. The intersection of these circles within disk A will
divide A into M subareas A1, A2, *, AM.

5) For each subarea Am, 1 < m < M, define a
fictitious cost point pm by an N-tuple cost vector
[C1B (Pm): C2B (Pm): * *,CCB (Pm)] where CiB (Pm) is de-
fined in (12).

6) For each fictitious cost point pm, 1 < m < M, apply the
LP in Section III-A and obtain the achievable network
lifetime Tm.

7) Choose the fictitious cost point p* that offers the max-
imum network lifetime among these M fictitious cost
points. The base station can be placed at any point pE.
within the subarea corresponding to p*.

8) For point p, apply the LP in Section III-A and obtain
(1 -) optimal network lifetime T.

Remark. Note that if there is additional area constraint
on base station placement, then the above algorithm can be
easily extended to accommodate this constraint. That is, we
can define A in Step 1 to be the intersection between SED
and the allowed area for base station placement.
Example. We use a small 3-node network to illustrate the
steps of the approximation algorithm. The location, data rate,
and initial energy for each sensor are shown in Table II, where
the units of distance, rate, and energy are all normalized. Also,

TABLE II
SENSOR LOCATIONS, DATA RATE, AND INITIAL ENERGY OF THE EXAMPLE

SENSOR NETWORK

Node Index
1
2
3

(xi, yi) ri
(0.1, 0.5) 0.8
(1.1, 0.7) 1.0
(0.4, 0.1) 0.5

F
ei
390
400
130

0.6

y

0.4

0.2

0.2 0.4 0.6 0.8
X

Fig. 3. The SED is divided into 16 subareas in the example sensor network.

we set a = 2, 1 = 1, 2 = 0.5, and p = 1 under the
normalized units. For illustration, we set the error bound to

0.2.2
Step 1. We identify SED A with origin OA = (0.61,0.57)

and radius RA = 0.51 (see Fig. 3).
Step 2. We first have Di,OA = RA = 0.51 for each node i,

1 < i < 3. We then find the lower and upper bounds of CiB
for each node i, 1 < i < 3, as follows.

cmincB
cmax

iB

31 = l
Qi + /32(Di,oA + RA)e
1 + 0.5 (0.51 + 0.51)2 1.52

Step 3. For each node i, 1 < i < 3, we find

H( (Di,OA +

H, [in + ~ln(1+ E)
In (I + 0i5 (0.51 + 0.51)2)

Fn (+ln(1+0.2) 1
and

C[1]
C[2]
C[3]

3(1 + E) =

31 (1+ )2
Q31 (1 + )3

1 (1 + 0.2) =
= 1 (1 + 0.2)2
= 1 (1 + 0.2)3

3

1.20,
= 1.44,
= 1.73 .

2This £ is used for illustration here only. In our numerical results in
Section IV, we use £ = 0.05. for all computations.
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Step 4. We draw circles centered at each node i, 1 < i < 3,
and with cost C[h], 1 < h < Hi = 3, to divide the whole disk
A into 16 subareas Al, A2, *.. , A16-

Step 5. We define a fictitious cost point pm for each subarea
Am, 1 < m < 16. For example, for fictitious cost point Pi, we
define the 3-tuple cost vector as [C1B (P1 ), C2B (P1), C3B (P1)]
[C[l], C[3], C[2]] = [1.20, 1.73, 1.44].

Step 6. We apply LP in Section 111-A on these 16 fictitious
cost points and obtain the achievable network lifetime.

Step 7. Since the fictitious cost point p* = p9 has the
maximum achievable network lifetime 226.47 among all 16
fictitious cost points, we can place the base station at any
point in subarea A9, e.g. p. = (0.6, 0.6).

Step 8. We apply LP in Section 111-A on p. and obtain a
(1-) optimal network lifetime T. = 227.07. This completes
the algorithm.

E. Proof Sketch and Complexity Analysis
Denote Popt the optimal location for base station placement

(unknown) and Topt and bopt the corresponding maximum
network lifetime and data routing solution. For T. obtained
in Algorithm 1, we have the following theorem.

Theorem 1: The achieved network lifetime TE is (1-£)
optimal, i.e., T. > (1 -)TOpt.
A complete proof of the above theorem can be found in [12].

We give a sketch of the proof here. Suppose that Popt is in a
subarea Am. By Property 1, for the corresponding fictitious
cost point Pm, we have CiB(Pm) < (1 + -)CiB(Popt). It can
be shown that under Pm and bopt, the total consumed energy
at each node i is no more than ei at time (1 -)TOpt, i.e.,
the network lifetime under Pm and Oopt is at least (1 -)TOpt
Then for the achievable network lifetime Tm by pm under its
optimal data routing, we have

(13)

TABLE III

EACH NODE'S CARTESIAN COORDINATES, DATA GENERATION RATE AND

INITIAL ENERGY FOR A SMALL 10-NODE NETWORK.

(xi, yi)
(0.81, 0.86)
(0.47, 0.44)
(0.25, 0.36)
(0.53, 0.16)
(0.91, 0.86)

0.7
1.0
0.2
0.8
0.1

ei
390
440
440
410
320

(xi, yi)
(0.25, 0.71)
(0.28, 0.03)
(0.48, 0.22)
(0.66, 0.52)
(0.44, 0.21)

0.4
0.6
0.1
0.2
0.9

ei
400
330
300
210
330

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

Fig. 4. A schematic showing the routing solution for the 10-node network
with base station being placed at (0.59, 0.31).

either an arc centered at some sensor node i (with some cost
C[h], 1 < h < Hi, where Hi is defined in (10)) or an arc
of disk A. Since there are Hi- 1 circles radiating from each
sensor node i and one circle for disk A, the number of circles
is K = 1 +Z,ic ^(Hi -1). The maximum number of subareas
that can be obtained by K circles is upper bounded by [5]

M<K22K+2. (15)

Note that the achievable network lifetime T* by p* is the
largest among the achievable network lifetimes by all fictitious
cost points (see Step 7 in Algorithm 1). In particular, T* >
Tm. By (13), we have

(14)

By Definition 1, for a point p, in the corresponding subarea to
fictitious cost point p*, we have CiB (p,) < ci, (p*). Denote 4*
the optimal data routing solution for p*. It can be shown that
under p, and 4*, the total consumed energy at each node i is
no more than ei at time T*, i.e., the network lifetime under p,
and 4* is at least T*. Then for the achievable network lifetime
T, by p, under its optimal data routing, we have TE > T*.
Thus, by (14), we have

TE. > T* > (1- E)TOpt,
which is the result in Theorem 1.

The complexity of Algorithm 1 can be measured by the
number of LPs that need to be solved, which is equal to the
number of subareas M. The boundaries of each subarea being

We have M = O(K2) = 0((Zg Hi)2) = Q((N)2).
As for comparison, the complexity of the approximation

algorithm proposed in [7] is given in Section IV. Numerical
comparison on complexity for some network topologies are
also given there.

IV. NUMERICAL RESULTS

In this section, we apply the approximation algorithm on
various network topology and use numerical results to demon-
strate its efficacy. The units of distance, rate, and energy are
all normalized appropriately. The normalized parameters in
energy consumption model are 31 = 32 =P 1 and we set
path loss index a = 2.
We consider two randomly generated networks consisting of

10 and 50 nodes deployed over an 1 x 1 square. In all cases,
the targeted accuracy for approximation algorithm is 0.95 of
optimal, i.e., = 0.05.
The network setting (location, data rate, and initial energy

for each node) for the 10-node network is given in Table III.
By applying Algorithm 1, we find that fictitious cost point with
cost vector (1.05, 1.28, 1.05, 1.22, 1.16, 1.05, 1.05, 1.05, 1.41,
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TABLE IV

EACH NODE'S CARTESIAN COORDINATES, DATA GENERATION RATE AND

INITIAL ENERGY FOR A 50-NODE NETWORK.

(xi, yi) ri e1i (xi, yi) ri ei
(0.13, 0.15) 0.1 260 (0.08, 0.69) 0.4 130
(0.19, 0.06) 1.0 390 (0.59, 0.16) 1.0 290
(0.10, 0.60) 0.9 240 (0.89, 0.78) 1.0 300
(0.19, 0.10) 0.2 60 (0.89, 0.54) 0.3 140
(0.00, 0.02) 0.9 270 (0.21, 0.74) 0.1 80
(0.42, 0.24) 0.9 400 (0.43, 0.24) 0.2 360
(0.19, 0.79) 0.5 380 (0.11, 0.64) 1.0 380
(0.75, 0.23) 0.3 440 (0.33, 0.54) 1.0 310
(0.47, 0.82) 0.4 60 (0.69, 0.33) 0.3 190
(0.53, 0.04) 0.1 500 (0.22, 0.84) 0.8 150
(0.87, 0.27) 0.4 290 (0.47, 0.00) 0.9 290
(0.67, 0.02) 0.5 480 (0.94, 0.24) 0.3 150
(0.48, 0.20) 0.8 420 (0.32, 0.26) 0.6 460
(0.68, 0.80) 0.4 90 (0.37, 0.96) 0.3 60
(0.52, 0.35) 0.3 130 (0.81, 0.86) 0.7 240
(0.97, 0.30) 0.2 400 (0.37, 0.50) 0.8 270
(0.23, 0.42) 0.3 150 (0.65, 0.48) 0.9 220
(0.56, 0.40) 0.5 220 (0.91, 0.23) 0.4 470
(0.17, 0.00) 0.5 460 (0.44, 0.47) 0.7 150
(0.41, 0.10) 0.1 360 (0.81, 0.98) 0.8 110
(0.03, 0.47) 0.8 150 (0.30, 0.39) 0.1 310
(0.19, 0.17) 0.3 170 (0.78, 0.58) 0.6 110
(0.56, 0.16) 0.1 290 (0.73, 0.52) 0.7 290
(1.00, 0.88) 0.7 430 (0.91, 0.29) 0.9 340
(0.86, 0.14) 0.6 130 (0.96, 0.98) 0.2 190

0.8 - ° 0

06O
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Fig. 5. A 50-node network.

1.05) having the maximum network lifetime T* 357.49,
which is at least 95% of the optimal. By placing the base
station at a point in the corresponding subarea, e.g., at point
(0.59,0.31), the network lifetime is TS 359.17 > T*
Thus, the network lifetime is also at least 95% of the optimal.
The flow routing solution is shown in Fig. 4, where a circle
represents a sensor node and a star represents the location of
the base station (0.59, 0.31).

The network setting (location, data rate. and initial energy
for each node) for the 50-node network is given in Table IV.
By applying Algorithm 1, we obtain a (1 -) optimal
solution with TS 135.17 when the base station is placed
at (0.51,0.68) in Fig. 5.

A. Complexity Comparison

We now compare the complexity of our algorithm (Sec-
tion III-D) with the approximation algorithm proposed in [7].
Similarly, the complexity of the approximation algorithm in
[7] can also be measured by the number of LPs that need to
be solved, which is

L42 F aln2 F8a71 [In (8N3j (Mrj/(r) 1
L ln(1 + F/8)1 icA ln(1 + F/8)

To have a sense of quantitative comparison of complexity
between our algorithm and the one in [7], we use (15)
and (16) on the 10 and 50-node network considered in this
section. Corresponding to each network topology, we find
that the complexity of the approximation algorithm in [7] is
3.7x107 and 5.2x106 times of the complexity of our proposed
approximation algorithm.

V. RELATED WORK

Due to energy constraint, network lifetime for a wireless
sensor network is limited. As a result, there is a flourish of
research activities on how to prolong network lifetime. Many
of these efforts (see, e.g., [2], [4], [10], [17]) studied lifetime
problem under given network topology and without explicit
consideration on the impact of node placement on network
performance.
Among the body of research on node placement, researchers

have studied sensor node placement [6], [14], [15], [18], relay
node placement [9], [16], and base station placement [3], [7],
[11]. The main focus of sensor node placement has been on
coverage in order to have either better geographical coverage
of the area or better connectivity in the network. Relay node
placement deals with how to place special auxiliary nodes
within a sensor network so that network performance (e.g.,
connectivity, lifetime) can be improved. Related work in relay
node placement (e.g., [9], [16]) have been limited to heuristic
algorithm instead of providing performance guarantee.

Related work on base station placement include [3], [7],
[11]. In [3], Bogdanov et al. studied how to place base station
so that the network flow is proportionally maximized subject
to link capacity. The authors show that although it is possible
to find optimal solutions for special network topology (e.g.,
grid), the base station placement problem for an arbitrary
network is NP-complete. The authors also pointed out that an
approximation algorithm with any guarantee was not known
at the time of their paper and subsequently proposed two
heuristic algorithms. In [11], Pan et al. studied base station
placement problem to maximize network lifetime. The optimal
location is only determined for the simple case where only
single-hop routing is allowed. The more difficult problem
involving multi-hop routing was not addressed.

In [7], Efrat et al. proposed the first (1 -E) optimal
approximation algorithm to the base station placement prob-
lem. However, since they constructed a finite search space
of physical points, the computational complexity of their
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algorithm is higher than the one proposed in this paper for
most cases.

VI. CONCLUSIONS

In this paper, we investigated the base station placement
problem for a multi-hop sensor network. The main result
is an approximation algorithm that can guarantee (1- )
optimal network lifetime performance for base station place-
ment problem with any desired error bound E > 0. The
proposed (1-) approximation algorithm was based on several
novel techniques such as discretization of cost parameters
(and distances), division of search space into finite number of
subareas, and representation of subareas with fictitious points
(with nice bounding properties on costs). The proposed ap-
proximation algorithm offers significant complexity reduction
when compared to a state-of-the-art algorithm and represents
the best known result to the described base station placement
problem.

REFERENCES

[1] M.S. Bazaraa, J.J. Jarvis, and H.D. Sherali, Linear Programming and
Network Flows, second edition, John Wiley & Sons, 1990.

[2] M. Bhardwaj and A.P. Chandrakasae, "Bounding the lifetime of sensor
networks via optimal role assignments," in Proc. IEEE Infocom,
pp. 1587-1596, New York, NY, June 23-27, 2002.

[3] A. Bogdanov, E. Maneva, and S. Riesenfeld, "Power-aware base station
positioning for sensor networks," in Proc. IEEE Infocom, pp. 575-585,
Hong Kong, China, March 7-11, 2004.

[4] T.X. Brown, H.N. Gabow, and Q. Zhang, "Maximum flow-life curve
for a wireless ad hoc network," in Proc. ACM MobiHoc, pp. 128-136,
Long Beach, CA, Oct. 4-5, 2001.

[5] M. de Berg, M. van Kreveld, M. Overmars, and 0. Schwarzkopf,
Computational Geometry: Algorithms and Applications, second edition,
Chapter 4, Springer-Verlag, New York, NY, 1998.

[6] S.S. Dhillon and K. Chakrabarty, "Sensor plocement for effective
coverage and strveillance in distributed sensor networks," in Proc. IEEE
WCNC, pp. 1609-1614, New Orleans, LA, March 16-20, 2003.

[7] A. Efrat, S. Har-Peled, and J. Mitchell, "Approximation algorithms
for location problems in sensor networks," in Proc. IEEE Broadband
Communications, Networks, and Systems, pp. 767-776, Boston, MA,
Oct. 3-7, 2005.

[8] W. Heinzelman, Application-specific Protocol Architectures for Wireless
Networks, Ph.D. thesis, MIT, 2000.

[9] YT. Hou, Y. Shi, H.D. Sherali, and S.F. Midkiff, "Prolonging sensor
network lifetime with energy provisioning and relay node placement,"
in Proc. IEEE SECON, pp. 295-304, Santa Clara, CA, Sep. 26-29, 2005.

[10] K. Kalpakis, K. Dasgupta, and P. Namjoshi, "Maximum lifetime data
gathering and aggregation in wireless sensor setworks," in Proc. IEEE
International Conference on Networking, pp. 685-696, Atlanta, GA,
Aug. 26-29, 2002.

[11] J. Pan, Y.T. Hou, L. Cai, Y. Shi, and S.X. Shen, "Topology control for
wireless sensor networks," in Proc. ACM Mobicom, pp. 286-299, San
Diego, CA, Sep. 14-19, 2003.

[12] Y Shi and Y.T. Hou, "Approximation algorithm for base sta-
tion placement in wireless sensor networks," Technical Report,
the Bradley Department of Electrical and Computer Engineer-
ing, Virginia Tech, Blacksburg, VA, Nov. 2006. Available at
http://www.ece.vt.edu/thou/Research.html.

[13] K. Sohrabi, J. Gao, V. Ailawadhi, and G. Pottie, "Protocols for self-
organizing of a wireless sensor network," IEEE Personal Communica-
tions Magazine, vol. 7, pp. 16-27, Oct. 2000.

[14] G. Wang, G. Cao, and T. La Porta, "Movement-assisted sensor de-
ployment," in Proc. IEEE Infocom, pp. 2469-2479, Hong Kong, China,
March 7-11, 2004.

[15] J. Wu and S. Yang, "SMART: A scan-based movement-assisted sensor
deployment method in wireless sensor networks," in Proc. IEEE Info-
com, pp. 2313-2324, Miami, FL, March 13-17, 2005.

[16] K. Xu, H. Hassanein, and G. Takahara, "Relay node deployment
strategies in heterogeneous wireless sensor networks: multiple-hop com-
munication case," in Proc. IEEE SECON, pp. 575-585, Santa Clara, CA,
Sep. 26-29, 2005.

[17] H. Zhang and J. Hou, "On deriving the upper bound of a-lifetime for
large sensor networks," in Proc. ACM MobiHoc, pp. 121-132, Tokyo,
Japan, May 24-26, 2004.

[18] Y Zou and K. Chakrabarty, "Sensor deployment and target localization
based on virtual forces," in Proc. IEEE Infocom, pp. 1293-1303, San
Francisco, CA, April 1-3, 2003.

519


