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Abstract—With the emergence of Internet of Things, mobile
devices are generating more network traffic than ever. TrustZone
is a hardware-enabled trusted execution environment for ARM
processors. While TrustZone is effective in providing the much-
needed memory isolation, we observe that it is possible to derive
secret information from secure world using the cache contention,
due to its high-performance cache sharing design.

In this work, we propose TruSense to study the timing-based
cache side-channel information leakage of TrustZone. TruSense
can be launched from not only the normal world operating
system but also a non-privileged user application. Without access
to virtual-to-physical address mapping in user applications, we
devise a novel method that uses the expected channel statistics
to allocate memory for cache probing. We also show how an
attacker might use the less accurate performance event interface
as a timer. Using the T-table based AES implementation in
OpenSSL 1.0.1f as an example, we demonstrate how a normal
world attacker can steal fine-grained secret in the secure world.
We also discuss possible mitigations for the information leakage.

I. INTRODUCTION

Mobile devices are becoming an integral part of our life,
handling more and more sensitive data such as bank accounts,
private medical data, and even presidential electoral votes.
With the ongoing transformation of information access from
bulky desktop to the always available and connected mobile
device, more important services are running on a single mobile
platform now. At the same time, it is becoming increasingly
challenging to produce bug free software due to the complexity
of modern program. One of the promising answers to this
challenge is to use hardware-enable secure execution technol-
ogy [1], [2]. It provides an isolated execution environment to
protect security sensitive tasks. Applications in these contain-
ers are protected by a small trusted computing base (TCB)
utilizing hardware support from the rest of the system. Thus,
even if the highly complex software is compromised, sensitive
information remains protected in these containers.

ARM family processors have been deployed in more than
95% of the smart phones [3]. TrustZone [2] on ARM pro-
cessors offers the ability to protect security sensitive tasks
within an isolated execution environment. TrustZone has been
adopted in a wide variety of commercial products such as Sam-
sung Galaxy series, LX Nexus series, HTC one series [4], [5]
and academic projects [6], [7] to enable secure processing. The
protected environment is called secure world, and the normal
environment is called normal world. While secure containers
such as TrustZone are effective in providing separation for
computations, information leakage via side channel remains a
challenge [8], [9].

Unlike software exploitations that target vulnerabilities in
the system, side-channel attacks target information leakage of
a physical implementation via its interactions with the execu-
tion environment. Side-channel information can be obtained
from different types of physical features, such as power [10],
electromagnetic wave [11], acoustic [12] and time [13], [14],
[15]. Among these side channels, the cache-based timing
attack is one of the most important areas of research [14],
[15], [16], [8], [17], [18].

Processor cache is one of the basic components in mod-
ern memory architecture to bridge the gap between the fast
processor operation and relatively slower memory access. To
support memory isolation in the TrustZone architecture, both
instruction and data cache lines are extended with the NS flag
bit [2] to mark the security domain of these lines. Though the
secure cache lines are not accessible by the normal world, both
worlds are equal when competing for the use of cache lines.
In other words, when the processor is running in one world,
it can evict the cache lines used by the other world due to
cache contention. The goal of this cache design is to improve
the system performance by maximizing the usable cache space
and eliminating the need for cache flush during a world switch.
We observe that though the contents of processor cache are
protected by the hardware extension, the access pattern to these
cache lines is not protected, leaving TrustZone vulnerable to
cache side-channel attacks.

Despite extensive studies [19], [20] on the side-channel
leakage of the Intel SGX secure containers, the study on
information leakage from TrustZone is still limited [8]. In
this paper, we present our investigation on the severity of
side-channel information leakage from TrustZone container to
both the privileged normal world OS and unprivileged normal
world applications. We show that TruSense can circumvent
TrustZone protection to extract sensitive information in the
secure world using less privileged normal world processes.
OpenSSL is currently used by 4.3 million websites on the
Internet, powering about 45% of the top 1 million servers [21].
To demonstrate the severity of the leakage, we apply TruSense
to extract full AES encryption key from OpenSSL protected
inside the TrustZone.

There are two key requirements for applying TruSense to
recover secrets from the secure world. First, the attacker must
be able to fill the cache with memory contents that will cause
cache contention with the victim. Second, the attacker must be
able to detect changes in the cache state. More specifically, an
attacker needs access to a high precision timer to distinguish



data retrieval from different levels in the memory hierarchies.
We show how well these conditions can be met under different
levels of access privileges to the system resources, and the
differences in the resulting channels.

We study the side-channel leakage in two environments,
the normal world OS and the normal world user space
application. For the first environment, the attacker has full
control of the normal world operating system. It can obtain
detailed virtual-to-physical address translation via the page
table. The ability to obtain such translation is crucial in allo-
cating memory for the prime and probe attack. Furthermore,
the attacker can use the cycle counter in the performance
unit as a high precision timer. The cycle counter can only be
accessed in the privilege mode. For the second environment,
we would like to answer the question of how much information
can be extracted by a non-privileged user space application
with no special permissions. For an app running in the user
space, neither the virtual-to-physical address translation nor
the cycle counter is available. To allocate the memory for
prime and probe in the app, we propose statistical matching,
in which memory page for probing is identified by comparing
the channel statistics to the expected statistics of the target.
Furthermore, we develop a method to find an optimized cut-off
value to distinguish L1 cache access from L2 cache access by
examining the sample population using a less accurate system
performance event as a substitute for the high precision timer
accessible only in the kernel.

Our study is conducted on an ARM CortexA-8 processor.
The information leakage of TrustZone is demonstrated using
a T-table-based AES implementation as a sample target, since
side-channel attack on AES is widely used in the literature
as example for fine-grained information extraction [14], [8],
[16], [18], [9]. The experiments show that it is possible for
the normal world kernel to recover the full AES128 secret
key using 3000 rounds of observed encryption in 2.5 seconds.
Despite additional challenges due to lack of privileged access,
the user space application can still recover the full AES128
secret key with 9000 rounds of observed encryption within
14 minutes. The TruSense tool we use to evaluate the side
channel is available at https://github.com/n1ngz/TruSpy.

In summary, we make the following contributions.
• We identify the side-channel information leakage from

the design of dynamic cache allocation between the
normal world and the secure world in TrustZone. The
leakage is due to a fundamental design choice of the
TrustZone-enabled cache architecture, which aims to im-
prove system performance by allowing two worlds to
share the same cache hardware.

• We perform a detailed study on the severity of side
channel information leakage of TrustZone. We show
that even an unprivileged user space application can
launch side-channel attacks on TrustZone. We tackle two
challenges, namely, finding virtual-to-physical mapping
and lacking of method to distinguish cache accesses
at different levels. Without direct access to virtual-to-
physical address translation, the user space application

attack allocates memory by using statistical properties
of the channel itself or correlating to kernel function
with known addresses. Also, the TruSense is able to
derive an optimized value to distinguish different levels
of cache accesses by examining the population using a
lower precision timer.

• We show the severity of the information leakage by
implementing and testing the proposed side-channel at-
tacks on a hardware platform. We also discuss potential
mitigations against the side-channel information leakage
on secure world of TrustZone.

II. SIDE-CHANNEL INFORMATION LEAKAGES

The study of information leakage from sensitive compart-
ment dates back to the Orange Book [22] by the US Gov-
ernment. Information leakage channels are often generalized
into either a side channel or a covert channel. A side channel
refers to attacker obtaining sensitive information, such as
secret encryption keys, by observing how the execution in the
sensitive compartment interacts with its physical environment.
Victims in side-channel attacks are trusted parties. On the other
hand, a covert channel refers to the secret communication
channel between the two colluding parties across security
boundaries. Side-channel attacks are well-studied in computer
security [13], [17]. With significant research on cache side-
channel attacks [13], [12], [18], [23], [15], [24], [25], [16],
[14] and defenses [26], [27]. The concept of using side-channel
information as a means to attack cryptographic schemes first
appeared in a seminal paper by Kocher [13]. In [13], Kocher
exploited differences in computation times to break implemen-
tations of RSA and discrete logarithm-based cryptographic
algorithms. Besides time, other physical attributes such as
electromagnetic emission [11], power consumption [10] or
acoustic noise [12] have been investigated as viable sources
for side-channel attacks.

Microarchitectural Timing Side Channels: From the mi-
croarchitrectural perspective, leakage channels in software are
often classified into storage channels and timing channels.
Storage channels such as value in registers and return of
system calls have been well studied [28]. However, there
is little work to formally define the temporal behavior of
different systems. Bernstein [18] was the first one to show
the existence of timing dependencies introduced by the data
cache for AES, which allows secret key recovery [18]. There
are three main categories of cache-based side-channel attacks:
time driven [18], trace driven [29], and access driven [14],
[8], where the differences between them are the attackers’
capabilities, with time driven attacks the least restrictive. Osvik
et al. [16] proposed two techniques for attackers to determine
which cache set is accessed by the victim, namely, evict and
time and prime and probe. In evict and time, the attacker
modifies a known cache set and observes the changes in
the execution time of the victim’s cryptographic operation.
In prime and probe, the attacker fills the cache with known
states before the execution of the cryptographic operation and
observes the changes in these cache states. Gullasch et al. [24]



Fig. 1. TruSense Threat Model

identified another powerful cache side-channel attack enabled
by shared memory. The attacker flushes the memory shared
between the malicious process and the victim process, such as
a crypto library. After the victim executes the cryptographic
algorithm, the attacker measures the time to load the memory
into a register to determine if the memory has been accessed
by the victim process. This new method was later named by
Yarom et al. as flush and reload in [15].

Cache-based Timing Channels on ARM: Most of the current
research on cache-based side-channel information leakage
focuses on the Intel [30] architecture, and little has addressed
the ARM [31] architecture [32], [8], [9]. Zhang et al. [32]
proposed an attack on ARM devices using cache flush system
call interface to perform flush and reload attack using the
instruction cache. Lipp et al. [8] investigated the possibility
of launching a wide range of side-channel attacks on ARM
mobile devices. The primary focus is on applying the most
powerful technique in x86, flush and reload, to ARM. Com-
pared to [32], [8], our target is protected by TrustZone. We
further demonstrates that the leakage enables attack from not
only the normal world kernel but also normal world user
application. In addition to cache timing side channel, a recent
study demonstrated a new cache storage side channel based
on unexpected cache hit in cache incoherence [9]. Compared
to [9], TruSense does not require kernel privilege in the
normal world, neither does it rely on programming faults at
the hardware level.

To summarize, all the current studies [32], [8], [9] of
cache side channel on ARM do not have a primary focus on
leakage from the TrustZone. Furthermore, initial investigations
on TrustZone attacks are all launched from the normal world
OS kernel. In this work, we provide an in-depth study of the
information leakage from TrustZone, by attackers not only in
the kernel, but also in the user space of normal world.

III. THREAT MODEL AND ASSUMPTIONS

As recommended by the ARM whitepaper [2], TrustZone
is often used to protect security sensitive workloads, such
as cryptographic operations, in an isolated execution envi-
ronment [7], [6]. Cryptographic libraries are protected in the
secure world from a potentially compromised normal world
OS running in the normal world [6], [5]. The threat model for
our work is shown in Figure 1. We assume that a cryptographic
library is implemented in the secure world and provides

services to the OS in the normal world. Meanwhile, an attacker
in the normal world can execute a spy process, which can be
either a malicious user space application or the compromised
normal world OS, targeting at the cryptographic module in
the secure world. Though we demonstrate that it is possible to
recover the full AES128 key using just the application level
attack, the attacker that has compromised the normal world
OS has access to more controls in the system and thus can
recover the key in a shorter time.

Similar to previous works [14], [8], [16], [18], we assume
the attacker (i.e. the spying process) can trigger the encryption
in the victim process. In our OS level attack, we assume
that there are vulnerabilities in the OS that allow arbitrary
code execution with kernel privilege. This assumption is
common for launching attacks on hardware-enforced Trusted
Execution Environments [5]. For our application level attack,
we make no assumption of vulnerabilities in the operating
system. Moreover, the user space application does not require
any special permission to run the attack code. Therefore, the
malicious code can be embedded into all types of applications
and remains stealthy.

IV. TRUSENSE - SENSING FROM THE TRUSTZONE CACHE

ARM TrustZone [2] aims to provide hardware-based
system-wide security protection. Besides processor protection,
TrustZone also provides isolation of memory and I/O devices.
In the ARM TrustZone cache architecture, an NS flag is in-
serted into each cache line to indicate its security state (normal
vs secure). When the processor is running in the normal world,
the secure cache lines are not accessible. However, when there
is cache contention, a non-secure cache line can evict a secure
cache line and vice versa. This cache design improves the
system performance by eliminating the need to perform cache
flush during a world switch; however, the cache contention
also leaks side channel information [13].

TruSense exploits the cache contention between the normal
world and the secure world as a cache timing side chan-
nel to extract sensitive information from the secure world.
Though the flush and reload approach [15], [24], [32] has
recently gained considerable attention due to its simplicity
and efficiency, it cannot be applied here. Memory sharing
between attacker and victim is the key enabler for flush and
reload attack, but the memory protection of TrustZone prevents
such shared memory. Instead, our attack follows the general
technique of prime and probe [16] to learn the cache access
pattern of the victim process.

There are two requirements for a successful attack in
TruSense. First, the attacking process has to be able to fill
in cache lines at individual cache sets that will cause cache
contention with the victim process. Second, the attacker has
to be able to detect changes in the cache state. This is
often accomplished by measuring the time it takes to load a
particular memory address into register using a high precision
timer. Other methods include using cache performance counter
and cache incoherence [9].



Fig. 2. TruSense Workflow

A. TruSense Workflow

The TruSense workflow consists of five major steps, as
shown in Figure 2. The first step is to identify the memory
to use for cache priming. The key is to find the memory that
will be filled in cache sets that are also used by the victim
process in the secure world. This step is often accomplished
by working out the mapping from virtual address to cache
sets [16], [14], [25]. The second step is to fill the cache. In
this step, the spy process fills the cache with its own memory
so that each cache line that can be used by the victim is filled
with memory contents from the address space of the attacker.
This step will allow the attacker to obtain a known cache state
before handing the control flow to victim process to spy on.
The third step is to trigger the execution of the victim process
in the secure world. When the victim process is running, cache
lines that were previously occupied by the attackers are evicted
to the DRAM. As a result, the cache configuration from the
attacker’s perspective has changed because of the execution
of the victim process. Since this step is non-interruptible due
to the protection of TrustZone, it is more challenging for
this attack to succeed without fine-grained information on the
victim process cache access. The fourth step is to measure
the change in cache configuration after the victim finishes its
execution in the secure world. For each cache line that was
previously primed in the step two, the short execution time
of memory load instruction indicates that the cache set of
which the memory is mapped to was not evicted by the victim
process. In other words, the victim did not execute a particular
path or did not make use of a particular data that is indexed
into this cache set. Once the results are recorded for all the
memory locations that were primed, the attack goes back to
the second step and continues to collect more side-channel
information. The fifth step is the last step. The collected
channel information is analyzed to recover secret information
such as cryptographic keys within the secure domain.

B. Attacking from Normal World Kernel

When the normal world OS is compromised, attackers have
access to a variety of resources to execute the attack on

TrustZone. Among these resources, the capability to obtain
virtual-to-physical address mapping as well as the access to
an accurate timer is crucial in TruSense.

1) Allocating Memory for Prime and Probe: In order to
gain fine-grained information on cache access of the victim
process, an attacker must accurately fill its controlled memory
into specific cache areas so that it will cause cache contention
with the victim process. More specifically, the attacker needs
to find memory that will be mapped to the same cache sets as
the memory used by victim process. Modern cache controllers
often use physical address for tagging and indexing so that
tasks can switch without the need to purge cache contents.

To determine the cache set index that a memory address
maps to, it is necessary to obtain the physical address of
the memory. However, in modern computer architectures,
processor executions use virtual computer addresses. Memory
access is translated from the virtual address to the physical
address by the MMU unit in the processor using the page table
configured by the operating system. This address translation
makes memory allocation more challenging. An attacker who
controls the OS can perform a page table walk to figure out
the physical address of any virtual address to obtain memory
for priming.

2) Priming the Cache: Once the prime and probe memory
is allocated, the attacker needs to fill in the cache. However,
as shown in Figure 2, prime and probe forms a cycle that
needs to be repeated many times. At the beginning of prime
step, the cache could be filled with secure cache lines. Due
to the security protection of TrustZone, secure cache lines are
not affected by cache maintenance operations in the normal
world [33]. Therefore, cache contention is used to push all the
secure lines back to memory. Memory is repeatedly loaded in
the normal world then invalidated using clean and invalidate
cache instruction.

3) Probing the Cache with Cycle Counter: After the ex-
ecution of the victim’s sensitive function in step three, the
control flow is redirected back to the attacker. The changes in
the processor cache states due to secure world execution have
to be measured and recorded in this step. More specifically, the



attacker needs to determine if the cache lines filled in the prime
step are still in the cache. We extract side-channel information
from cache contentions on the top level cache, L1 cache, in
order to reduce the noise added by the random replacement
policy of the cache controller. We use the cycle count register
(PMCCNTR) in ARMv7 performance monitoring unit as a
high precision timer to distinguish cache hits at different levels
of cache hierarchy. Data memory barrier and instruction barrier
are also used to obtain accurate memory operaiton timing.
From our experiment, cache hit on L1 cache has an average
of 90 clock ticks, while loading from L2 cache uses 107 clock
ticks and loading from memory takes 311 clock ticks. Thus,
the performance counter register, accessible only in privilege
code, allows the attacker to not only reliably tell the difference
between cache miss and cache hit, but also the cache level in
the cache hit.

4) Countering Attack from Normal World Kernel: When the
normal world kernel is compromised, the mitigation can only
be deployed in the secure world. There are several approaches
to counter the information leakage. The most straight forward
approach is to eliminate the source of the side channel.
Disabling caching in secure world or flushing the cache each
time there is a world switch should eliminate the cache side
channel, the performance impact can however be prohibitive.
It is also possible to randomize the memory layout of the table
used by the cryptographic function to increase the difficulty
for prime and probe memory allocation by the attacker. Lastly,
it is also possible to use hardware accelerator to perform
cryptographic functions. However, this does not eliminate side-
channel attack on other applications in secure world.

C. Attacking from User Space Application

It is significantly more challenging to launch TruSense
attack from a user space application. Unlike x86, many archi-
tecture features such as high precision timer and cache flush
instruction are not available to a user space application on
ARM processors [31]. We will present our solution to these
challenges in the following paragraphs.

1) Obtaining Prime and Probe Set: The first challenge is
obtaining the memory that will cause cache contention with the
victim process in the secure world. We refer to this memory
as the probing memory, i.e. the memory used for probing
the victim. When the OS kernel is compromised, virtual-to-
physical address mapping is used to identify the memory for
cache probing. However, since the address space of a user
program is configured by the kernel, an application only has
access to virtual memory addresses, and the virtual-to-physical
address translation is not available to a user process. Lack
of access to this translation poses a significant challenge,
because most modern processor caches are physically indexed
and physically tagged. Without the physical address of the
memory, the attacker would not be able to target specific cache
lines during the prime and probe attack.

All previous prime and probe based attacks [16], [14] focus
on resolving the translation from virtual address to physical
address. Using this translation along with the cache indexing

scheme from physical address to cache set, the attacker can
identify memory that will map to a specific cache location
known to be used by the victim. In [25], [14], the large offset
within a huge page is used to gain insight of the mapping
from virtual memory address to cache set. However, huge page
support has not yet been incorporated in the mainstream Linux
kernels for ARM processors. Alternatively, the unprotected
Linux proc file system may be used to figure out the process
memory address mapping [8]. However, this address mapping
information is protected in many mainstream kernels due to
the severity of the row hammering attack [34]. Our memory
allocation strategy in TruSense takes a different approach.
Instead of extracting the virtual-to-physical address mapping
from unprotected OS functions [8], TruSense obtains the
probing memory without address translation. We present two
complementary methods for allocating the probing memory as
follows.

Statistical Matching: With the statistical matching,
TruSense identifies the probing memory page by observing
its correlation to the victim process. The intuition behind our
allocation method is that, for the memory page that can cause
contention with the victim, it is often possible to observe
patterns of victim’s footprint on the memory.

Using AES as an example, the memory of interest in the
victim process is the T-table, which has a size of 4 KB.
When a sensitive function, such as a cryptographic routine,
executes, it will pollute some portion of the L1 cache with
its access to T-table entries. Most modern systems use 4 KB
memory page. Without loss of generality, let’s assume the T-
table is split into two different virtual 4 KB pages. The first
half of the T-table will be mapped to higher addresses of one
page, while the second half of the T-table will be mapped
to lower addresses of another page. Furthermore, we know
that the table access during the encryption will cause cache
contentions with other processes that are mapped to the same
cache area. The attacker should be able to observe the cache
pollution pattern to determine if the page can be used for
probing. More specifically, when a user page shows pollution
in the higher addresses, we can conclude it correlates to the
first part of the T-table. On the other hand, if the pollution is
in the lower addresses of the page, then this page maps to the
second part of the T-table. The heat map for cache pollution
of two memory pages on our platform is shown in Figure 3.
The color shows the number of times that the cached probing
memory is evicted, therefore the darker the color, the more
pollution there is. The cache pollution pattern of the two pages
can be distinguished by observing the color difference at the
higher cache sets of the page. Page 1 shows significantly more
pollution at higher offsets. Using this method, an attacker can
reliably determine if a memory page correlates to the first
part of the T-table or the second part of the T-table. Our
implementation of the attack uses mmap interface to allocate a
large trunk of memory (e.g., 2MB in our experiments) and use
the aforementioned method to determine the relative position
of the memory page with respect to the T-table by observing
the cache pollution. The labeled allocated memory can then



Fig. 3. Cache Heat Map for AES Encryption (top) and Kernel Function Tracing (bottom)

be used for prime and probe. Even though our illustrated
example is on T-table based implementation of AES for the
evaluation platform, the presented approach applies a wide
range of software and platforms, as long as the victim process
exhibits statistical properties.

Kernel Function Correlation: Even though statistical
matching offers unique opportunities to allocate probing mem-
ory without resolving the virtual-to-physical memory transla-
tion, it can be limited when there are too few samples to be
statistically significant or when there is no inherent statistical
property that can be exploited. We propose a complementary
method called kernel function correlation when statistical
matching does not apply. The basic idea behind kernel function
correlation is that it is possible to determine the cache set
of the virtual user memory page by observing the caching
pollution when a kernel function with known physical offset
is invoked. The first step is to identify kernel functions that will
map to different parts of the targeted cache. In the second step,
for any given virtual memory page obtained in the attacker
process, the cache pollution statistics is collected when each
of these kernel functions is invoked. Kernel functions that are
mapped to the same cache area with the virtual user page
should cause the most cache line evictions. In the last step,
the physical address offset of the kernel function can be used
to determine the physical address offset as well as the cache set
number of the user page. As shown in the first step, the kernel
function symbol need to be known to the attacker. This can
often be accomplished by reverse engineering with different
tools and access to a sample system of the target with the
identical system software. Figure 3 shows the cache pollution
levels of two memory pages when the same kernel function
is invoked. Page 1 maps to the same portion of cache as the
kernel function, while page 2 maps to a different part of the
cache. We can see that they are clearly distinguishable. The
cache pollution at the offset of the kernel function that is
invoked can be clearly observed.

2) Probing the Cache: As previously discussed, an accurate
timer is required to distinguish memory access from L1
cache, L2 cache or DRAM memory. However, reading the
performance monitoring cycle counter in ARM is a privileged
operation that is only accessible to the kernel. For a user
space application on a protected (non-rooted) mobile device,
it is impossible to access cycle counter with the MCR instruc-
tions. However, since Linux kernel version 2.6, a performance
event system call has been added to the kernel for user
space applications to access the cycle counter. To use the

performance event interface provided by the kernel, the user
space process first calls the perf event open function with
a perf event attr struct as a parameter. The struct specifies
the process id, CPU id and the type of performance event to
monitor. Upon successful registration, the kernel returns a file
descriptor for further control and communication. Using the
IOCTRL function, the performance monitoring event can be
reset and enabled. Now an application can use system calls to
obtain a 64-bit hardware cycle counter from the performance
monitoring unit in the ARM processor.

Fig. 4. Memory LDR Time Measured with Perf event read

Though the performance event function in the kernel allows
user space programs to access hardware timer using file de-
scriptor operations, the handling of system call still introduces
a significant amount of noise in the measurement. This is
especially true when the timer is used to measure a single
memory load operation, which is on the scale of microseconds.
The relative scale of the noise can be observed using the L1
cache access time measurement as an example. The mean of
L1 cache access time measured in kernel is 90.7 us and the
standard deviation from a sample of 1000 measurements is
only 3.91. On the other hand, the mean of L1 access measured
with the performance event system call interface is 1745 us
and the standard deviation is 1166.31. While L1 access can
be clearly distinguished with memory access in the kernel,
distinguishing cache access from memory access using the
performance event interface as a timer is not a trivial task.
Differentiating access to the top level cache from access to
the secondary level cache is even more challenging with this
amount of noise. A probability distribution of memory load
time is shown in Figure 4 for cache hit and cache miss. ldr
instruction should significantly faster on cache hits. However,
Figure 4 shows that the two distributions overlap significantly
due to the added noise from the system call.



Due to the lack of inclusiveness or exclusiveness guarantee
and the random replacement policy on cache in ARM proces-
sors, TruSense resorts to probing the L1 cache. In order to
use L1 cache for probing, it is necessary to distinguish access
to L1 cache and access to L2 cache. The timing difference
between access to different levels of cache is significantly
smaller than that between cache and physical memory. This
small difference in timing can be difficult to measure due to
the system call noise depicted in Figure 4. Furthermore, there
is no architecture support method to fill memory only into L2
cache lines from the user space. To tackle this challenge, we
make an assumption on the L2 access time distribution and
use the value that will maximize the probability of correctly
labeling samples to L1 cache access and L2 cache access in
two steps.

First, we assume that the access time distribution of L2 is
similar to the access time distribution of memory. We make
this assumption because memory access from L2 will often
cause cache eviction from L1. Due to lack of inclusiveness in
the cache hierarchy, the cache line evicted from L1 is often not
cached in L2. In order to make space for the newly evicted L1
cache line, a line in L2 has to be randomly selected for eviction
out into the memory to make room for the evicted L1 line.
This chained cache line eviction also applies when contents
are loaded from memory. Though the exact strategy in cache
miss handling varies in different processor implementations,
almost all of them involve filling the cache line in one or
more levels of cache. This cache fill is accompanied by
cache eviction as described above. As a result, we use the
probability distribution of memory access to estimate the
probability distribution of L2 cache access. This estimation is
not perfect, and it can always be improved with better models
by incorporating details in the cache miss handling algorithm
and the cache replacement algorithm for the specific processor
model.

The next step is to estimate the population mean. We assume
that despite of the noise in the measurement process, the popu-
lation mean of access time from different levels of the memory
hierarchy (L1, L2, DRAM) using perf event read should
follow the general patterns measured by directly utilizing the
performance counter. This measurement is hardware specific,
and can be obtained by the attacker on a test system or from
hardware datasheets. We shift the mean of the population of
memory access time proportionally as those values measured
using the raw performance counter to compensate the fact that
the line fill is from L2 instead of DRAM.

With the estimated population of L2 cache access time, we
are able to calculate an optimal cut-off value to maximize the
probability of correctly asserting the cache access level. This
optimal cut-off value is key to enabling fine-grained access-
based timing side-channel given a noisy timer. Our approach
to obtain the optimal cut-off value is not restricted to the
performance event timer. If the performance event timer is
not available, we can still apply the same technique to get an
estimate using less accurate timers such as POSIX real-time
clock or another thread that keeps an incrementing variable.

3) Countering Attack from Normal World Application:
Besides the described countermeasures for normal world ker-
nel, additional mitigation can be placed in the rich OS to
prevent TruSense. From the memory perspective, it is possible
to prevent the application from obtaining memory to cause
contention. The memory allocation algorithm can be modified
to only hand out pages that are mapped to non-sensitive
regions of cache. It is also possible to flush cache before
returning the TrustZone call back to the application. From the
timer perspective, it is also possible for the rich OS to prevent
access to performance interface. Unfortunately, there are often
other alternative timing sources available [8].

V. EXPERIMENT VALIDATION

A. Validation Target - AES Key Extraction

To demonstrate the capability of TruSense on extracting
fine-grained secrets from the secure world, we apply TruSense
to recover the AES secret key protected by TrustZone. Though
there are new hardware accelerators for AES [30], [31] that do
not use T-tables in memory, we select AES as the target victim
because the side-channel information leakage of AES is well-
studied and has been used as a benchmark in other studies on
side-channel information leakage of isolated containers [16],
[8], [14], [9]. Thus, our experimental results, such as correctly
recovered bits, can be compared with other related works.
Furthermore, the same attack on the C implementation of AES
applies to other table-based implementations. Briefly, if we
denote the plaintext input block to be X , the round number to
be i, round key to be Ki, mix column to be MC(), substitution
bytes to be SB(), and lastly shift rows to be SR(), then we
can rewrite the process mathematically as,

Xi + 1


Xi ⊗Ki i = 0

MC(SR(SB(Xi)))⊗Ki 0 < i < imax

SR(SB(Xi)))⊗Ki imax

To speed up the Galois field (GF) operations, modern
software-based AES implementations, including the latest
OpenSSL, use precomputed values stored in a large table.
Therefore, the last round can be described as

C[j] = Tl[Ximax ]⊗Kimax [j] (1)

If we know the ciphertex and T-table entry, then it is possible
to obtain the key byte. The detail description of vulnerability
of AES C implementation can be found in [35].

We build a prototype of TruSense on the FreeScale i.MX53
development board. The system is ported from Adeneo Em-
bedded [36], running a 2.6.33 Linux kernel. The security
monitoring code is approximately 800 source lines of code
(SLOC). To demonstrate the attack, we port the C reference
AES functionality in OpenSSL 1.0.1f [37] into TrustZone.
AES code is loaded into secure memory along with the rest
of the security monitor system, therefore it stays at a fixed
location in the physical memory, therefore all the T-tables have
fixed physical memory addresses. To use a TrustZone function



from a user space application, we implement a full stack
service framework based on the design published in the ARM
TrustZone whitepaper [2]. More specifically, we implemented
a kernel driver to allow user space applications to interact with
the cryptographic module in the secure world.

B. Key Recovery from Normal World OS

We implement the OS-level attack as a kernel module.
The feasibility of launching prime and probe attack has been
previously suggested [8], but the attack was not detailed. Our
evaluation on the AES key recovery from the normal world OS
aims to show the detailed channel in terms of time and rounds
of encryption to recover the secret key from ARM TrustZone.
The prime and probe steps are implemented in assembly to
avoid cache pollution during the probing process. We assume
that the physical address of the AES T-table is known through
reverse engineering.

Fig. 5. Attack from Normal World OS

The effectiveness of the attack is shown in Figure 5. The
x-axis shows the number of encryption observed, and the y-
axis shows the number of key bytes correctly guessed. For
AES128, the key length is 16 bytes (128 bits). Each data
point is an average of 100 experiments. We can see from
the graph that it takes roughly 3000 rounds of encryption
for the attacker to correctly guess the entire key. It takes
approximately 2.5 seconds to execute and analyze 3000 rounds
of AES encryption on our embedded processor. Note that when
one or two bytes are not guessed correctly, the correct key
byte is often the second or third on the list. Therefore, if
the result analysis is done on a different machine with more
computing power, the number of encryption required can be
further reduced.

C. Key Recovery from Normal World User App

Normal world attack is evaluated in two aspect, the ability
to obtain prime and probe memory without access physical
memory mapping and the ability to recover key using the
obtained memory.

1) Memory Acquisition - Statistical Matching: Due to lack
of access to virtual-to-physical address mapping, we have
to use the new statistical matching method to allocate the
memory pages for probing the T-table access. Statistical
matching in our prototype platform was illustrated in Figure. 3.
However, the general feasibility of using statistical matching
method to identify locality of arbitrary memory page within

the processor cache should also be verified. Figure 6 shows the
success rate of correctly identifying the page locality (offset)
in the cache on our experimental platform. The x-axis shows
the number of samples, and the y axis shows the correct
percentage. With less than six rounds of encryption, it is
possible to apply statistical matching to correctly identify if
the 4KB memory page obtained resides in upper portion or
lower portion of the L1 cache.

Fig. 6. Success Rate for Page Locality in Cache Identification

In this experiment, statistical matching is used to identify
page locality in cache. This is possible, because we make
the same assumption as previous works [14] that we can
obtain the cache set offset of the memory area of the target.
More specifically, we know the cache offset of the AES T-
table in our experiment. However, if the library is loaded into
the process with ASLR support in the trusted container [38],
the offset will be unknown, because the target address is
randomized. In such scenario, we test the possibility of using
statistical matching to not only identify memory page cache
locality, but also to identify the cache sets used by the target.
We find that it is impossible to simply increase the number of
samples to find memory that will cause contention with the
target. We run the channel measurement function for more
than five hours with around 200,000 rounds of encryption
and fail to find any correlation. This is due to the cache
hits introduced by making the library and system calls to
read the performance event timer. To resolve this issue, we
estimate the noise by recording the cache evictions in making
a single system call, sys read. The true cache contention is
then estimated by subtracting off the background noise. After
removing the noise, we are able to identify the relative target
location in memory page showing high cache contentions with
high confidence using 20000 rounds of encryption. We believe
the rounds of encryption can be further reduced by exploiting
more advance statistical methods, and we will investigate it as
future work.

2) Key Recovery: Though we can choose the optimal cut-
off value to maximize the probability of correctly differentiat-
ing L1 access from L2 access, the inaccurate timer still causes
a significant amount of noise in the probing process. Despite
the two aforementioned challenges, we are still able to steal
the full AES key within 9000 rounds of encryption. The results
of attack from user space application is shown in Figure 7. The
x-axis shows the number of encryption observed, and the y-
axis shows the number of key bytes correctly guessed. It takes



approximately 9000 encryption to correctly guess all the key
bytes. It takes approximately 14 minutes to run and analyze
9000 rounds of AES encryption on our test platform. Most of
the time is used in loading a large amount of memory in order
to evict the secure cache. Since user space does not have access
to the translation from virtual-to-physical address to optimally
evict secure cache lines, we use the naive approach of loading
significant amount of memory to increase the probability of
evicting all secure cache lines.

Fig. 7. Attack from Normal World Application

VI. CONCLUSION

In this work, we study cache-based timing side-channel
information leakage in TrustZone, the trusted execution envi-
ronment of ARM processors. Besides studying the information
leakage from the normal world kernel perspective, we explore
the possibility of launching side-channel attack on targets
in TrustZone from a non-privileged user space application.
TruSense can successfully extract the full AES encryption
key from secure world with 3000 rounds of encryption in
less than three seconds using the OS environment. Using
new techniques including statistical matching and cache time
loading estimation, the key recovery by user space application
takes 9000 rounds and less than fourteen minutes. Though
we only demonstrate the recovery of cryptographic keys
from secure world, side-channel information leakage is widely
applicable to many other libraries and applications. We hope
that our finding in this paper provides a measurement of
severity in secure container side-channel information leakage
in ARM, and can fuel further research in the area of informa-
tion leakage protection in hardware-assisted secure execution
environments.
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