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Abstract—Capacity scaling laws offer fundamental understanding on the trend of user throughput behavior when the network size
increases. Since the seminal work of Gupta and Kumar, there have been active research efforts in developing capacity scaling laws for
ad hoc networks under various advanced physical (PHY) layer technologies. These efforts led to many custom-designed solutions,
most of which were mathematically challenging and lacked general properties that can be extended to address scaling laws of ad hoc
networks with other PHY layer technologies. So a question is: can we have a general methodology to obtain asymptotic capacity
results for various PHY layer technologies? In this paper, we present a simple yet powerful method to determine capacity upper bounds
under the protocol model. We prove the correctness of our proposed method and demonstrate its applications to various PHY layer
technologies, including directional antenna, MIMO, multi-channel multi-radio, cognitive radio, multiple packet reception, and full-duplex
radio. This new method offers a simple tool to researchers to quickly determine asymptotic capacity of wireless networks with a
particular PHY layer technology without the need to resort to complex custom-designed analysis as done in the literature.

Index Terms—Asymptotic capacity, upper bounds, scaling law, protocol model, physical layer technology.
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1 INTRODUCTION

CAPACITY scaling laws refer to how a user’s throughput scales
as the network size increases to infinity.1 Such scaling law

results, expressed inO(·), Ω(·), and Θ(·) as a function ofn
(wheren is the number of nodes in the network and approaches
infinity), offer fundamental understanding on the trend of user
throughput behavior when the network size increases.

Since the seminal results of Gupta and Kumar (“G&K” for
short) on capacity scaling law of ad hoc networks with single
omnidirectional antennas [7], there has been a growing body
of research efforts on exploring capacity scaling laws for ad
hoc networks under various physical (PHY) layer technologies.
These include directional antenna [15], [25], MIMO [10], multi-
channel multi-radio (MC-MR) [12], cognitive radios [8], [9], [18],
[26], multiple packet reception (MPR) [16], and full-duplex [24],
among others. For each of these advanced PHY layer technologies,
a custom-designedanalytical approach was developed to study its
capacity scaling law. Most of these solutions were mathematically
challenging and lacked general properties that can be extended to
address scaling laws of wireless networks with other PHY layer
technologies.

A fundamental question we ask in this paper is the following.
Instead of custom-designing an analysis for each PHY layer
technology, can we devise a set of simple yet general method that
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1. When there is no ambiguity, we use the terms “asymptotic capacity” and
“capacity scaling law” interchangeably throughout this paper.

can be easily and quickly applied to determine capacity scaling
laws for various PHY layer technologies? If successful, this new
method will serve as a powerful tool to networking researchers
to study and understand throughput scaling behavior of wireless
networks under various PHY layer technologies, both current and
future.

The main contribution of this paper is the development of a
simple method for establishing capacity upper bounds underthe
protocol model for wireless networks under various PHY layer
technologies. The following is a summary of our contributions.

• We give an in-depth study of G&K’s analysis on asymp-
totic capacity bound for ad hoc networks with single
omnidirectional antennas. We offer insight on why their
approach cannot be applied to analyze asymptotic capacity
under some other PHY layer technologies.

• We propose a new and novel method based on the so-
called “interference square” concept. Under this concept,
we divide a normalized1 × 1 network area into small
interference squares, each with side length1/⌈

√
2

∆·r(n)⌉,
wherer(n) is the transmission range and∆ is a parameter
to set the interference range under the protocol model.
For transmissions within an interference square, we show
some unique interference properties.

• Based on the new interference square concept, we develop
two simple yet powerful scaling order criteria to determine
the asymptotic capacity upper bounds for various PHY
layer technologies. Either criterion is sufficient to give a
capacity upper bound for a given PHY layer technology,
and the choice of which criterion to use is purely a matter
of convenience depending on the underlying problem. We
also prove the correctness of applying these criteria in
obtaining capacity upper bounds.

• To demonstrate the application of our proposed method,
we study asymptotic capacity of wireless networks under
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various PHY layer technologies, including directional an-
tenna, MIMO, MC-MR, cognitive radio, MPR, and full-
duplex. We show that by applying our simple method,
one can easily obtain capacity upper bounds under these
PHY layer technologies. This is in sharp contrast to similar
results developed in the literature, which involved complex
mathematical analysis that was custom-designed for each
PHY layer technology. Note that our method not only
can quickly validate those results already reported in the
literature, it can also quickly determine some new results
that have not been studied before. Further, it can be a
useful tool to study wireless networks under other new
PHY layer technologies in the future.

Just like any useful tool, our proposed method is not without
limitations and several disclaimers are in order. First, our method
is developed to determine capacity upper bound. It should not be
too surprising that there does not appear to exist a general method
to determine lower bound. This is because finding a capacity
lower bound requires to find a good andfeasiblesolution, which
must be tied to the specific underlying PHY layer technology.
Typically, a feasible solution includes resource allocation at the
physical layer, scheduling at the MAC layer, and routing at the
network layer, each of which is dictated by the underlying PHY
technology. This is in contrast to the development of asymptotic
upper bounds, for which one can exploit inequality relationships
(rather than ensuring absolute feasibility). Second, as weexplicitly
stated in the paper title, our method is developed solely under
the protocol model. Developing a unified method under the
SINR-based interference model remains an open problem. This
limitation is partially due to the fact that it remains unknown
whether there exists a general SINR-based model for different
PHY layer technologies. More discussion on this is given in our
conclusions at the end of the paper (Section 12). Third, we have
only considered the wireless network scenario where nodes are
uniformly distributed in an area. Although some works considered
non-uniform node distribution [1], [2], it remains an open problem
whether our approach can be extended to such cases (with non-
uniform node distribution).

The remainder of this paper is organized as follows. In
Section 2, we take a closer look at G&K’s classical method
(for wireless networks with single omnidirectional antennas) and
understand why it cannot serve as a general method to analyze
other PHY layer technologies. Subsequently, in Section 3, we
propose a novel interference square concept and based on this
concept, in Section 4, we present two simple yet powerful scaling
order criteria, which can be used to easily and quickly derive
capacity upper bounds for various PHY layer technologies. We
also give a simple benchmark for the lower bounds in the absence
of a general method to find asymptotic lower bounds. As appli-
cations of our proposed method, in Sections 5 to 10, we apply it
to wireless networks based on various PHY layer technologies
such as directional antenna, MIMO, MC-MR, cognitive radio,
MPR, and full-duplex. Section 11 offers discussions of our work.
Section 12 concludes this paper. Table 1 lists notation usedin this
paper.

2 LESSON LEARNED FROM G&K’S CLASSICAL

APPROACH

In this section, we take a close look at G&K’s classical approach
in analyzing capacity scaling law and try to understand why such

TABLE 1
Notation.

General notation
dij Distance between nodesi andj
D Average distance between all source-destination pairs

fRX(n) An upper bound for the maximum number of successful
transmissions whose receivers are in the same interference
square

fTX(n) An upper bound for the maximum number of successful
transmissions whose transmitters are in the same interference
square

n The number of nodes in the network
N The set of nodes in the network
W The data rate of a successful transmission in a channel
r(n) The (common) transmission range of all nodes under the

protocol model
Rx(l) Receiver of linkl
Tx(l) Transmitter of linkl
∆ A parameter to set interference range in the protocol model

λ(n) Per-node throughput of a random network withn nodes
Ad hoc network with directional antennas

S An interference square in the unit area
AS Area ofS
NS Number of nodes inS

MIMO ad hoc network
Il The set of links that are interfered by linkl
Ql The set of links that are interfering linkl
zl Number of data streams on linkl
α Number of antennas at each node

Π(·) The mapping between a node and its order in the node list
MC-MR network

c The number of channels in the network
m The number of radio interfaces at each node

CR ad hoc network
Bi The set of available bands at nodei
Bij The set of available bands on link(i, j)
M = |

⋃n
i=1 Bi|, i.e., the number of distinct frequency bands

in the network
Ad hoc network with MPR

β1 Number of simultaneous packets from intended transmitters
whose transmission range covers a receiver

β2 Number of unintended transmitters that produce interference on
the same receiver

β A constant representing the total available resource at a receiver

an approach becomes a barrier in analyzing capacity scalinglaws
when other PHY layer technologies are employed.

2.1 Background

In G&K’s work [7], they considered an ad hoc network ofn nodes
that are randomly located within a unit square area. Each node in
the network is a source node and transmits its data to a randomly
chosen destination node. A node’s transmission is limited by its
transmission range. When the distance between a source node
and its destination node is large, multi-hop routing is needed to
relay the data. The per-node throughputλ(n) is defined as the
data rate that can be sent from each source to its destination.
A capacity scaling law attempts to characterize the maximum
per-node throughputλ(n) when the number of nodesn goes to
infinity.

In [7], two interference models, the protocol model and the
physical model, were considered in their study. In the protocol
model [7], each transmitting node is associated with a transmission
ranger(n), and an interference range(1 +∆)r(n), where∆ is a
constant. To guarantee the connectivity of the network, transmis-
sion ranger(n) must satisfy the following condition (regardless
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Fig. 1. Overlapping of two circular footprints of two receiving nodes.

of the underlying physical layer technology) [6]:

r(n) ≥
√

lnn

n
. (1)

When nodei transmits to nodej, the necessary and sufficient
conditions for a successful transmission are:

• node j is within the transmission range of nodei, i.e.,
dij ≤ r(n), wheredij is the distance between nodesi
andj, and

• for any transmitting nodek other than nodei, node j
is outside the interference range of nodek, i.e., dkj >
(1 + ∆)r(n), if k is a transmitting node andk 6= i.

In [7], when the transmission from a node to another node is
successful, then the achieved data rate for this transmission is
assumed to be a constantW .

2.2 G&K’s Approach and Its Limitation

A key component in G&K’s approach (in deriving capacity upper
bound) is to calculate how much footprint area each successful
transmission occupies. Then by dividing the unit square area by
this area, they were able to obtain an upper bound of the maximum
number of successful transmissions at a time and subsequently to
derive a capacity upper bound. Specifically, in [7], G&K showed
that for a successful reception at each receiver, one can draw a cir-
cle around each receiver with radius∆r(n)

2 and these circles must
be disjoint.2 Under the above approach, a successful transmission

will occupy a circular footprint area of at leastπ
[

∆r(n)
2

]2
. Then

the maximum number of successful transmissions within the unit
square area is at most1/

[

π(∆r(n)
2 )2

]

at any time. Based on this
result, G&K derived a capacity upper bound.

The essence of the above footprint area approach is to identify
the size of the circular area that each successful transmission will
occupy. But this approach poses a barrier when we encounter
other PHY layer technologies (e.g., MIMO, directional antenna)
beyond single omnidirectional antenna node considered in [7].
This is because under these advanced PHY layer technologies,
the interference relationships among the nodes are much more
complex than those under the single omnidirectional antenna
scenario in [7]. In particular, the footprint area of each successful

2. This result can be proved by contradiction. That is, suppose two circles
centered at receiversj andk with radius ∆r(n)

2
are not disjoint (see Fig. 1),

then djk ≤ ∆r(n). Suppose receiverj is receiving data from transmitter
i. Then we havedij ≤ r(n). Based on the triangle inequality, we have
dik ≤ dij + djk ≤ (1 + ∆)r(n), which means that receiverk is within
the interference range ofi. But this contradicts with the fact that receiving
nodek must fall outside of the interference range of nodei.

Fig. 2. The unit square is divided into equal-sized small interference
squares, each with a side length of 1/⌈

√

2
∆·r(n)

⌉.

receiver doesnot have to be disjoint. For example, in a MIMO ad
hoc network where each node employs multiple transmit/receive
antennas, receiving nodek in Fig. 1 may use its degree-of-
freedoms (DoFs) to cancel the interference from transmitting node
i [3], [19]. As a result, G&K’s approach of associating disjoint
footprint area with each successful transmission falls apart.

3 A NEW APPROACH

Given that the footprint area approach in [7] is not capable of
handling more complex interference relationships (brought by
other PHY layer technologies), we propose a new approach that
handles interference from a different perspective.

We consider the same network setting as in G&K’s work
[7], where there is an ad hoc network ofn nodes that are
randomly located within a unit square area. Each node in the
network is a source node and transmits its data to a randomly
chosen destination node. A node’s transmission is limited by its
transmission range. When the distance between a source nodeand
its destination node is large, multi-hop routing is needed to relay
the data.

In our new approach, instead of focusing on how much foot-
print area each successful transmission occupies, we will calculate
how many successful transmissions that a given small area in
the network can support.Specifically, we divide the unit square
into small equal-sized squares (Fig. 2), each with a side length of
1/⌈

√
2

∆·r(n)⌉. We call each small square aninterference square.As
we shall show in Section 4, if one can find the maximum number
of successful transmissions in each interference square (under a
specific PHY layer technology), then we can derive the capacity
upper bound for the entire network. Subsequently, in Sections 5
to 9, we show how to find the maximum number of successful
transmissions in each interference square under differentPHY
layer technologies, thus deriving capacity upper bound foreach
of these technologies.

Before we show how this new interference square approach
can offer simple scaling law criteria, we discuss some important
properties associated with a small square as follows.

Property 1. For a set of successful simultaneous transmissions
whose receivers fall in the same interference square, the
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Fig. 3. A set of transmissions whose receivers are in the same interfer-
ence square.

receiver of any such transmission must be within the inter-
ference range of any other transmitter from the same set of
transmissions.

Proof: Note that the distance between any two receivers
in the same interference square is at most

√
2 · 1/

[ √
2

∆·r(n)

]

=
√
2 · ∆r(n)√

2
= ∆ · r(n). Denote Tx(l) and Rx(l) the trans-

mitter and receiver of transmissionl, respectively. Referring
to Fig. 3, for any two transmissionsl and k with their re-
ceivers Rx(l) and Rx(k) in the interference square, we have
dRx(l),Rx(k) ≤ ∆ · r(n). SincedTx(l),Rx(l) ≤ r(n) (recall thatr(n)
is transmission range) based on the triangle inequality, wehave
dTx(l),Rx(k) ≤ dRx(l),Rx(k) + dTx(l),Rx(l) ≤ (1 + ∆)r(n). Similarly,
we can prove that the receiver Rx(l) of transmissionl is also in
the interference range of transmitter Tx(k) of transmissionk.

Similar to Property 1 (which considers receivers in the same
interference square), we can consider transmitters in the same
interference square and have the following property.

Property 2. For a set of successful simultaneous transmissions
whose transmitters reside in the same interference square,
the receiver of any such transmission must be within the
interference range of any other transmitter from the same set
of transmissions.

The proof of Property 2 is similar to that of Property 1 and is
omitted.

Properties 1 and 2 show us two complementary ways to
assess interference relationship from either receiver or transmitter
perspective in the same interference square. It turns out that these
two properties allow us to calculate the number of successful
transmissions with either their receivers or transmittersin the
same interference square under various PHY layer technologies.
For example, under the single omnidirectional antenna setting in
Section 2.1, we can easily conclude that there can be at most
one active receiver (or transmitter) in an interference square for a
successful transmission, i.e., the maximum number of successful
transmissions with either receivers or transmitters in thesame
interference square is one. As another example, for MIMO ad
hoc network where each node is equipped with multiple trans-
mit/receiver antennas, Properties 1 and 2 allow us to show that
the maximum number of successful transmissions whose receivers
(or transmitters) in the same interference square is upper bounded
by the number of antennas at each node (see details in Section6).
As we shall show in the next section (Theorems 1 and 2), the
maximum number of successful transmissions whose receivers (or
transmitters) are in the same interference square will determine

the capacity scaling law of an ad hoc network under various PHY
layer technologies.

4 MAIN RESULTS: SIMPLE SCALING ORDER CRI-
TERIA

As we shall show in Sections 5 to 10, for a specific PHY layer
technology, the newly defined interference square and Properties 1
and 2 enable us to characterize the maximum number of successful
transmissions whose receivers (or transmitters) are in thesame
interference square. For a specific PHY layer technology, denote

• fRX(n) as an upper bound for the maximum number of
successful transmissions whosereceiversare in the same
interference square.

Similarly, denote

• fTX(n) as an upper bound for the maximum number of
successful transmissions whosetransmitters are in the
same interference square.

In this section, we show that once we have eitherfRX(n) or fTX(n),
we can quickly determine a capacity scaling order. Figure 4
summarizes the idea of the above discussion.

The two criteria that we present in this section (Theorem 1 and
2) show that the capacity upper bound scales asymptoticallywith
either fRX(n)

nr(n) or fTX(n)
nr(n) . We formally state these results as follows.

Theorem 1 (Criterion 1). For a givenfRX(n), the asymptotic
capacity upper bound of a random ad hoc network isλ(n) =

O
(

fRX(n)
nr(n)

)

almost surely whenn → ∞. In the special case

whenfRX(n) is a constant, thenλ(n) = O(1/
√
n lnn) almost

surely whenn → ∞.

Proof: Recall that we divide the unit square into small
interference squares with each having a side length of1/⌈

√
2

∆·r(n)⌉
(see Fig. 2). DenotefRX(n) an upper bound of the maximum
number of successful transmissions whose receivers are in the
same interference square. Then, the total data rate that each
interference square can support is at mostfRX(n)W . Now, we
can compute the maximum data rate that can be supported by the
network in the unit square by taking the sum of the data rates
among all small interference squares. Since the side lengthof
each small interference square is1/⌈

√
2

∆·r(n)⌉, the total number

of small interference squares in the unit area is⌈
√
2

∆·r(n)⌉2. So the
maximum data rate that can be supported in the network is at most
⌈

√
2

∆·r(n)⌉2fRX(n)W .
Let D be the average distance between a source node and its

destination node. Since multi-hop routing is employed, we have
that the average number of hops for each source-destinationpair
is at least D

r(n) . Note that there aren source-destination pairs.
Thus, the required transmission rate over the entire network is at
least D

r(n)nλ(n).
Since the maximum data transmission that can be support-

ed in the network at a time is⌈
√
2

∆·r(n)⌉2fRX(n)W , we have

D
r(n)nλ(n) ≤

⌈ √
2

∆·r(n)

⌉2
fRX(n)W <

( √
2

∆·r(n) + 1
)2

fRX(n)W ,
which gives us

λ(n) <
2fRX(n)W

∆2Dnr(n)
+

2
√
2fRX(n)W

∆Dn
+

fRX(n)Wr(n)

Dn

= O

(

fRX(n)

nr(n)

)

. (2)
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This proves the first part of Theorem 1.
Now, we show the special case whenfRX(n) is a constant. In

this case, based on (2), we have

λ(n) = O

(

1

nr(n)

)

. (3)

Note that based on (1), we haver(n) ≥
√

lnn
n

. By substituting

r(n) =
√

lnn
n

into (3), we haveλ(n) = O

(

1

n
√

lnn

n

)

=

O
(

1√
n lnn

)

.

Similarly, if we can findfTX(n), then the following criterion
can also give an upper bound for the asymptotic capacity.

Theorem 2 (Criterion 2). For a givenfTX(n), the asymptotic
capacity upper bound of a random ad hoc network isλ(n) =

O
(

fTX (n)
nr(n)

)

almost surely whenn → ∞. In the special case

whenfTX(n) is a constant, thenλ(n) = O(1/
√
n lnn) almost

surely whenn → ∞.

The proof of Theorem 2 is similar to that of Theorem 1 and is
omitted to conserve space.

Several remarks about the above two criteria are in order.

• First, for a specific PHY technology, we only need to focus
on the calculation of eitherfRX(n) or fTX(n), whichever
is more convenient. An asymptotic capacity upper bound
will follow once we have eitherfRX(n) or fTX(n), based
on either Theorem 1 or Theorem 2.

• Second, when eitherfRX(n) or fTX(n) is a constant, then
the asymptotic capacity upper bound isO(1/

√
n lnn),

which is precisely the same as that in [7] by G&K for
the protocol model. This offers a quick test on whether the
underlying PHY technology will indeed change the scaling
order of the classical single omnidirectional antenna based
ad hoc network in [7].

• Finally, the two criteria allow us to focus on calculation
(fRX(n) or fTX(n)) only within a small interference square.
The details associated with network-wide multi-hop end-
to-end throughput have been folded in the proof of the two
theorems and are no longer of concerns to users of these
two theorems in deriving asymptotic capacity upper bound
for a given PHY technology.

Example 1. As the first application of our scaling order criterion,
let’s validate the single omnidirectional antenna based ad
hoc network considered in [7]. As discussed in Section 3,
we have thatfRX(n) = 1. Thus, by Theorem 1, we have
λ(n) = O(1/

√
n lnn), which is precisely the same result

in [7] by G&K.

In the remaining several sections, we will explore asymptotic
capacity upper bounds for ad hoc networks under various PHY
technologies. We will present results for directional antennas,
MIMO, MC-MR, cognitive radio, MPR, and full-duplex radio in
this paper. Referring to Fig. 4, for each case, we will first calculate
eitherfRX(n) or fTX(n), whichever is more convenient, based on
the new interference square and Properties 1 and 2. This is the
upper righthand block in Fig. 4. Once we havefRX(n) or fTX(n),
then we will apply one of the two criteria in this section to quickly
obtain the capacity scaling law for this PHY technology (bottom
block in Fig. 4).

f n f n

f n f n

Fig. 4. A flow chart illustrating our approach to derive asymptotic upper
bound for a specific physical layer technology.

Recall our earlier discussion that a simple method to obtain
capacity lower bounds is not possible due to the need of finding
a good and feasible solution, which is closely tied to the spe-
cific PHY technology. Nevertheless, we may useΩ(1/

√
n lnn)

(capacity lower bound for single omnidirectional antenna ad hoc
networks by G&K [7]) as a benchmark lower bound in many cases.
This is because single omnidirectional antenna can be considered
as a special case of some of these advanced PHY technologies.If
this crude lower bound has the same scaling order as the upper
bound that we find for a particular PHY technology, then we
can confidently conclude thatλ(n) = Θ(1/

√
n lnn). Otherwise,

Ω(1/
√
n lnn) may appear loose, and we would need to develop

a tighter lower bound by exploiting the unique properties ofthe
underlying PHY technology. We will experience both cases inthe
following case studies.

5 CASE STUDY I: AD HOC NETWORKS WITH DI-
RECTIONAL ANTENNAS

Compared to omnidirectional antenna, directional antennacan
control its beam width and concentrate its beam toward its in-
tended destination. Since nodes outside the beam is not interfered,
greater spatial reuse inside the network can be achieved. Inthis
section, we apply our method in Section 4 to explore asymptotic
capacity of a random ad hoc network with each node being
equipped with a directional antenna. We follow the same model
as in [15] by Peraki and Servetto.3 The scaling law results in [15]
are well known and widely cited. They showed that for the single-
beam model, the asymptotic capacity scales asO (r(n)) and for
the multi-beam model, it scales asO

(

nr3(n)
)

. The analysis in
[15] was custom-designed and differed from that by G&K. The
analysis required significant efforts in its construction.In contrast,
in this section, we show that by applying our simple method in

3. Another work on scaling law for directional antennas is [25] by Yi et al.,
which employed a slightly different model and thus led to a different set of
results. The approach in [25] followed the same token as thatin [7] by G&K.
It can be shown that our criteria can be easily applied there and we leave the
details to readers as an exercise.
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Section 4, we can quickly obtain (using less than 1.5 pages) the
same results for asymptotic capacity upper bound in [15]. We
organize this section as follows. First, we consider the case for the
single-beam model. Then, we consider the multi-beam model.

5.1 Scaling Law Analysis for Single Beam Model

5.1.1 Single Beam Model
The protocol model for single beam model is defined as follows
[15].

• A transmitter can generate at most one directional beam to
an intended receiver within its transmission range.

• A receiver can receive multiple directional beams from
different transmitters where the receiver is within their
transmission range, as long as these transmitters do not
lie on the same line.

5.1.2 Calculating fTX(n)

In this case study, we choose to calculatefTX(n), which is more
convenient thanfRX(n). As discussed in Section 4, the choice of
calculatingfTX(n) or fRX(n) is solely based on convenience and
either one is sufficient to determine asymptotic capacity.

Recall thatfTX(n) is an upper bound for the maximum number
of successful transmissions whose transmitters are in the same
interference square. In the case of single-beam model,fTX(n)
corresponds to an upper bound for the maximum number of
successful beam transmissions whose transmitters are in the same
interference square. To calculatefTX(n), we need the following
lemma.

Lemma 1. The number of nodes in the same interference square
is Θ

(

nr2(n)
)

almost surely whenn → ∞.

Proof: DenoteS as an interference square within the unit
area. DenoteAS andNS the area and the number of nodes inS,
respectively. Since nodes inS are randomly distributed, we have
the average number of nodes inS is E(NS) = nAS . For the
number of nodes inS, we have the following probabilities (also
known as Chernoff bounds) [14].

P {NS > (1 + δ)nAS} <

[

eδ

(1 + δ)1+δ

]nAS

for anyδ > 0 ,

P {NS < (1− δ)nAS} < e−
1

2
nASδ2 for any0 < δ < 1 .

Combining the above two inequalities, for any0 < δ < 1, we
have

P {|NS − nAS | > δnAS}
= P {NS > (1 + δ)nAS}+ P {NS < (1− δ)nAS}

<

[

eδ

(1 + δ)1+δ

]nAS

+ e−
1

2
nASδ2

= e−θ1nAS + e−θ2nAS , (4)

whereθ1 = (1 + δ) ln(1 + δ)− δ andθ2 = 1
2δ

2.

Note thatAS = 1/
⌈ √

2
∆·r(n)

⌉2
= Θ(r2(n)). Letting AS =

Θ(r2(n)) in (4), we have

P {|NS − nAS | > δnAS} < e−θ1nΘ(r2(n)) + e−θ2nΘ(r2(n)) .
(5)

Based on (1), we haver(n) = Ω(
√

lnn
n

). Thus, the right-hand-
side of (5) goes to zero whenn → ∞, which shows that the

probability that the deviation of the number of nodes inS from the
mean by more than a constant factor of the mean is zero whenn →
∞. Based on the definition ofΘ(·), we haveNS = Θ(nr2(n)).

Based on Lemma 1, we have the following lemma forfTX(n).

Lemma 2. For a random ad hoc network under single-beam
directional antenna, we havefTX(n) = Θ

(

nr2(n)
)

.

Proof: By Lemma 1, there areΘ
(

nr2(n)
)

nodes in the
interference square. Since each node can only generate one beam,
the total number of successful beam transmissions generated
by the transmitters in this interference square cannot exceed
Θ
(

nr2(n)
)

, i.e.,fTX(n) = Θ
(

nr2(n)
)

.

5.1.3 Scaling Law

Following Fig. 4, withfTX(n) = Θ
(

nr2(n)
)

, we can now apply
Theorem 2 and quickly obtain the following asymptotic capacity
upper bound.

Proposition 1. For a random ad hoc network under single-beam
directional antenna, we haveλ(n) = O (r(n)) almost surely
whenn → ∞.

Proof: Combining Lemma 2 and Theorem 2, we have

λ(n) = O

(

fTX(n)

nr(n)

)

= O

(

nr2(n) · 1

nr(n)

)

= O (r(n)) .

Note that this result for single-beam case is the same as that
in [15]. This upper bound is tight since it has the same asymptotic
order as the lower bound obtained in [15].

5.2 Scaling Law Analysis for the Multi-Beam Model

5.2.1 Multi-Beam Model

The protocol model for multi-beam model is defined as follows
[15].

• A transmitting node can generate multiple beams to dif-
ferent receiving nodes within its transmission range at the
same time.

• A receiving node can only receive one beam from the same
transmitting node but may receive multiple beams from
different transmitting nodes where the receiver is within
their transmission range, as long as these transmitters do
not lie on the same straight line.

5.2.2 Calculating fRX(n)

We will calculatefRX(n).4 Recall thatfRX(n) is an upper bound of
the maximum number of successful transmissions whose receivers
are in the same interference square. In the case of multi-beam
model,fRX(n) corresponds to an upper bound of the maximum
number of successful beam transmissions received by the receivers
that are in the same interference square.

For receivers residing in the same interference square, it is easy
to see that their transmitters cannot be outside a larger square, with
the same center as the interference square, but with side length of
1/⌈

√
2

∆·r(n)⌉ + 2r(n) (see Fig. 5). Otherwise, a receiver in the
interference square will be outside of a transmitter’s transmission
ranger(n). For the number of nodes inside the larger square

4. The level of difficulty in calculatingfRX(n) is the same as that forfTX(n)
in the multi-beam model. Either choice will lead to the same result.
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Fig. 5. The larger square contains all the transmitters that can transmit
directional beams to the receivers that are in the small interference
square at the center.

(regardless of transmitters or receivers), we have the following
lemma.

Lemma 3. The number of nodes in the larger square with side
length2r(n)+1/

⌈ √
2

∆·r(n)

⌉

isΘ
(

nr2(n)
)

almost surely when
n → ∞.

The proof of Lemma 3 is similar to the proof of Lemma 1 and
is omitted here. Now, we are ready to calculatefRX(n) as follows.

Lemma 4. For a random ad hoc network under multi-beam
directional antenna, we havefRX(n) = O

(

n2r4(n)
)

.

Proof: Based on Lemma 3, we know that the number of
transmitters that can transmit beams to the same receiver inthe
interference square is at mostO

(

nr2(n)
)

. That is, a receiver in
the interference square can receive at mostO

(

nr2(n)
)

beams.
By Lemma 1, there are at mostΘ

(

nr2(n)
)

receivers in the same
interference square. So we have

fRX(n) = Θ
(

nr2(n)
)

·O
(

nr2(n)
)

= O
(

n2r4(n)
)

.

5.2.3 Scaling Law

Following Fig. 4, withfRX(n) = O
(

n2r4(n)
)

, we can now apply
Theorem 1 and quickly obtain the following asymptotic capacity
upper bound.

Proposition 2. For a random ad hoc network under multi-beam
directional antenna, we haveλ(n) = O

(

nr3(n)
)

almost
surely whenn → ∞.

Proof: Combining Lemma 4 and Theorem 1, we have

λ(n) = O

(

fRX(n)

nr(n)

)

= O

(

n2r4(n) · 1

nr(n)

)

= O
(

nr3(n)
)

.

This result is the same as that in [15] for the multi-beam case.
This upper bound is tight since it has the same asymptotic order
as the lower bound obtained in [15].

6 CASE STUDY II: MIMO AD HOC NETWORKS

6.1 MIMO Model

By employing multiple antennas at both transmitting and receiving
nodes, MIMO has brought significant benefits to wireless commu-
nications, such as increased link capacity [4], [20], improved link
diversity [28], and interference cancellation between conflicting
links [3], [19]. In this section, we characterize asymptotic capacity
upper bound for multi-hop MIMO ad hoc networks. Although
there are many schemes to exploit the benefits of antenna arrays at
a node, we focus on the two key characteristics of MIMO:spatial
multiplexing (SM) and interference cancellation(IC) [3], [19],
[27]. SM refers that a transmitter can send several independent
data streams to its intended receiver simultaneously on a link. IC
refers that by properly exploiting multiple antennas at a node,
potential interference to and/or from other nodes can be cancelled.

To model SM and IC, we employ recent advance in MIMO
protocol model in [17] by Shiet al.The MIMO protocol model is
defined as follows. In this model, degree-of-freedom (DoF) is used
to represent resource at a MIMO node. Simply put, the number of
DoFs at a node is equal to the number of antennas, denoted asα,
at the node. Denotezl the number of active data streams on link
l in a time slot. Denote Tx(l) and Rx(l) the transmitter and the
receiver of linkl, respectively. To spatial multiplexzl data streams
on link l, we need to allocatezl (zl ≤ α) DoFs at both transmitter
Tx(l) and receiver Rx(l). To cancel interference from and/or to
other nodes in the network, it is necessary to have an orderedlist
for all nodes and allocate DoFs at each node following this order
[17]. DenoteΠ(·) the mapping between a node and its order in the
node list. Suppose that linkl is carryingzl data streams. Denote
Il andQl the set of links that are interfered by linkl and the
set of links that are interfering linkl, respectively. Transmitter
Tx(l) is responsible for cancelling the interference from itselfto
all receivers Rx(k), k ∈ Il, that are before node Tx(l) in the
order list. Similarly, receiver Rx(l) of link l is responsible for
cancelling the interference from all transmitters Tx(k), k ∈ Ql,
that are before node Rx(l) in the order list. Since the total number
of DoFs for SM and IC cannot exceedα, we have the following
two constraints on each active linkl in the network.

1) DoF constraint at Tx(l): The number of DoFs that Tx(l)
can use for SM (for transmission) and IC cannot exceed
the total number of DoFs at node Tx(l), i.e.,

zl +

Π(Tx(l))>Π(Rx(k))
∑

k∈Il

zk ≤ α . (6)

2) DoF constraint at Rx(l): The number of DoFs that receiv-
er Rx(l) can use for SM (for reception) and IC cannot
exceed the total number of DoFs at node Rx(l), i.e.,

zl +

Π(Rx(l))>Π(Tx(k))
∑

k∈Ql

zk ≤ α . (7)

We use the following simple example to illustrate DoF alloca-
tion in a MIMO network.

Example 2. Consider the three-link (k, l, and m) example in
Fig. 6(a). The number of antennas at each node is also shown
in the figure. Under the above MIMO model, we need an order
to determine the DoF resource usage at each node. Suppose we
are following an order list, saya → d → b → c → e → f
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Link m

a

c

e

b
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f
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(a) Inter-nodal interference relationship for three
links.
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1 2 3 4

1

2

3

4

1

3

4

0

zl

zm

2

(b) Achievable DoF region of the three MIMO links.

Fig. 6. A three-link MIMO network example.

among the nodes. Then, the DoF allocation in this MIMO
network works as follows.

We start with nodea, which is the first node in the list. Given
it is the first in the list, nodea does not have any interference
with which it needs to be concerned. Since nodea has only 1
antenna, it can transmit at most 1 data stream to its intended
receiverb. The second node on the ordered list is noded.
Since it appears in the order list after nodea, noded needs
to suppress the interference froma. This implies that node
d needs to expend 1 DoF to cancel the interference froma.
Sinced has 2 antennas, we have thatd can receive at most
2 − 1 = 1 stream, i.e.,zl ≤ 1. The DoF consumption on
nodesb and c follows exactly the same token, and it can be
verified thatb andc can each receive and transmit 1 stream,
respectively. Since nodee’s transmission should not interfere
with the reception atb andd that had appeared in the order
list earlier, e needs to expend 2 DoFs for this purpose. At
this point,e can transmit up to4 − 1 − 1 = 2 streams, i.e.,
zm ≤ 2. Finally, along the same line, nodef can receive
at most4 − 1 − 1 = 2 streams, i.e.,zm ≤ 2. Therefore,
after the above steps, we can see that the stream combination
(zk = 1, zl = 1, zm = 2) can be scheduled feasibly on
links k, l, andm. It can be shown that the entire DoF region
(the set of all feasible stream combinations) for the three-link

example in Fig. 6(a) can be found by enumerating all possible
choices of the node order list. Each stream combination offers
a feasible point (e.g.,(1, 1, 2)), the union of which constitutes
the DoF region, which we plot in Fig. 6(b).

6.2 Calculating fRX(n)

Based on the MIMO network model, we now calculatefRX(n).5

Recall thatfRX(n) is an upper bound of the maximum number
of successful transmissions whose receivers are in the same
interference square. In the case of MIMO, this corresponds to the
maximum number of successful data streams on all active links
whose receivers are in the same interference square.

Lemma 5. For a random MIMO ad hoc network, we have
fRX(n) = α.

Proof: DenoteL the set of active links with their receivers
being in the same interference square. Denote|L| the number of
links in L, and letL = {1, . . . , |L|}. Our goal is to find an upper
bound for the sum of data streams on these links, i.e.,

∑

k∈L zk.
If |L| = 1, i.e., only one active link with its receiver in the

interference square, thenz1 ≤ α (since the number of data streams
on this link cannot exceed the number DoFs of a node). We can
setfRX(n) = α and the lemma holds trivially.

For the general case of|L| ≥ 2, Property 1 says that these
|L| links interfere with each other and IC is necessary. Based
on the MIMO model we discussed earlier, we need to follow an
ordered list for the nodes (both transmitters and receivers) on these
|L| links for DoF allocation at each node. We have two cases,
depending on whether the last node in the list is a transmitter or a
receiver.

Case (i).The last node in the ordered list is a receiver. Without
loss of generality, denotem as the link of which this node is the
receiver. To havezm data streams on linkm, based on (7), we
have the following constraint on receiver Rx(m).

zm +

Π(Rx(m))>Π(Tx(k))
∑

k∈Qm

zk ≤ α , (8)

where the sum forzk is taken over all interfering links whose
transmitters are before receiver Rx(m) in the node list. Since link
m is being interfered by all other links inL in the same inter-
ference square, we haveQm = L\{m}. Further, since Rx(m) is
the last node in this list, we haveΠ(Rx(m)) > Π(Tx(k)), for all
k ∈ L\{m}. Therefore, (8) can be re-written as

zm +
∑

k∈L\{m}
zk ≤ α ,

which is
∑

k∈L
zk ≤ α .

Thus, we have shown that the sum of data streams that can be
received by nodes in the interference square over all links is upper
bounded byα, i.e.,fRX(n) = α.

Case (ii).The last node in the ordered list is a transmitter. In
this case, we employ (6) and follow the same token as the above
discussion. We again havefRX(n) = α.

Combining the two cases, we havefRX(n) = α.

5. For MIMO, the level of difficulty in calculatingfRX(n) is the same as
fTX(n) and either approach will yield the same result.
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6.3 Scaling Law

Following Fig. 4, withfRX(n) = α, we can now apply Theorem 1
and obtain asymptotic capacity upper bound of a random MIMO
ad hoc network as follows.

Proposition 3. For a random MIMO ad hoc network, we have
λ(n) = O(1/

√
n lnn) almost surely whenn → ∞.

This result is the same as that in [10]. This upper bound is tight
since it has the same asymptotic order as the lower bound shown
in [10]. It is also interesting to see that, despite MIMO’s ability
to increase capacity in a network with finite number of nodes,the
scaling order for its asymptotic capacity remains the same as that
for a single omnidirectional antenna network as in [7]. Finally, the
advantage of our approach is that its analysis is much simpler than
that in [10]. Such advantage also holds in the following sections
for other advanced physical layer techniques.

7 CASE STUDY III: MULTI-CHANNEL AND MULTI-
RADIO

7.1 Multi-Channel Multi-Radio Model

Multi-channel multi-radio (MC-MR) refers that there are multiple
channels in the network and there are multiple radio interfaces at
each node in the network [12], [13]. By equipping each node with
multiple radio interfaces, each node has more flexibility inchannel
access in the network. The protocol model in MC-MR is defined
as follows. Following [12], we assume that there arec channels
in the network and each node in the network is equipped withm
radio interfaces, wherec andm are constants, and1 ≤ m ≤ c. A
radio interface is capable of transmitting or receiving data on only
one channel at any given time, i.e., half-duplex.

• On a specific channel, a transmitting radio can send data
only to a receiving radio within its transmission range.

• Other transmitting radios must be out of the interference
range of this receiving radio.

7.2 Calculating fRX(n)

Based on the MC-MR model, we now calculatefRX(n).6 Assum-
ing each band has the same bandwidth in the MC-MR network,
then fRX(n) corresponds to the maximum number of successful
transmissions over all available channels on all radio interfaces
whose receivers are in the same interference square. We havethe
following lemma.

Lemma 6. For a random MC-MR network, we havefRX(n) = c.

Proof: Let’s focus on one channel at a time. Since the links
with receivers in the interference square interfere with each other
(Property 1), there can be at most one radio at a node receiving
on this channel. Summing up all such radios (or successful
transmissions) overc channels, we havefRX(n) = c.

6. For an MC-MR network, the level of difficulty in calculating fRX(n) is
the same asfTX(n) and either approach will yield the same result.

7.3 Scaling Law

Following Fig. 4, withfRX(n) = c, we can now apply Theorem 1
and obtain asymptotic capacity upper bound of an MC-MR ad hoc
network as follows.

Proposition 4. For a random MC-MR ad hoc network, we have
λ(n) = O

(

1/
√
n lnn

)

almost surely whenn → ∞.

Note that this result is the same as the result in [12] for the
case whenc

m
= O(lnn). This upper bound is tight since it has

the same asymptotic order as the lower bound shown in [12].

8 CASE STUDY IV: COGNITIVE RADIO AD HOC

NETWORKS

8.1 Cognitive Radio Network Model

Cognitive radio (CR) is another new physical layer technology
that enables more efficient utilization of radio spectrum [23]. A
CR is able to constantly sense the radio spectrum and explore
any available spectrum bands for data communication. Consider a
random ad hoc network where each node is equipped with a CR.
Consider a specific time instance where each nodei senses a set
of available frequency bandsBi that it can use.7 Note that due to
differences in locations, the set of available frequency bandsBi at
a nodei may be different from that at another node in the network.
DenoteBij = Bi

⋂Bj the set of common bands that are available
at both nodesi andj. Then nodei can communicate to nodej on
bandm only if m ∈ Bij . The protocol model for CR is defined as
follows. Nodei can successfully communicate to nodej on band
m if and only if

• bandm is the common band of both nodei and nodej;
• nodej is within the transmission range of nodei;
• node j is outside the interference range of other non-

intended transmitters.

8.2 Calculating fRX(n)

Based on the CR network model, we now calculatefRX(n).8

Assuming that each band has the same bandwidth in the CR
network, thenfRX(n) corresponds to the maximum number of
successful transmissions over all available bands whose receivers
are in the same interference square. DenoteM = |⋃n

i=1 Bi|, i.e.,
M is the number of distinct frequency bands in the network. Then
we have the following lemma.

Lemma 7. For a random CR ad hoc network, we havefRX(n) =
M .

Proof: Consider one band at a time. Within each band,
by Property 1, the links with receivers in the interference square
interfere with each other. So the maximum number of active links
(or successful transmissions) is at most one. Summing up all
active links (or successful transmissions) overM bands, we have
fRX(n) = M .

7. These bands may be those that are currently unused by the primary users.
8. For a CR network, the level of difficulty in calculatingfRX(n) is the same

asfTX(n) and either approach will yield the same result.
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8.3 Scaling Law

Following Fig. 4, withfRX(n) = M , we can now apply Theorem 1
and obtain asymptotic capacity upper bound for a random CR ad
hoc network as follows.

Proposition 5. For a random CR ad hoc network, we haveλ(n) =

O
(

1/
√
n lnn

)

almost surely whenn → ∞.

This result is consistent to those found in [8], [18]. This upper
bound is tight since it has the same asymptotic order as the lower
bound shown in [8], [18].

9 CASE STUDY V: AD HOC NETWORKS WITH

MULTI-PACKET RECEPTION

Multi-packet reception (MPR) is a conceptual abstraction of a
physical layer capability that a receiver can correctly decode
multiple packets from different transmitters simultaneously [21].
As described in [16], such capability may be implemented by a
variety of advanced physical layer technologies, such as multiuser
detection [22], directional antenna [15], [25], and MIMO. In other
words, MPR refers to a reception capability of a node at the
physical layer, rather than referring to a specific physicallayer
technology. In this section, we employ our criteria in Section 4 to
explore capacity scaling law of MPR-based ad hoc networks.

9.1 A General MPR Model

Under MPR, a transmitter can transmit packet to only one receiver
at a time, but a receiver is capable of receiving multiple packets
simultaneously from multiple transmitters within its transmission
range. For unintended transmissions whose interference range
covers a receiver, the receiver will consider them as interference.
Such interference may be cancelled by the receiver. Specifically,
in the MPR model, we assume a receiver has finite resource
available for MPR and interference cancellation. Denoteβ1 the
number of simultaneous packets from intended transmitterswhose
transmission range covers the receiver andβ2 the number of
unintended transmitters that produce interference on the same
receiver. We have

β1 + β2 ≤ β ,

whereβ is a constant and represents the total available resource
at a receiver. For example, if MIMO is employed to implement
MPR, then the number of DoFs at a MIMO node may correspond
to β.

Note that this MPR model is a generalization of the idealized
MPR model in [16] which assumesβ1 ≤ β = ∞ and β2 =
0, i.e., a receiver can successfully decode arbitrary numberof
simultaneous packet transmissions and no interference is allowed
on the receiver.

9.2 Calculating fRX(n)

We choose to calculatefRX(n), which is more convenient than
calculatingfTX(n). In the case of MPR ad hoc networks,fRX(n)
corresponds to an upper bound of the maximum number of packets
that are successfully received simultaneously by all the receivers
in the same interference square. We have the following lemmafor
fRX(n).

Lemma 8. For a random MPR ad hoc network, we havefRX(n) =
β.

Proof: DenoteL the set of successful links with their re-
ceivers residing in the same interference square. By a “successful”
link, we mean the receiver of this link can successfully decode the
packet on this link. Denote|L| the number of links inL, and let
L = {1, . . . , |L|}. ThenfRX(n) is an upper bound of|L|.

Note that for two successful links, their transmitters are differ-
ent but their receivers may be the same. Consider one receiver j in
the interference square. From receiverj’s perspective, we divide
L into two subsets:L1 — the set of links whose receivers arej,
andL2 — the set of links whose receivers are notj. Based on
Property 1, we know that the transmitters of the links in subsetL2

are all in the interference range of receiverj. Since packets onL1

are successfully received byj, then based on the MPR model, we
have

|L| = |L1|+ |L2| = β1 + β2 ≤ β .

Therefore, we havefRX(n) = β.

9.3 Scaling Law

Following Fig. 4, withfRX(n) = β, we can now apply Theorem 1
and directly obtain the following asymptotic capacity upper bound
for an MPR-based ad hoc network.

Proposition 6. For a random MPR ad hoc network, we have
λ(n) = O(1/

√
n lnn) almost surely whenn → ∞.

The above upper bound for MPR is a new result obtained via
our unified approach.

9.4 An Idealized MPR Model

For the idealized MPR model described in [16], whereβ1 ≤ β =
∞ and β2 = 0, one can still apply our simple scaling order
criteria. In particular, it can be shown that for this idealized MPR
model, we havefRX(n) = Θ

(

nr2(n)
)

in Lemma 9.

Lemma 9. For a random ad hoc network under the idealized MPR
model, we havefRX(n) = Θ(nr2(n)).

Proof: First, we show that there can be only one receiver
(say j) in the interference square receiving packets. This can be
shown by contradiction. Suppose there is another receiveri, i 6= j,
that receives packets in the same interference square. Then, based
on Property 1, one of receiveri’s transmitters must be within
the interference range of nodej. This transmitter of receiveri
will interfere nodej, which contradicts withβ2 = 0 under the
idealized MPR model.

Based on Lemma 3, we know that the number of all nodes
inside the larger square isΘ(nr2(n)). Since each transmitter
transmits one packet to receiverj at a time, the number of
simultaneous packets received by receiverj cannot exceed the
number of nodes in the larger square, i.e.,Θ(nr2(n)). Therefore,
we havefRX(n) = Θ(nr2(n)).

Combining Lemma 9 and Theorem 1, we have

λ(n) = O

(

fRX(n)

nr(n)

)

= O

(

nr2(n) · 1

nr(n)

)

= O (r(n)) .

This is exactly the result developed in [16]. This upper bound is
tight since it has the same asymptotic order as the lower bound
shown in [16].
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TABLE 2
A summary of asymptotic capacity upper bounds obtained via our simple criteria. “—” sign indicates new result not available in literature.

Physical layer technology fRX(n) or fTX(n) Upper bound Reference

Directional antenna Single beam fTX(n) = Θ
(

nr2(n)
)

O (r(n)) [15]
Multi-beam fRX(n) = O

(

n2r4(n)
)

O
(

nr3(n)
)

[15]

MIMO fRX(n) = α O
(

1
√

n lnn

)

[10]

MC-MR fRX(n) = c O
(

1
√

n lnn

)

[12]

CR fRX(n) = M O
(

1
√

n lnn

)

[8], [18]

MPR
General fRX(n) = β O

(

1
√

n lnn

)

—

Idealized fRX(n) = Θ
(

nr2(n)
)

O (r(n)) [16]

Full-duplex fRX(n) = 2 O
(

1
√

n lnn

)

[24]

Fig. 7. Two transmissions under full-duplex whose receivers are in the
same interference square.

10 CASE STUDY VI: FULL-DUPLEX RADIO

10.1 Full-Duplex Model

Full-duplex refers that a radio can transmit and receive different
packets at the same time on the same channel [24]. When nodei
transmits to nodej, the necessary and sufficient conditions for a
successful transmission (allowing full-duplex) are:

• node j is within the transmission range of nodei, i.e.,
dij ≤ r(n), wheredij is the distance between nodesi
andj, and

• for any transmitting nodek other than nodesi andj, node
j is outside the interference range of nodek, i.e.,dkj >
(1 + ∆)r(n), k 6= i, j.

This protocol model for full-duplex is similar to the protocol
model in half-duplex, except that we havek 6= j when we list
constraints in the second condition.

A full-duplex example is shown in Fig. 7, where there are
two transmissionsi → j and j → h and we havedij <
r(n), djh < r(n), dih > (1+∆)r(n). We now show that all full-
duplex constraints are satisfied for these two transmissions. For
transmissioni → j, the first condition requiresdij ≤ r(n), which
is satisfied. The second condition requires that we considerany
transmitting nodek other than nodesi andj, which is an empty
set, i.e., there is no constraint posed by the second condition. For
transmissionj → h, the first condition requiresdjh ≤ r(n),
which is satisfied. The second condition requires that we consider
any transmitting nodek other than nodesj and h. Since node
i is the only such transmitting node, i.e., the second condition
requires thatdih > (1+∆)r(n), which is satisfied. Therefore, all
full-duplex constraints are satisfied for this example and we have
full-duplex at nodej.

10.2 Calculating fRX(n)

Based on the full-duplex model, we now calculatefRX(n).9

Suppose that in an interference square, there is a successful
transmission from nodej to nodeh with both nodes in this
interference square. With full-duplex at nodej, we can have at
most another successful transmission from nodei to nodej (see
Fig. 7). Thus, we have the following lemma.

Lemma 10. For a random full-duplex network, we havefRX(n) =
2.

10.3 Scaling Law

Following Lemma 10, withfRX(n) = 2, we can now apply
Theorem 1 and obtain asymptotic capacity upper bound of a full-
diplex ad hoc network as follows.

Proposition 7. For a random full-duplex ad hoc network, we have
λ(n) = O

(

1/
√
n lnn

)

almost surely whenn → ∞.

Note that this result is the same as the result in [24]. Since
a half-duplex feasible solution is also a feasible solutionfor a
full-duplex network, we can use the lower boundΩ

(

1/
√
n lnn

)

developed in [7] as a lower bound for a full-duplex network. Then
the above upper bound is tight since it has the same asymptotic
order as the lower bound.

11 DISCUSSIONS

11.1 Summary of Results

Table 2 summarizes asymptotic capacity upper bounds that we
derived in the last six sections by applying our proposed new
method. For the MPR general model, the result that we developed
in this paper is new and not available in the literature. Notethat
our results are consistent to those reported in the literature (last
column of Table 2), each of which was found via custom-designed
and complex mathematical analysis. In contrast, the methodwe
used to develop these bounds is simple and general. It servesnot
only as a simple tool to validate the capacity bound under those
PHY technologies in [8], [10], [12], [15], [16], [18], [24],but also
offer a powerful tool to determine capacity bounds under other
PHY technologies in the future.

We caution that the success of our simple method hinges upon
the calculation offRX(n) or fTX(n). One should calculatefRX(n)
or fTX(n) as tight as possible since loosefRX(n) or fTX(n) (e.g.,
infinity) will yield trivial upper bounds.

9. For a full-duplex network, the level of difficulty in calculatingfRX(n) is
the same asfTX(n) and either approach will yield the same result.
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11.2 Asymptotic Order Change

We observe that for advanced PHY technologies such as MIMO,
MC-MR, cognitive radio, general MPR, and full-duplex, the
asymptotic capacity upper bounds areO

(

1/
√
n lnn

)

, which
is the same as that under single omnidirectional antenna [7].
Given thatO

(

1/
√
n lnn

)

is a tight upper bound, we conclude
MIMO, MC-MR, cognitive radio, general MPR, and full-duplex
cannot make fundamental change in asymptotic order.10 This is
an interesting result. On the other hand, under directionalantenna
and idealized MPR, the asymptotic capacity upper bounds areon
a higher order thanO

(

1/
√
n lnn

)

. This indicates that the latter
PHY technologies have potential to improve network capacity in
the asymptotic sense.

12 CONCLUSIONS

In this paper, we presented a simple yet powerful method thatone
can apply to quickly determine the asymptotic capacity bounds
under the protocol model for various PHY layer technologies. This
new method offers a general tool to determine capacity scaling
law, which is in contrast to existing approaches, which werebased
on complex mathematical analysis that was custom-designedfor
each PHY technology. We proved the correctness of our proposed
method and demonstrated its applications through a number of
case studies, such as wireless networks with directional antenna,
MIMO, MC-MR, cognitive radio, MPR, and full-duplex radio.
The new method in this paper offers a simple tool to wireless
networking researchers to quickly understand asymptotic capacity
of wireless networks under a particular PHY layer technology.

An open problem is whether a simple method like ours also
exists for SINR-based (physical) interference models, in addition
to the protocol model. After a number of attempts, we conjecture
that this is not possible. This is because, a successful transmis-
sion under the SINR-based model requires complex calculation
of SINR at a receiver, which cannot be handled by distance-
based accounting of interfering nodes. Even worse, there does
not even appear to exist a general SINR-like physical model that
can accommodate different PHY layer technologies (e.g., MIMO,
directional antenna, MPR), which is necessary to develop a general
method to analyze capacity bounds. Due to these fundamental
difficulties and after our rather thorough investigation through
different avenues, we believe that a simple method like oursis
unlikely to exist in the world of SINR-based interference models.
We leave it as a conjecture for future research.
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10. It is important to realize that capacity scaling law onlyshows a general
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network size is finite. It is well known that most of these advanced physical
layer technologies can significantly improve network capacity in finite-sized
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