CacheKit: Evading Memory Introspection Using Cache Incoherence

Ning Zhang*, He Sun’*, Kun Sunf, Wenjing Lou*, Y. Thomas Hou*
*School of Engineering, Virginia Tech, Blacksburg, VA

{ningzhang, wjlou, thou} @vt.edu

TDepartment of Computer Science, College of William and Mary, Williamsburg, VA
{ksun} @wm.edu
nstitute of Information Engineering, Chinese Academy of Sciences, China

{sunhe} @iie.ac.cn

Abstract—With the growing importance of networked embed-
ded devices in the upcoming Internet of Things, new attacks
targeting embedded OSes are emerging. ARM processors,
which power over 60% of embedded devices, introduce a
hardware security extension called TrustZone to protect secure
applications in an isolated secure world that cannot be manip-
ulated by a compromised OS in the normal world. Leveraging
TrustZone technology, a number of memory integrity checking
schemes have been proposed in the secure world to introspect
malicious memory modification of the normal world.

In this paper, we first discover and verify an ARM Trust-
Zone cache incoherence behavior, which results in the cache
contents of the two worlds, secure and non-secure, potentially
being different even when they are mapped to the same physical
address. Furthermore, code in one TrustZone world cannot
access the cache content in the other world. Based on this
observation, we develop a new rootkit called CacheKit that
hides in the cache of the normal world and is able to evade
memory introspection from the secure world.

We implement a CacheKit prototype on Cortex-A8 pro-
cessors after solving a number of challenges. First, we employ
the Cache-as-RAM technique to ensure that the malicious code
is only loaded into the CPU cache and not RAM. Thus, the
secure world cannot detect the existence of the malicious code
by examining the RAM. Second, we use the ARM processor’s
hardware support on cache settings to keep the malicious
code persistent in the cache. Third, to evade introspection
that flushes cache content back into RAM, we utilize physical
addresses from the I/O address range that is not backed by any
real I/O devices or RAM. The experimental results show that
CacheKit can successfully evade memory introspection from
the secure world and has small performance impacts on the
rich OS. We discuss potential countermeasures to detect this
type of rootkit attack.

1. Introduction

With the emergence of the digital age and the upcom-
ing Internet of Things, embedded devices are playing an

increasing role in cyber space. Network enabled printers,
thermostats, and TVs can no longer be treated as isolated
systems, despite their limited computation capability and
power consumption. Many embedded devices serve as con-
trollers of safety critical systems, such as human pacemak-
ers, automobiles, and aircrafts. With the growing importance
of these devices, the number of attacks targeting these less
protected embedded devices is increasing [7], [33], [39].

ARM family processors are currently the most widely
used processors, powering over 60% of all embedded de-
vices [6], [23], including 4.5 billion mobile phones [12].
TrustZone is a hardware security extension offered by ARM
to provide an isolated trusted execution environment [24].
This isolated execution environment is known as the secure
world, while the non-secure execution environment is re-
ferred to as the normal world. Code executing in the secure
world is isolated and protected from the untrusted rich OS
in the normal world. A number of recent research efforts
propose to use TrustZone to protect sensitive code and data
in the secure world [53], [56], [65], [74], [77]. On the other
hand, since the code in the secure world has the privilege to
access the memory and CPU registers of the normal world,
but not vice versa, system integrity checking and malware
detection tools can be installed in the secure world to detect
potential malware in the normal world [27], [68].

In this paper, we develop a new type of rootkit called
CacheKit that can evade the TrustZone-based memory in-
trospection mechanisms by taking advantage of TrustZone
cache incoherence design. We observe and verify that code
in one TrustZone world cannot access the cache content
in the other world. In other words, even though the secure
world has the privilege to access the memory of the normal
world, it cannot access the cache contents of the normal
world. In TrustZone, the processor cache between the nor-
mal world and the secure world is separated by an additional
non-secure (NS) bit in the cache tags [15]. However, this



flag in the cache line is not directly accessible by system
software and none of the publicly available documents ex-
plicitly describe how this NS bit is controlled in the cache.
After a systematic study of Cortex-A8 processors, we figure
out that the cache lines are completely separated between
the two worlds for the same physical memory location. It
is an effective design for eliminating cache flush during
world switches; however, a rootkit may exploit such cache
incoherence to conceal its presence in the normal world.

A typical cyber attack on embedded devices consists of
two main steps. The first step aims to gain root privilege
by exploiting system vulnerabilities, and the second step is
to establish stealthy and persistent control on the computing
system by installing rootkits. Rootkit is a stealthy software
that is designed to hide the existence of malicious logic in
the system [3], [13], [14], [29], [37], [49], [63], [66].

Based on the discovery of cache-incoherence design of
ARM processors, we design and implement a prototype of
CacheKit on ARM Cortex-A8 processors. CacheKit loads
and keeps malicious code in the normal world’s cache and
uses TrustZone’s cache incoherence to evade introspections
from the secure world. We solve three major challenges in
the design of CacheKit.

First, CacheKit should load the malicious code only into
the cache of the normal world, but not into random access
memory (RAM). We adopt the Cache-as-RAM (CAR)
technique to set up a memory space for rootkit execution,
and we call this memory space CacheKit Space.

Second, CacheKit should always keep the malicious
code and data persistent in the cache. We use the ARM
hardware supports on cache setting to lock the cache lines
of the malicious code so that it will not be evicted by the
rich OS’s cache replacement mechanism.

Third, CacheKit should remain stealthy and be able to
evade both introspection from the secure world and detection
from the normal world. Because the malicious code only
exists in the processor cache but not in the RAM, CacheKit
can evade introspection from the secure world. To evade
detection tools in the normal world, we map the CacheKit
space to unused I/O address space, which is not scanned
by anti-virus tools in the normal world. Moreover, when
the instrospector in the secure world attempts to extract
the cache contents by flushing the cache, CacheKit can
automatically erase the malicious data, since the mapped
I/0O memory in cache is not backed by any real I/O devices
or RAM. CacheKit can defeat all DMA-based introspection,
since the malicious code only resides in the cache.

We implement a CacheKit prototype that achieves all
the design goals on cache loading, cache locking, and cache
concealing on the i.MX53 development board [40] after first
verifying the cache-incoherence design of the ARM Cortex-

A8 processor, which is used by the development board. We
quantify the performance degradation with different mali-
cious code sizes. Then we propose several countermeasures
to detect CacheKit with knowledge of its inner working
details.

In summary, we make the following contributions.

1) We systematically study cache coherence in ARM
TrustZone and discover a unique cache incoherence
behavior that may be exploited to build a cache-
based rootkit.

2) We design a new type of rootkit that can evade
introspection from both the secure world and the
normal world. We are able to maintain the incoher-
ent state of the processor cache in the ARM Trust-
Zone platform using the hardware-assisted cache
locking mechanism along with a physical address
manipulation technique.

3) We prove that such cache-based rootkits are real
by implementing a prototype on ARM Cortex-
A8 processors. The experimental results show that
CacheKit has small performance impacts on the
rich OS. We also present a number of countermea-
sures to detect and mitigate CacheKit.

The remainder of the paper is organized as follows.
Section 2 describes some background on ARM TrustZone
and ARM cache architecture. We present the CacheKit
architecture in Section 3. A prototype implementation is
detailed in Section 4. We evaluate CacheKit in Section 5
and present potential countermeasures against CacheKit in
Section 6. We discuss the impacts of the new rootkit in
Section 7. Section 8 discusses related works. Finally, we
conclude the paper in Section 9.

2. Background

In this section, we provide background information
about ARM TrustZone, ARM caching mechanism, and
ARM physical address space organization, all of which are
essential to our cache exploitation mechanism.

2.1. ARM TrustZone

TrustZone is a set of hardware security extensions sup-
ported since ARMv6. It consists of extensions on processor,
memory, and peripherals to ensure complete system isolation
for running secure code. The isolated environment in the
TrustZone is often called the secure world, while the conven-
tional operating environment is called the normal world or
the non-secure world. The two worlds have different access
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Figure 1. Caching in Trustzone [15]

privileges: The secure world can access most of the re-
sources belonging to the normal world, yet the normal world
cannot access any of the resources dedicated to the secure
world. Within the security configuration register (SCR) of
the cpl5 coprocessor, there is a non-secure (NS) bit that
governs the security context of the processor. When the NS
bit is cleared, the processor is in the secure world. When
the NS bit is set, the processor is in the normal world.
Memory and I/O devices are isolated by adding the new
control signal (NS bit) to each read and write channel of
the main system bus. All system resources are tagged with
an NS bit. For memory, the addition of the NS bit to the bus
transactions can be viewed as a 33rd address bit. There is
a 32-bit physical address space for secure transactions and
a 32-bit physical address space for normal transactions. For
I/O transactions, the addition of the NS bit can be viewed
as an access privilege token, and resource access will fail if
the privilege is not correct.

2.2. ARM Cache

Cache is usually constructed with fast and expensive
static random access memory. Modern processors often
use n-way set associative table cache to enable parallel
lookup operations. When TrustZone is introduced in the
ARM architecture, the organization of processor cache is
also modified. All levels of cache are extended with an
additional tag bit, which records the security state of the
transaction that accesses the memory [15]. Thus, in this
cache coherence design, when the system switches between
the two worlds, none of the cache lines need to be flushed.
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Figure 2. Physical Addressing on 32bit ARM System

A secure cache line fill can evict a non-secure cache line,
and vice versa [15]. This design significantly improves the
performance of TrustZone. Cache is usually transparent to
the OS, and it lacks fine-grained cache control with the
exception of a small number of maintenance operations.
However, to minimize cache pollution for certain embedded
computing tasks, many ARM processors allow system de-
signers to prevent cache lines from being evicted by locking
them down.

Figure 1 shows the caching mechanism in TrustZone.
The virtual address (VA) to physical address (PA) transla-
tion is put into the Translation Lookaside Buffers (TLBs),
associated with a Non-secure Table IDentifier (NSTID) that
permits secure and non-secure entries to coexist. The TLBs
are enabled in each world from a single bit in CP15 Control
Register. The level 1 cache stores the memory data at the
PA, where an NS bit marks if the cache line belongs to
the secure world or the normal world. This NS bit is set
by hardware and it is not directly accessible by system
software. In most modern processors, cache is physically
indexed, physically tagged (PIPT). When the cache lines
are PIPT, cache contents correspond only to the physical
address. This enables us to tie a physical address range to
a line in the cache.

2.3. ARM Physical Address Space

The entire range of memory addresses accessible by the
processors is often referred to as physical address space.
The length of such address space usually is not equal to the
amount of actual physical memory installed on the platform.
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This is because some of the address ranges are mapped to
the bus for I/O devices instead of dynamic random access
memory (DRAM). A typical memory layout of a 32 bit
ARM system is shown in Figure 2. The address range from
0x0 to Ox7FFFFFFF is backed by I/0 devices, and the range
from 0x80000000 to OxFFFFFFFF is backed by system
memory.

This memory layout is used by the Memory Map Unit
(MMU) to route memory requests from the processor to ei-
ther DRAM or memory-mapped I/O (MMIO). Even though
the I/O space spans 2GB of address space, some of the area
is actually left unused. For example, on i.MX53, address
space from 0x1300000 to 0x1500000 is marked as unused
system reserved.

3. CacheKit Architecture

CacheKit is a stealthy cache-based rootkit that can evade
introspection from both the secure world and the normal
world on ARM TrustZone architecture. The overall architec-
ture of CacheKit is shown in Figure 3. The commodity rich
OS resides in the non-secure world, while the introspector
that performs the integrity checking runs in the secure world.

Both the rich OS and the introspector have their own
page tables, called non-secure system page table and secure
system page table, respectively, to translate virtual addresses
to physical addresses. Even if two virtual addresses are

different in two worlds, they may be translated into the
same physical address. Intuitively, the stored value at the
physical address should be same for both secure and non-
secure world; however, the cache entry may be different in
the two worlds even if the physical address points to the
same location in the RAM. CacheKit exploits this cache
incoherence design between the two worlds in TrustZone
to conceal malicious code and data from the introspector
running in the secure world. Since the malicious code
resides only in the cache of normal world, CacheKit can
escape from the detection of both the introspector and the
DMA-based memory forensics hardware, which can only
access the content in DRAM. This cache incoherence can be
maintained with hardware cache locks in ARM processors.
We can further improve the stealthiness of CacheKit by
mapping to unused I/O address space in order to defeat
detection by antivirus tools in the rich OS.

3.1. Cache Incoherence in TrustZone

All TrustZone enabled processors augment their cache
with an NS bit so that the cache controller is able to
distinguish if a cache line is a secure cache or a normal
cache [15]. Since the NS bit in cache tag is governed by
the security context of the processor, even though the secure
world can access the RAM of the normal world, it cannot
access the cache lines for the normal world. As shown in
Figure 4, cache contents at the same physical address can
be different for the two worlds. Therefore, if the malicious
code can be saved in the normal world’s cache, memory
forensic tools in the secure world would not be able detect
it.

Since no details have been provided in public documents
on how various settings affect the cache behavior between
the secure world and the normal world, we perform a
systematic study on cache behaviors in ARM TrustZone
and verify the identified cache incoherence problem on our
prototype platform. For example, through real experiments,
we observe that the effects of a cache flush depend on the
world in which it is performed. A cache flush in the secure
world will flush all the cache lines, regardless of the NS
bit of the cache line. However, when the cache flush is
performed in the normal world, it will only flush the normal
world cache, namely, the cache lines with NS = 1.

3.2. Cache Exploitation

To exploit this cache incoherence issue in TrustZone,
we need to tackle the challenges of loading the code only
into the normal world cache and maintaining an incoherent
state in the cache. First, we adopt the Cache-as-RAM (CAR)



technique to load the malicious code into the cache of the
normal world, but not into RAM. Second, We use the ARM
cache locking mechanism to achieve persistent existence,
guaranteeing that the malicious code will not be evicted.
Lastly, we apply the physical address space manipulation
technique to further enhance the stealthiness of CacheKit
against detection from both the normal world and the secure
world. A typical cyber attack consists of two steps, gaining
privileged access to the system and maintaining access to the
system. We assume the malicious code has obtained the root
privilege and focus on maintaining stealthy and persistent
access to the system.

3.2.1. Cache Loading. The first step is to load the malicious
code into the cache, but not into RAM. Cache memory is
ubiquitous across ARM processor architectures and fami-
lies, and the cache subsystem can be initialized with few
instructions. We can use the CAR [55], [79] technique to
achieve this goal. CAR was originally developed to allow
system BIOS code to store the stack in the cache before the
DRAM is initialized. CacheKit uses CAR to store malicious
code in the cache exclusively.

The caching attributes on ARM platforms are controlled
by a number of registers and the system paging table entry.
We need to set a memory page as Writeback and Read-
able and Writable. Therefore, when memory locations are
cached, reads come from cache line and may cause cache
fills; writes update cache line but not the memory. Modified
cache lines will be written back only when cache lines
need to be deallocated or when cache coherence needs to
be maintained. The paging table entry controls the caching
strategy of the address location, which can be remapped
via the Type EXtension (TEX) remapping capability in
ARM. TEX remapping allows OS to have a finer granularity
control over the page memory attributes. When the TEX
remapping is enabled, memory attributes are now mapped
to Primary Region Remap Register (PRRR) and Normal
Memory Remap Register (NMRR).

3.2.2. Cache Locking. After using CAR to load the code
into cache, we still need to keep it persistent inside the
cache. Cache is designed to dynamically store a small subset
of frequently used data or instructions with a fixed replace-
ment policy. The processor cache is typically transparent
to the system software. However, since a finer control of
the cache is imperative in meeting run-time and energy
constraints in some embedded systems, ARM processors
(e.g., Cortex A8 of the ARMv7 family) offer a coarse-
grained cache control that allows system software to lock
certain cache ways. CacheKit makes use of this hardware-

assisted cache locking ability to persistently conceal code
in the locked cache.

Hardware-based cache locking is a well-known feature
in multiple processor families, including ARM946 [17],
CortexA8 [19], CortexA9 [16], and NViIDIA Tegra [20].
However, it is not the only way to keep memory contents in
the cache. When hardware support is absent, memory alloca-
tion can be crafted to eliminate certain cache evictions [50].
Though cache locking has been supported by hardware (e.g.,
i.MX53 in our prototype), we have to design and use it
carefully since naive use of the cache lock would lead to
the exposure of the rootkit. We will present the details in
Section 4.

3.2.3. Cache Concealing. CacheKit must evade introspec-
tions from both the secure world and the normal world.
Many modern rootkit analysis tools [9], [11] rely on accurate
acquisition of system memory for online and offline anal-
ysis. There are two common methods to acquire physical
memory in the system: extracting from the processor and
extracting from a peripheral device using direct memory
access (DMA). The DMA-based methods directly acquire
the physical memory and cannot extract cache content in the
processors. Due to the cache consistency design in Trust-
Zone, CacheKit can evade introspection from the secure
world by loading the code only into the normal world’s
cache.

In the normal world, when tools such as LiIME [8] use
a kernel module to read the physical memory from the
processor, the memory acquisition result will reflect the
cache values that contain the malicious code. To solve this
problem, we use caching of an unused system I/O address
range. Most I/O address ranges and their contents, such
as memory mapped ROM and option ROM, are static and
cannot be changed by the processor. Therefore, forensic
examiners and rootkit scanners will not search this area at
all. In fact, even if forensic examiners do want to scan these
address spaces, it is difficult to determine which address is
safe to read and which to skip since accidentally reading
certain hardware control bits can halt and crash the system.

4. CacheKit Design and Implementation

CacheKit conceals malicious code and data by cultivat-
ing a false perception for the introspection tools. The idea
is based on our observations of an undocumented cache
incoherence design property between the secure world and
the normal world. We design and implement a CacheKit
prototype that satisfies all the requirements on cache load-
ing, cache locking, and cache concealing on the i.MX53
development board.
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Figure 4. CacheKit Overall Design

The overall design of CacheKit is shown in Figure 4. The
malicious code is loaded and locked in the normal world’s
cache lines, whose physical addresses point to a system
reserved I/O address space. Since the secure world cannot
access the cache content of the normal world, it cannot
detect the rootkit that only resides in the normal world’s
cache. Furthermore, CacheKit utilizes processor cache en-
tries mapped to physical addresses of a system reserved I/O
address space which is not inspected by rootkit detection
tools in the normal world. Design details are presented in
the following.

4.1. Cache Incoherence Confirmation

On TrustZone enabled ARM platforms, the cache con-
troller separates secure cache from non-secure cache using
an NS bit in each cache line. A secure cache line fill may
evict a non-secure cache line, and vice versa. When the
system switches between the two worlds, there is no need
to flush the cache lines. This design significantly improves
the performance of TrustZone when switching between two
worlds. However, through experiments on the i.MX53 devel-
opment board, we confirm TrustZone’s cache inconsistency
property. In other words, each world cannot access the other
world’s cache content. In particular, the secure world cannot
access the normal world’s cache content, though it can
access the normal world’s RAM.

We design a series of experiments with the goal of
exploring how various system settings affect the cache be-
havior between the two worlds. The first experiment set is
to analyze how the modification of a non-secure memory
area from the secure world gets propagated to the normal

world. When the NS bit is set to 1 and cache is enabled
in the secure world, changes made in the secure world are
only visible to the secure world; the normal world can see
the changes only after a cache flush happens in the secure
world. We verify that when a modification is made in the
secure world, the NS bit of the cache line is set to 0.

Secure Caching | NS Bit | Secure Rd | Normal Rd
disable 0 incoherent coherent
enable 0 incoherent coherent
disable 1 incoherent coherent
enable 1 incoherent coherent

TABLE 1. TRUSTZONE CACHE BEHAVIOR

The second experiment is to test our hypothesis that
modification of memory in the normal world should only
change the cache of the normal world. In other words, the
change should not be visible to the secure world. Table 1
shows the experimental results that verify the correctness of
our hypothesis. Secure Caching in the first column indicates
whether the cache is enabled or disabled in the secure world.
The NS bit is the non-secure bit in the security configuration
register (SCR). It determines the current world of the proces-
sor. One exception is in monitor mode, where the processor
is still in the secure world even when SCR.NS = 1. Secure
Read and Normal Read are the results of a memory read af-
ter a memory write in the normal world, when the processor
is in the secure world and the normal world, respectively.
Coherent means the result of a memory read matches the
value that we use for the memory write in the normal world,
and incoherent means the result of memory read matches the
value before the memory write.

The third set of experiments is to figure out how the NS
bit in the cache is set in TrustZone. In other words, is the
cache line’s NS bit set by the processor execution mode,
the SCR.NS bit, or physical memory address? If the NS bit
in the cache line is set by the memory address, then there
should be no observations of incoherent cache at all. This is
because physical memory addresses are the same in both the
secure world and the normal world for all the experiments.
However, we can see from Table 1 that the NS bit of the
cache line is not set by the memory address. Next, we test
if the cache behavior is affected by the NS bit setting in
the SCR register. The NS bit in the SCR determines if the
processor is running in the normal world or in the secure
world; however, when the processor is running in monitor
mode, the execution is always in the secure world regardless
of the NS bit. We compare all the secure modifications in
monitor mode with the NS bit clear (i.e., the first two rows in



Table 1) to those with the NS bit set (i.e., the last two rows
in Table 1). If the cache line NS bit is set according to the
NS bit in the SCR, then these two sets of experiments should
have different results. However, as Table 1 shows, the results
are completely the same. Thus, we verify that the cache line
NS bit is not set by the SCR.NS bit. Finally, we verify that
the processor execution mode determines the cache value
observed in each world regardless of whether secure caching
is on or off. Therefore, since the cache lines are separated
by the processor execution mode in TrustZone, cache lines
in the normal world are only visible to the normal world
and the secure world cannot access these lines.

4.2. Cache Incoherence Exploitation

Based on the cache incoherence issue in TrustZone, a
stealthy cache-based rootkit can be successfully loaded and
concealed in the normal world’s cache through a three-step
process involving cache loading, cache locking, and cache
concealing.

4.2.1. Cache Loading. Processor cache is designed to be
transparent to the system software, therefore there is no
support in the ARM architecture to directly access the cache
lines during normal operations. The only way to read/write
a cache line is to have the processor read from or write to
virtual memory. CacheKit’s cache loading process consists
of two steps.

The first step is to enable caching on the memory.
In ARM, this is accomplished by setting the paging ta-
ble memory attribute fields. Memory types in ARM can
be either Write-Back, Write-Through, Non-Cacheable or
Strongly-ordered and Device. All recent Linux kernels uti-
lize the TEX remap feature in ARM, with which all memory
attributes are coded using the PRRR register and the NMRR
register. By writing both the TEX and B/C fields in the
page table entry with codes from NMRR and PRRR, the
memory page can be configured as write-back. With such
configuration, LDR instructions on the page will trigger a
cache line fill.

The second step in cache loading is to fill all the bytes
of the code in cache. Due to the random replacement policy
of the cache lines in .MX53, it is necessary to make sure
that the cache line fills are triggered only by the LDR or
STR instructions used for filling in the cache. To avoid
loading the memory of the program that is performing the
cache loading, the code page has to be configured as Non-
Cacheable.

4.2.2. Cache Locking. ARM processors offer coarse grain
control of cache evictions. In particular, the Cortex A8 of the

ARMVv7 family allows system software to lock up to seven
cache ways out of the total eight ways. As an example, the
method to lock the contents at memory address Ox/234 in
cache way 0 is as follows.

First, the cache corresponding to all the memory ad-
dresses to be locked in cache will need to be flushed out.
This is to guarantee that a cache line fill happens in way
0. Memory contents can be filled in any one of the cache
ways for a cache system that uses n-way associative table.
If the cache line is already filled for Ox/234 in one of the
eight ways, a LDR or STR instruction will no longer trigger
a cache line fill. Therefore, without a cache flush, the cache
line for memory address Ox/234 can be in any one of the
eight ways.

Second, the L2 auxiliary cache control register is set to
0x000000FE so that only way O is unlocked and the other
ways are locked. This is to make sure that for every line fill
triggered by the LDR or STR instruction, it is allocated in
the way we intend to lock at the end of the process.

Lastly, once all the program code is loaded as described
in cache loading, then 0x00000001 is written to the L2
auxiliary cache control register to lock way 0 and unlock
all other ways.

Note that even though cache locking is supported by
the hardware, naive usage can still lead to exposure of
the rootkit. This is due to the implementation dependent
interaction between the locked cache line and the cache
maintenance instruction.

The ability to maintain data in the volatile cache is
crucial to CacheKit. On our ARM prototype platform, we
use the cache locking capability supported by the hardware.
For platforms that do not provide cache locking, it is still
possible to preserve the state of the cache. For instance,
cache line evictions for certain ranges of memory addresses
can be eliminated with careful planning of memory alloca-
tion in the kernel [50].

4.2.3. Cache Hiding. There are two main problems with
direct use cache locking. The first problem is introspection
from the normal world kernel. Detection methods that use a
kernel module to sequentially map each physical page into
the kernel memory space [8] can still read the cache con-
tents. The second problem is interaction of the locked cache
lines with cache maintenance instructions. For instance, in
ARMV7, several cache maintenance operations are available
to the system software such as cache clean by set/way. Even
when a cache line is locked, a clean operation can still cause
the cache line to be written to memory. Thus, the rootkit can
be detected once it is flushed out to memory.

To resolve the two problems with direct cache locking,
we propose to carve a piece of usable memory space out of
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the physical I/O address space and then map it into cache.
We call this newly created memory space the CacheKit
Space. Typical memory allocation on the 32 bit ARM
platform has the 0-2 GB range mapped to I/O space, and
the 2-4 GB range is mapped to physical memory space.
Figure 5 shows the CacheKit memory address mapping.
Before deploying CacheKit, since address space between
0x13000000 to 0x15000000 belongs to the I/O range, any
access requests to this area are redirected to peripheral bus
by the MMU. However, after deploying CacheKit, since
0x1300000 to 0x15000000 is configured as memory space
using the Cache-as-RAM technique, all read and write op-
erations are redirected to the cache of the processor.

The CacheKit space is neither backed by any real RAM
on the memory bus nor any real I/O device on the I/O bus.
Therefore, when a transaction is sent to the bus, there is no
physical device that will respond to the memory requests.
To the best of our knowledge, none of the hardware on the
commercial market respond to a failed cache flush to the
bus. In other words, it does not record, report, or handle the
error, and the invalid requests are simply ignored.

4.3. CacheKit Prototype

We implement a CacheKit prototype on the FreeScale
i.MX53 mobile development platform, which features a
single ARM Cortex A8 processor with 1GB DDR3 DRAM.
The system boots with onboard flash along with the uboot
and kernel supplied by the Micro-SD card. The image we
used for our experiment is the FreeScale android 2.3.4
platform with a 2.6.33 Linux kernel. The ARM Cortex A8
processor has two levels of cache. L1 cache is a 4-way
set associative cache with 128 set per way with 32 KB for
instructions and 32KB for data. L2 cache is an unified 8-
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Figure 6. IVT CacheKit

way set associative table with 512 sets per way with a total
size of 256 KB.

We first port an Android OS from secure domain to the
normal domain based on the Board Support Package (BSP)
published by Adeneo Embedded [2]. Furthermore, in order
to perform the TrustZone cache experiments, a trusted boot
loader as well as the monitor code must be loaded during
the bootup process. The TrustZone initialization and monitor
code are written in 500 lines of assembly and C code.

To implement a rootkit in the normal world, we choose
to hook the interrupt vector table (IVT), similar to a previous
work [34] that uses various hardware supports in ARM.
IVT is the certainly not the only place to hook a rootkit;
other choices include the system call table and specific event
handling routines. We choose IVT for this prototype due to
its simplicity. The address and handling of IVT has been
relatively stable in the Linux kernel since version 2.6. The
first step of rootkit insertion is to modify the address of
the IVT to point to the shadow one in the CacheKit space.
The page translation for the cache lines is then loaded and
locked in the TLB. Once everything is set up in the CacheKit
space, the page table in the kernel can be modified back to
the original value. As shown in Figure 6, before the IVT
is hooked, hardware interrupts go directly into the interrupt
handling. After the insertion of CacheKit, all interrupts go
through the CacheKit handler first.

Different types of payloads can be inserted into the
CacheKit interrupt handler, such as network traffic sniffers,
sms sniffers or encryption key sniffers. The payload in
this prototype exfiltrates 1024 bytes of memory at a fixed
memory location through the serial port DMA. CacheKit
hooks interrupt 52 on the i.MX53 in order to make sure that
the rootkit will be triggered whenever the home button is
pushed. On a real world mobile deployment, the payload can
sniff GPS location and exfiltrate through a network interface.
Since GPS is not available on our experimental platform, we
choose to dump memory through a serial port to demonstrate
its capability.



We implement the rootkit as a kernel module with
around 600 lines of C code. We write the payload in C
code first, then compile it into approximately 360 lines of
disassembly. The hex representation of the code is then
converted into shell code, which is stored as data in the
rootkit module and loaded directly into the cache. The
CortexA8 processor can support locking of 1 to 7 cache
ways with a maximum payload size of 224KB in the L2
cache. In order to minimize the use of L2 cache ways, we
merge both the fake IVT and the CacheKit handler in one
memory space in order to lock them into the same cache
way.

5. CacheKit Evaluation

Our system evaluations consist of two main parts, one
on the effectiveness of CacheKit and one on the impact of
the rootkit on system performance.

5.1. Effectiveness of CacheKit

Three things must be verified to confirm the effective-
ness of CacheKit. First, that the malicious code is indeed
residing only in the cache and not in the DRAM. Second,
that the malicious code can persist in the cache during
normal system operation. Third, that CacheKit is able to
evade rootkit detection from both the secure world and the
normal world.

5.1.1. Cache Existence. One common method for checking
if code or data resides in cache is to inspect the time taken to
access the memory, since a cache-hit access is significantly
faster than physical memory access. However, we cannot
use this method since the presence of data in cache does
not warrant its absence in physical memory. For instance,
changes in cache can be flushed out to memory, so the data
will exist in both cache and memory.

Instead, we use the INVD instruction provided by the
processor to show the existence of data in cache and cache
only. The INVD instruction is available in all of the major
processor architectures, including ARM [18], [21], [22].
In ARM, the INVD instructions take two forms. The first
form uses set number and way number to invalidate cache
lines. The second form uses a modified virtual address,
and the processor looks up the cache line associated with
the modified virtual address and invalidates the cache line.
The INVD instruction removes the cache content without
processing it or forcing a write back to the physical memory.
In other words, any changes on the memory addresses that
are stored in the cache will be lost. By exploiting this unique
feature, we can show that information is stored only in the

cache if the memory contents match the previous value after
the INVD instruction. We use the second form of INVD
because the way allocation of a memory address is random.
By invalidating the modified virtual address, we are able
to observe the change of value at the memory address.
Moreover, we can verify that the value does not change after
we place our new information in the cache lines associated
with the same memory address.

5.1.2. Cache Persistence. The volatility of the processor
cache is a double edged sword for CacheKit. While it
provides unprecedented stealthiness, the reliability of the
rootkit is affected as well. Even though cache lines can
be locked with hardware control, they still follow cache
maintenance instructions. When a cache flush is invoked,
the contents in the cache line do write out to the memory.
However, since CacheKit space is mapped to an unused I/O
address space, all cache contents will be lost once cache
flush is invoked, since no backup memory exists. To verify
that CacheKit can remain persistent in a real system, we use
BBench [45] to continuously visit some popular websites,
such as cnn.com, for six hours, then we check back to see if
the data stored in the cache is still present. The experimental
results show that the cache data persists. We also write a
shell script to continuously run Linux commands for one
night, and the cache data are still valid afterwards. On the
system source code level, we search the kernel source code
and find that there is only a single function in the kernel
that would clean the entire cache, but it is never called in
a uniprocessor deployment. With these experiments, we are
confident that the cache locking mechanism on our platform
is stable for stealthy rootkits.

5.1.3. Cache Elusiveness. We evaluate the cache elusive-
ness against TrustDump [68], a forensic memory acquisition
toolkit based on TrustZone. This toolkit has a small piece
of memory acquisition and integrity checking code stored
in the secure world. We load CacheKit and perform two
experiments. First, we use TrustDump to gather the ad-
dressable physical memory. Second, we use TrustDump to
collect values from the I/O address space that Cachekit maps
to. In both experiments, TrustDump cannot acquire contents
in CacheKit Space. CacheKit can evade TrustDump in the
first experiment because CacheKit space is not part of the
physical memory in the physical address layout. CacheKit
can evade the TrustDump in the second experiment due to
the incoherent cache in TrustZone.

We also evaluate the CacheKit against rootkit detection
in the normal world. First, we use LiME [8] to dump the
physical memory of the experimental platform onto the
SD Card. We then perform a binary pattern search on the



code size baseline(Okb) | 32kb | 64kb | 96kb | 128kb | 160kb | 192kb | 224kb
Linpack(s) 5.13 525 | 528 | 53 5.32 5.34 5.36 5.40
Linpack MT(s) 11.2 11.2 | 11.3 | 114 | 115 11.7 11.8 12.1
MemSpeed(s) 24.7 25.0 | 255 | 25.8 | 265 27.1 28.1 29.5
RanMem (s) 19 19.1 | 192 | 19.6 19.8 20.1 20.6 21.4
TABLE 2. CACHEKIT BENCHMARKS ON CODE SIZES
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5.2. Performance Impact

In CacheKit, all the malicious code and data reside in the
cache. This implies that the larger the malicious payload, the
more cache needs to be locked away. Since cache is designed
to enhance system performance, the system may suffer
from downgraded performance when the cache is locked
intentionally for non-performance reasons. In this test, we
are interested in quantifying the performance degradation
with different levels of malicious code size. We test the
system performance using benchmarks Linpack and Linpack
MT [36], MemSpeed and RandMem [54]. Linpack is a
software library for performing numerical linear algebra,
and Linpack MT supports multiple threads. MemSpeed and
RandMem are benchmarks for memory intensive operations.
Table 2 shows the performance impacts with various code
sizes.

The columns in Table 2 indicate the size of the malicious
code. It is in 32 KB increments, because cache locking in
1.MXS53 operates on individual 32 KB cache ways of the L2
cache. Figure 7 and Table 2 show that system performance
degrades as the size of the rootkit increases. The rootkits
in these test are not hooked yet, therefore the performance
degradation observed in these experiments are due to the
locking down of cache lines to store the malicious code.
The larger the rootkit, the more cache ways are locked. The
Y axis shows the relative benchmark run time compared to

Figure 7. CacheKit Performance Impacts

the baseline in which none of the cache ways are locked.
Even after code size is increased to 224 KB, Linpack only
experiences 5% overhead for single thread computation and
8% for multi-thread computation, since the bottleneck for
computation intensive tasks is not memory. However, for
memory intensive operations, we observe a much bigger per-
formance impact. For MemSpeed, which tests computation
speed on a large area of memory, a maximum size rootkit
will introduce a system performance overhead of 19.4%.
For RandMem, which simulates random access to memory
at various size, the maximum system performance overhead
is 12%. Note that for many system workloads, the processor
rarely uses all processor power to perform random memory
access continuously. To get a sense of overall system impact,
we also use the AnTuTu benchmark [5] to compare baseline
with the maximal size rootkit and observe a 12% overall
performance overhead.

6. Security Analysis

CacheKit is designed to conceal itself against the most
advanced rootkit detection techniques. We demonstrate that
it is possible for a rootkit in the normal world to evade
introspection from a privileged process in the secure world
by exploiting the unique cache design in ARM TrustZone.
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TABLE 3. ROOTKIT TECHNIQUES AND DETECTION COMPARISON

One of the key design elements of CacheKit is to exploit
the cache incoherency issue between the secure world and
the normal world of TrustZone to evade introspection from
the privileged secure world. Since switching between the
two worlds does not flush the entire cache, CacheKit can
remain persistent in the cache.

6.1. Evading Detection

A comparison between CacheKit and other types of
rootkits against existing detection methods is provided in
Table 3. Researchers propose to use the trusted execution
environment (TEE) provided by hardware to perform the
detection of rootkits in the memory [27], [57], [64], [68],
[71]. All those solutions depend on the access capability
of high-privileged TEE over the entire physical memory.
With the malicious code hidden completely within the cache,
there is no footprint in the physical memory, and it makes
CacheKit an ideal technique for stealthy rootkit construction.

Detection at the application level usually scans the file
system or firmware flash storage to match the checksum
of files to a known good value or a rootkit signature.
Since CacheKit does not modify the file system or firmware
software, it cannot be detected by application level detectors.
Kernel level rootkit detectors usually define a set of invari-
ants in the kernel. Any alteration of these invariants [30],
[72], [73], [78] is an indicator of rootkits. CacheKit is
designed to only modify hardware configuration registers
to hide the payload in the cache, so traditional kernel-based
scanning cannot detect CacheKit.

Virtual Machine Monitor (VMM) based detectors that
run in the hypervisor layer can access the entire physical
memory. It is capable of detecting user level and kernel
level rootkits. Detection of Virtual Machine Based Rootkit
(VMBR), which exploits the same privilege layer, depends
on the order of loading. If VMBR is loaded before the VMM
detector, it is theoretically possible for the VMBR to cre-
ate a nested virtualization environment to evade detection.
However, since CacheKit resides in the cache and does not
leave traces in memory, it can evade traditional hypervisor-

based detectors. Moreover, when malware is aware of being
executed in a virtualized environment [38], [41], it can sim-
ply stop all malicious activities. CacheKit can be augmented
with this evasion logic to remain undetected.

Coprocessor-based detectors [61], [76] rely on a dedi-
cated secure coprocessor in the system to interact with the
system memory via peripheral bus. They access physical
memory using DMA, which is independent of the processor.
This physical level memory acquisition [32], [46], [58]
simply obtains the memory content from the memory chip.
Since CacheKit stores its entire code and data within the
cache, all coprocessor-based approaches cannot find any
malicious traces in the RAM.

Lastly, aside from the rootkit detectors mentioned above,
it is also possible that certain system operations could affect
the operation of the rootkit. System designers could perform
a legitimate cache flush to maintain memory coherence in
self-modified programs. Even though the interactions be-
tween locked cache lines and cache maintenance operations
are implementation dependent, it is still possible that cache
lines will be flushed out regardless of the lock flag. In fact,
i.MX53 adopts this design. This problem is mitigated in
CacheKit by redirecting cache data to I/O address space.
When cache flushing happens, all data will be lost instead
of being written back to memory and being detected.

6.2. Rootkit Paradox — Countermeasures

CacheKit provides a design paradigm to minimize the
rootkit’s footprint on the system by storing and running
malicious logic in cache, leaving no trace in the memory
at all. However, since it needs to stay accessible to the
processor in order for the malicious code to be executed,
the rootkit can still be detected when the defender knows
exactly where to find it using the processor. This fundamen-
tal conflict between concealment and presence is known as
Rootkit Paradox [51].

An examiner can detect CacheKit with the knowledge
of its inner working details. Since the real hidden physical
address of the IVT base address is hidden in TLB, the



examiner can detect the IVT hooking by comparing the
address translation performed by MMU and the address
stored in the paging table. This value should remain constant
after the system starts up, so it can be a cue that CacheKit
or another rootkit is deployed. To remove CacheKit, the
defender can first invalidate all TLBs, causing the system
to use the real IVT. The cache can then be unlocked and
flushed out. Thus, both the malicious mapping and malicious
contents are removed with a one-time performance penalty.
The order of the two operations is important. If the cache is
first flushed, it may crash the system due to invalid interrupt
handler addresses in the cleaned cache line.

Alternatively, the examiner can rely on a debugging
interface such as JTAG to look inside the processor cache.
When the cache locked register has bits set, the examiner
should retrieve cache lines that are locked. Once a cache
line is retrieved, the examiner can then check to see if the
cache tag matches a valid memory range. If not, the contents
of the lines should be further analyzed.

7. Discussion

7.1. CacheKit in Harden Environment

Despite the continuous efforts to eliminate vulnerabili-
ties from the kernel, attacks that compromise the operating
system remain a real threat [4]. The CacheKit loading pro-
cess requires root privilege to modify sensitive registers and
certain OS in-memory structures. The attacker can usually
exploit one of the vulnerabilities in the kernel to obtain root
privilege.

Recognizing such threats from rootkits, security re-
searchers recently proposed to enforce kernel integrity using
hardware support [27], [43]. When such kernel integrity
protection mechanisms are present, it would be more diffi-
cult to deploy kernel rootkits, including CacheKit. The two
fundamental building blocks in kernel integrity protection
are the control of sensitive instructions in the kernel and
the control of system page tables. When sensitive instruc-
tions are protected, there is no security sensitive instruction
available to be directly called in the kernel code. Therefore
even if the kernel control flow is hijacked, the security state
cannot be changed without calling such instructions, and
thus the damage is contained. When system page tables are
protected, attackers cannot inject new instructions into the
current code base. Thus, systems with these two properties
can guarantee the integrity of the kernel code.

Modern kernels usually support extending its kernel code
with device drivers or loadable kernel modules [27]. The
new code to be inserted into the kernel has to be verified
by a trusted entity, such as a security monitor in the secure

world. With the cache incoherence problem we discovered,
it is now possible for a hijacked rich OS to present to the
monitor an incoherent view of the code to be inserted. The
attacker can store the original image of the kernel module
in RAM while placing security sensitive instructions in the
cache lines. Since the monitor in the secure world cannot
see the security sensitive instructions in cache, it will allow
the installation of the kernel module. Now with the sensitive
instructions in the kernel code, the hijacked rich OS can now
redirect execution to exercise the newly inserted code and
modify security sensitive system states, such as the location
of IVT. We have to point out that due to the trap of the MCR
instruction, a hijacked OS cannot use cache locking function
in CacheKit. Thus, it may take many tries to load security
sensitive instructions in the kernel. Lastly, even though it is
theoretically straightforward, launching these attacks on a
given system will require a significant amount of planning
and a deep understanding of the targeted system architecture.

7.2. Rootkit Persistence

Rootkit persistence generally refers to the ability of a
rootkit to survive power cycles. It typically requires modifi-
cation of non-volatile storage; however, recent developments
in disk forensics and integrity checking tools has forced
attackers to adapt a memory-only approach [14], [29], [34],
[63], [66], [75] in which non-persistent rootkits reside only
in memory.

CacheKit is a new breed of non-persistent rootkit that
brings a new level of stealthiness — it leaves no trace in either
the non-volatile storage or the system RAM. However, this
new level of stealthiness also brings drawbacks in its ability
to remain persistent in the system. For example, cache
contents are destroyed when the device powers off, and
therefore CacheKit cannot persist after the system restarts.
In the S3 sleep state of ARM processors [16], [19], the
processor context is not retained, so Cachekit will have
to have hooked into the power handling interface to save
itself into SoC iRAM or I/O device memory to survive
these power state changes. However, since people often keep
mobile devices on for days without reboot, Cachekit poses a
serious threat, similar to the well-known memory-only non-
persistent rootkits [34], [63], [75].

Furthermore, with the current always-connected network
architectures, attackers have other means to obtain persis-
tence such as through watering hole attacks [44]. Lastly, it is
possible to trade stealthiness for persistence if desired, such
as storing of the logic in cipher text in memory to survive
a power state change or infecting device drivers stored in
the non-volatile storage for persistence over power cycles.



These changes will make CacheKit less stealthy but more
persistent.

7.3. CacheKit Performance Impact

The use of cache as storage for malicious code and data
has impacts on system performance. This limitation can be
alleviated with careful planning of the cache placement.
If the rootkit size is not as large as a single cache way,
other heavily used kernel code can be locked in the cache
way alongside the rootkit. This can reduce the performance
impact caused by the locked cache way. On certain systems,
appropriate use of cache locks can actually improve system
performance [25].

Another closely related problem is the cache space
optimization while applying CacheKit to existing rootkits.
For example, the rootkit adore [14] modifies both the rask
struct and the proc fs function to hide processes and files.
A simple way to conceal the two changes is to use one
cache way for each modification. However, it is possible
to fit two changes within one cache way, as long as the
physical addresses do not multiplex to the same cache set.
The tradeoff between system performance and the size of
the malicious code needs to be carefully evaluated while
designing a cache-based rootkit.

7.4. CacheKit on Other Platforms

One of the key enablers of CacheKit’s evasion of Trust-
Zone based detection is the cache coherency issue we ob-
served in the experiments. The impacts of the techniques
presented in CacheKit on mobile phones can be better
assessed if such experiments can be performed on a series of
different SoCs. Unfortunately, it proved to be very difficult
to obtain TrustZone access on some of the most popular
devices, such as the Google Nexus series and Samsung
KNOX. However, since the coherency issue originates from
the internal design of the processor, we believe the same
problem applies to all platforms running Cortex AS8. In the
future, we would like to investigate this issue on different
types of processors to obtain a better global picture.

CacheKit represents a design paradigm to hide mali-
cious logic in the processor cache to evade detection. Some
techniques used in CacheKit implementation are specific
to the ARM architecture, such as the coarse-grained cache
locking mechanism. And some of the implementations we
designed on are hardware platform specific, such as the
address of the invalid DRAM memory range. However, the
general concept behind CacheKit, using cache as storage to
evade memory forensic analysis, may be applied to other
architectures. Since the control and internal organization

of the processor cache is likely to be different for various
processor architectures and families, rootkit developers need
to have a deep understanding of the hardware platform to
construct the CacheKit.

For instance, we are able to successfully map cache to
reserved I/O address space on Intel Celeron processors. Al-
though Celeron processors do not provide any cache locking
mechanism, cache locking is available in Intel Xscale family
processors [1]. In the future, we will extend our study on
the cache behavior of other trusted execution environments,
such as the new Intel SGX [31].

8. Related Work

Rootkits are a well-known category of malware. The
primary goal of a rootkit is to conceal presence of attacker.
It begins with simple file hijacking of binaries and libraries
to cover up malicious activities. One of the early examples
is the replacement of the Is command in Linux to hide
files. Since these persistent rootkits need to modify non-
volatile storage to survive system power cycles, file integrity
checking tools [3], [49] can effectively detect them.

Later, malware authors developed in-memory rootkits
that reside only in the operating system kernel memory [13],
[14], [29], [66] to defeat the storage-based detection. To
insert itself into the kernel control flow, in-memory rootkits
either hook into legitimate kernel functions [10], [35], [52]
or modify kernel data structures [13], [14], [29]. To detect
this type of subversion, kernel level rootkit detectors first
build a ground truth on a set of kernel invariants and then
detect any alteration of these invariants [30], [72], [73], [78].
To enable offline rootkit analysis, researchers also propose
to acquire the system memory using a dedicated secure
coprocessor [61], [76] or physical hardware [32], [46], [58].

When both rootkits and their detectors have the same
root privilege, it becomes a game of hide and seek between
the attacker and the defender. Attackers move to obtain
higher privilege than the kernel [37], [47], [63]. Virtual
machine based rootkits (VMBR) [63] insert a customized
malicious hypervisor beneath the currently running operat-
ing system. Firmware based rootkits infect the firmware on
I/O devices [47] or the system BIOS [37]. However, rootkits
are not alone in seeking higher privilege. New hardware
and software rootkit detectors with higher privilege are also
proposed [26], [27], [28], [42], [48], [57], [59], [60], [61],
[62], [64], [71], [76].

Hypervisor is used in several research to perform intro-
spection into the guest operating system [26], [42], [60].
However, since the virtualized environments can be reliably
identified [41], malware can simply exit without execution.
Moreover, new vulnerabilities are frequently found in the



hypervisors [38]. Hardware features, such as security ex-
tensions in various processors (e.g., AMD SVM [21], Intel
TXT [69], and ARM TrustZone [24]) have become a safe
haven for defenders because of their ability to provide a
trusted execution environment (TEE) with guaranteed iso-
lation. Since the TEE has higher privilege, rootkit detec-
tors can be installed in this environment [27], [57], [64],
[68], [70], [71]. On the other hand, hardware features can
also be exploited by rootkits to evade detection in the OS
kernel [34], [67], [75]. For instance, Shadow Walker [67]
exploits the I-TLB and D-TLB coherency problem in the
Intel architecture to hide the rootkits. Cloaker [34] can hide
the location of the replaced interrupt descriptor vector by
locking the page translation in the translation look aside
buffer.

In this paper, we propose a cache-based rootkit that
keeps all malicious data and code in an incoherent Trust-
Zone cache to evade rootkit detection. Besides TrustZone,
CacheKit may work on other processors if they have a
similar cache incoherence design.

9. Conclusion

In this paper, we present a systematic study of the
cache incoherence behavior between the normal world and
the secure world in the ARM TrustZone. Inspired by our
observations, a rootkit called CacheKit is constructed to
demonstrate the feasibility of concealing malicious code
exclusively in the processor cache. CacheKit utilizes cache
locking capability provided by the hardware along with
physical address space manipulation to create an incoherent
cache in unused I/O addresses. This incoherent state allows
the rootkit to evade introspection from detection tools in
TrustZone. Furthermore, the creation of new address space
allows it to reside only in cache, making it untraceable
through memory acquisition methods. Through this work,
we hope to raise awareness of cache-based rootkit and foster
advancement of defense mechanisms against rootkits.
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