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With the increasing popularity of augmented reality (AR) services, providing seamless human-computer
interactions in the AR setting has received notable attentions in the industry. Gesture control devices have
recently emerged to be the next great gadgets for AR due to its unique ability to enable computer interaction
with day-to-day gestures. While these AR devices are bringing revolutions to our interaction with the cyber
world, it is also important to consider potential privacy leakages from these always-on wearable devices.
Especially, the coarse access control on current AR system could lead to possible abuse of sensor data.

Although the always-on gesture sensors are frequently quoted as a privacy concern, there hasn’t been
any study on information leakage of these devices. In this paper, we present our study on side channel
information leakage of the most popular gesture control device, Myo. Using signals recorded from the elec-
tromyography (EMG) sensor and accelerometers on Myo, we can recover sensitive information such as pass-
words typed on a keyboard and PIN sequence entered through a touchscreen. EMG signal records subtle
electric current of muscle contractions. We design novel algorithms based on dynamic cumulative sum and
wavelet transform to determine the exact time of finger movements. Furthermore, we adopt Hudgins feature
set in support vector machine to classify recorded signals segments into individual fingers or numbers. We
also apply coordinate transformation techniques to recover fine-grained spatial information with low-fidelity
outputs from the sensor in key stroke recovery.

We evaluated the information leakage using data collected from a group of volunteers. Our results show
that there is severe privacy leakage from these commodity wearable sensors. Our system recovers complex
passwords constructed with lower case letters, upper case letters, numbers and symbols with a mean success
rate of 91%.
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1. INTRODUCTION

Augmented reality (AR) technology is a variation of virtual reality (VR). Unlike VR,
AR promises to enhance our perception of and interactions with the real world, while
VR completely immerse users inside a simulated one. AR has been researched exten-
sively in academic world since 1960s. However, previous research mainly focused on
the construction and application aspects of AR, there is little study on the security
and privacy implications. With recent advancements in wireless networking and em-
bedded devices, AR is no longer a fancy equipment in sci-fi movies. Early generation
AR products are already available commercially. Microsoft Hololens was just released
in the start of 2016 [onl 2016d]. People’s enthusiasm on AR can be seen through the
popular AR game Pokemon Go sweeping the world. Apart from this, Goldman Sachs

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.




A2 R. Zhang et al.

Group has announced its prediction of an 80 billion dollars market by 2025 for AR and
VR [onl 2016a].

As the AR systems are making their way to people’s lives, we believe that it is now
a pressing issue to study new security and privacy issues arise with AR. In order
to identify new security problem, we ask ourselves: What new security and privacy
concerns arise with AR systems? We observe that unlike most of today’s desktop and
smartphone applications, to provide their intended functionality, complex AR applica-
tions will require various, always-on sensing. It is crucial for AR systems to balance
the access required for functionality with the risk of an application stealing data or
misusing that access. The current common access control for mobile application is to
ask for user permission for accessing specific sensor data. Some permissions, such as
access to video or voice recording, can be easily identified as sensitive, while others
can be subtle and difficult to know the implicit privacy risk. For example, two recent
papers [Liu et al. 2015; Wang et al. 2016] leveraged insensitive accelerometer sensors
on smartwatch to infer PIN sequence which a user keyed in on an ATM machine.

In this paper, we identify a new type of side channel information leakage from the
electromyography (EMG) based gesture devices used in AR systems. EMG signals are
subtle electric currents detectable from the skin due to muscle movements. When worn
on the arm of the user, the signatures of current can be used to identify the hand ges-
ture, such as holding a fist or waving hands. When the users are interacting with the
AR system, gesture control input devices are used legitimately. However, in this work,
we show that it is possible for malware listening in the background of AR system to in-
fer sensitive secrets from coarse grained EMG signals, when the users are interacting
with other computing systems in the physical world. To demonstrate the feasibility of
attack, we use the leading EMG-based gesture control device, Myo, as the platform for
the study. We consider two scenarios which happen almost every day in our daily lives.

The first one is tapping in PIN sequence to unlock screen on a mobile device. Nowa-
days, the authentication system on mobile devices like iPhone relies on PIN sequence.
If one can steal the PIN sequence, he is able to access all information (e.g. photo, text
...) on the mobile device. Previous research [Liu et al. 2015; Wang et al. 2016] has
designed attacks for ATM based on the fact the user is moving his hand during the
input process. However, when it comes to unlocking screen, people often tap with both
thumbs rather than a single one, so their hands keep still. The idea is to know which
number each thumb is taping from EMG sensor data. Our case study on this scenario
shows that EMG signals can significantly reduce the search space for smart device
PIN recovery.

The second scenario we consider is typing passwords on a keyboard. If one can de-
duce the password a victim type on a computer, he potentially may access the resources
on the computer and even the victim’s bank account. [Liu et al. 2015] and [Maiti et al.
2016] has provided methods to deduce words a user has input on a keyboard. But
modern passwords are seldom words but a combination of signs, letters, and numbers.
Therefore, recovering password needs accurate recovery of each symbol typed with-
out the help of a dictionary. The idea is to combine the knowledge of which finger a
user moves through raw EMG data and the track of user’s hand movement to recover
the keystroke a user typed. Our experiments show promising results of recovery com-
plex passwords with high probability. Furthermore, we observe that, even though the
assumption of having a prior model of user’s typing habit is widely used, it could be
unrealistic in certain scenarios. We also perform further investigations to assess the
possibility of employing unsupervised learning to develop user-specific models from
his own typing. Even though the accuracy is lower than the supervised counterpart, it
remains a serious threat to user privacy.
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There are several challenges in our attack. First, it is challenging to detect the exact
starting points for input events on the keyboard or touch screen device. Because of the
pushing and releasing phase of a single keystroke or tapping being so close, the EMG
signals appears as a whole rather than distinct signals. Besides, there are eight EMG
signal channels, and not a single channel can have enough information to detect all
of the starting points. Second, to track hand movement with low-fidelity sensors could
be troublesome. The white noise due to the imperfection of sensor would make the
estimation of direction and distance easily go wrong. Third, how to determine which
finger has moved through the raw EMG sensor data segment is not clear.

To solve these challenges, we design and implement four subsystems based on the
key insight of the signals. We borrow ideas from digital signal processing field and
machine learning field to help build up the subsystems. Input event subsystem is ca-
pable of obtaining the starting points of the noisy EMG signal which solve the first
challenge. The second challenge is tackled down by the coordinate transformation sub-
system which projects the track of hand movement to the keyboard plane. Number
classification subsystem and finger classification system are designed to deal with the
third challenge. The former one is able to infer the PIN sequences from EMG signal
segments around the starting points, while the latter one can get the exact finger user
is moving.

We summarize our main contributions as follows:

— We are among the first to study privacy leakage from EMG signal in gesture-control
devices, which is poised to be an essential component in next generation human-
computer interaction in AR.

— We design novel algorithms based on dynamic cumulative sum and wavelet trans-
form to determine the exact time of finger movements. Furthermore, we adopt Hud-
gins feature set in support vector machine to classify recorded signals segments into
individual fingers or numbers. We also apply coordinate transformation techniques
to recover fine-grained spatial information with low-fidelity outputs from the sensor
in key stroke recovery.

— Based on the experiments with one of the most popular gesture-control device, Myo,
we show that it is possible to recover sensitive user secrets, such as PIN sequence for
unlocking smart devices and complex passwords typed on physical keyboards, using
the coarsed-grained information EMG and accelerometer from sensor.

The rest of the paper is organized as follows. We begin with background introduction
in Section 2, as well as an overview of our attacks in Section 3. Section 4 shows the sys-
tem design of our attacks. Evaluation of supervised scheme is presented in Section 5.
Section 6 evaluates the performance of our supervised scheme, we discuss limitations
of this paper and potential mitigation of information leakage based on EMG signal.
Finally, Section 8 concludes this paper.

2. BACKGROUND
2.1. Augmented Reality System and Gesture Controlled Device - Myo

AR has been researched broadly in academic world since Ivan Sutherland described
an AR prototype in 1968 [Sutherland 1968]. From that time on, research on display
technology, tracking, registration to properly align virtual and real objects, user inter-
faces, human factors, auxiliary sensing devices, and the design of novel AR application
has been conducted [Caudell and Mizell 1992; Mann 1997; Feiner et al. 1997; Azuma
et al. 2001; Costanza et al. 2009; Papagiannakis et al. 2008; Van Krevelen and Poelman
2010; Zhou et al. 2008].
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Fig. 1. Real-life EMG signals collected by Myo.

Despite the long history of AR, the key components of AR systems remain similar.
Commonly, AR system is composed of display device, input devices and computing
device. Display device can be a glasses or a head mounted device which is used to show
a user virtual objects mixed with reality. Input devices are sensors including camera,
GPS, motion sensor and etc. Computing device can be a computer or a mobile phone
which provides computing power. Part of the objectives of input devices is to let user
interact with AR system and our focus is in this category. And the last component,
computing device, can be a computer or a mobile phone which provides computing
power.

In this paper, we focus on a specific equipment, Myo [myo 2016], which is a gesture
control device that is designed to be worn on the forearms of a user. It’s light-weighted
with only 93 grams. Jake Sims presented a demo of Myo in real life AR system in
his blog [onl 2015]. Multiple sensors are included on Myo to provide seamless human-
computer interaction. Myo is connected to computer desktop or mobile devices using
Bluetooth. It is powered by an ARM Cortex M4 processor which enables it to be used
for a full day with one charge. Within the slick design, it houses high-resolution medi-
cal grade sensors including eight EMG sensors and one three-axis accelerometer. Fig.
1 show some samples of EMG signals, which are recorded when a user is stroking
letter ’s’ on the keyboard. Although Myo enables many applications because of its
high-resolution sensors, we observe that there is a potential privacy leakage caused
by them. There is no control of the access to the data streams generated by these sen-
sors. Based on this observation, we believe this vulnerability can be leveraged to record
passwords and PIN sequences.

The EMG signal collected by Myo reflects the body movement of a person. Body
movement is a result of muscle contraction[Marieb and Hoehn 2007]. A skeletal mus-
cle is comprised of individual cells, or fibers, that are grouped into functional units
called motor units. A single motor nerve can innervate the muscle fibers of a motor
unit to make them contract together when receiving an electrical stimulus, called an
action potential. The electrical stimulus is sent from the motor cortex of the brain to
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Fig. 2.  EMG signals and their decomposition into MUAPTSs. [De Luca et al. 2006]

the muscle fibers via the motor nerve. When the motor unit fibers receive an action
potential, they also generate action potentials by themselves, which are transient elec-
trical signals that are conducted along the muscle fibre membranes. The motor unit
action potential (MUAP) is the summation of the electrical stimulus in the single fibers
of the motor unit and it can be elicited by a single action potential sent to a motor unit,
which will lead to a transient contraction of the associated muscle fibers. Since muscle
contraction results in electrical activity near the skin surface, it is possible to place
sensors, called electrodes, onto the skin to detect the electrical activity. The area that
an electrode is in direct contact with is referred to as the detection surface[Basmajian
and De Luca 1985]. Physiological data recorded by a surface electrode is called a sur-
face EMG. Any portion of a muscle may contain muscle fibers belonging to 20-50 motor
units. During a muscle contraction, multiple motor units are repeatedly stimulated.
These stimulations typically occur asynchronously to facilitate smooth movements and
delay muscle fatigue. This excitation pattern results in a sequence of MUAPs called a
motor unit action potential train (MUAPT). Fig. 2 shows that the myoelectric signal
represents the temporal and spatial summation of MUAPTSs within the pickup region
of the recording electrode [De Luca et al. 2006]. As we can see in Fig. 2, EMG is a
composite of different MUAPTSs. The key insight here is that, when people is doing
different motions, each MUAPT will contribute differently. This shows the possibility
of classifying different finger actions.

2.2. Digital key stealing systems and privacy leakage in wearable devices

It has been a long history of adversaries trying to steal the key entries of users on
key-based security systems. A popular tool broadly employed by adversaries is key
logger which can log all the keystrokes on the computer. The only drawback of this
tool is that it leaves footage on the victim’s computer. Some other traditional attacks
in [Balzarotti et al. 2008; Maggi et al. 2011] rely on shoulder surfing and hidden cam-
eras. In these kinds of attacks, the malicious code will gain access to the direct visual
image of the key entry process. However, the capability to gain access to camera is a
strong assumption. In order to achieve stealth, we can see another line of work which
focuses on developing novel side-channels to infer the key entries. For example, the
sound produced by different keystroke can be a valid side-channel to infer keys as de-
scribed in [Asonov and Agrawal 2004]. Following this line of research, a bunch of other
valid side-channels are discovered such as electromagnetic emanations [Vuagnoux and
Pasini 2009], acoustic emanations [Zhu et al. 2014; Berger et al. 2006; Zhuang et al.
2009], optical emanations [Raguram et al. 2011], and even the vibration of wooden
desk [Marquardt et al. 2011]. The main drawback of these side-channels is that spe-
cial equipment need to be deployed beforehand. Researchers noticing this drawback
try to install malicious application on smartphone to exclude the strong assumption.
However, the experiment results in [Marquardt et al. 2011; Zhu et al. 2014] indicates
that smartphones need to be placed close enough to the keyboard by the victim, which
is not the case in most scenarios. [Shukla et al. 2014] employs camera to capture
user’s hand and the back side of the touch screen to recover smartphone lock PIN.
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Smart Device Sensor Type

Name D G A Gy H Al Am T E
Apple Watch Series 2 [onl 2017a] No Yes Yes Yes Yes No Yes No No
Garmin Fenix 5 [onl 2017c] Yes Yes Yes Yes Yes Yes No Yes No
Fitbit [onl 2017b] Yes Yes Yes Yes Yes Yes Yes No No
Samsung G3 [onl 2016b] No Yes Yes Yes Yes Yes Yes No No
Myo [myo 2016] Yes No Yes Yes No No No No Yes

D = Digital Compass, G = GPS, A = Accelerometers, Gy = Gyroscope, H = Heart Rate Sensor, Al =
Altimeter, Am = Ambient light Sensor, T = Temperature Sensor, E = EMG Sensor

Table. 1. Sensors on different off-the-shelf wearable devices nowadays.

The method has a low inference accuracy and it assumes the capability for malicious
code to access sensitive sensor. Researchers also explore the possibility of using chan-
nel state information of WiFi signal to infer smartphone PIN sequence or keystroke
nowadays [Li et al. 2016; Ali et al. 2015].

In recent years, wearable devices are becoming part of modern life. From Table. 1, we
can see various sensor types on off-the-shelf wearable devices nowadays. Researchers
who notice the trend start to exploit sensors on wearable devices to do keystroke or
PIN sequence inference. Two recent papers [Wang et al. 2016; Liu et al. 2015] leverage
sensors on smartwatch to infer PIN sequence. Explicitly, both of them take advantage
of the accelerometers to measure the distance between two different input on ATM
machine to recover PIN sequence. [Wang et al. 2016] takes one more step to get rid of
training phase which is required in [Liu et al. 2015]. [Liu et al. 2015] and [Maiti et al.
2016] provide methods which employ accelerometers and audio recorder on smart-
watch to infer keystrokes on keyboard. However, their methods can only recover user’s
typed words and will not work with non-contextual inputs. In comparison, in order
to recover complex passwords which are probably not words, our work require letter-
granularity precision.

3. INFORMATION LEAKAGE OVERVIEW

In this section, we first make clear the assumptions. Then we demonstrate the steps
of how our supervised implementations could infer passwords and PIN sequences. Be-
sides, at the end of each part, we demonstrate the potential advantages of information
leakage based on our methods.

3.1. Threat Model

For our supervised attacks, we assume an application has been installed beforehand
on a user’s computer or mobile device depending on to which Myo armbands are con-
necting. This application can access insensitive EMG and accelerometer sensor data
and the application can interact with a remote server. We also assume our application
includes an initialization phase. During the initialization phase, a user is instructed
to do a series of tapping actions. Applications with these abilities are common. For
example, a health monitoring application would serve all the needs.

3.2. Steps in deducing passwords

We implement a realistic system to clarify the possibility of using side-channel pro-
vided by gesture control device to recover passwords. Fig. 3 presents the system frame-
work for deducing passwords. In the system, we first detect the starting points of each
keystroke. Then we extract the EMG signal around the starting point. With machine
learning schemes, we map the EMG signal to finger. At the same time, we extract the
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trace of hand movement relative to keyboard. Combining the finger and trace of hand,
we deduce the exact keystroke a user has input. The methods applied in the system is
elaborated below.
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Fig. 3. System overview of deducing passwords.

Detecting keystrokes. The sensor data for a user’s finger movements need to be
separated first when he types on a keyboard. By the methods implemented in the input
event detection subsystem, we are able to separate the signals. The methods include
dynamic cumulative sum (DCS) in [Khalil and Duchéne 2000; Al-Assaf 2006; El Falou
et al. 2000; Mustapha et al. 2008b; Mustapha et al. 2008a] and our new algorithms,
movement detection algorithm and change points fusion algorithm.

Finger differentiation. With the timestamps from the previous step, we now di-
rect them into the finger classification subsystem. Finger classification subsystem uses
Hudgins feature set [Hudgins et al. 1993] and adopt supervised machine learning
method, Support vector machine (SVM) [Keerthi et al. 2001], to generate classifier
which is .

Track hand movement. Utilizing the starting points from the first step, we employ
the coordinate transformation subsystem to obtain the distance and direction of hand
movement relative to keyboard between consecutive keystrokes.

Recovering passwords. Combining the information from the second and third
steps, we can now infer which key the user has typed each time. Furthermore, by
recording the key sequences when a user is typing passwords, we successfully recover
a user’s passwords.

Compared with previous works on keystroke inferring methods, our work has mul-
tiple advantages as follows:

— Non-intrusive. In [Asonov and Agrawal 2004; Marquardt et al. 2011; Zhu et al. 2014],
they have to deliberately put external devices like microphone or touch screen device
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close to the keyboard. Otherwise, they cannot access signals with enough signal noise
ratio to do the inference. However, in our scheme, Myo is on the user’s forearm. So
we do not have to set up any specified scenario.

— No access to highly sensitive sensors. In [Liu et al. 2015], they assume the application
can gain access to the audio recorder of the mobile device and in [Balzarotti et al.
2008; Maggi et al. 2011], they assume the application can obtain the camera data. In
our method, we only need access to accelerometer and EMG sensor, which are pretty
common for any gesture control applications.

— Capability of recovering non-contextual inputs. In [Wang et al. 2015; Liu et al. 2015],
linguistic models or dictionaries are employed to infer the words. Their methods can-
not recover non-contextual inputs like passwords. Nonetheless, with our scheme, we
can achieve letter-granularity precision which is necessary for recovering passwords.

— High accuracy. We adopt accelerometer and EMG sensor data which can generate
high entropy. And this leads to the high letter-granularity accuracy of our scheme.

3.3. Steps in recovering PIN Sequences

The other scenario we consider is that the victim is holding his touch screen device
with both hands when unlocking screen. In this case, our application only require the
access of EMG sensor. At first, we detect the starting points of each tapping action.
Then we extract the EMG signal around the starting point and map the EMG signal
to number. The methods applied in the demonstration is elaborated below:

Detecting thumb movement. We slightly modify the parameters in our input even
detection subsystem to adapt to this scenario because the patterns of EMG signal are
similar to the keyboard scenario. The outcome of this step is the starting point for
every thumb movement.

Classifying thumb movement. With the starting point of every thumb movement,
we direct EMG signal segments into the number classification subsystem. SVM and
Hudgins feature set are adopted in the number classification subsystem.

Previous works [Cai and Chen 2011; Miluzzo et al. 2012; Xu et al. 2012] utilize data
through the accelerometer embedded in the targeted device which is the touch screen
device in our case. They cannot be used if the touch screen device is free of malware.
On the contrary, the method we adopt does not need direct access to the target device.
In addition, our attack in this scenario is also non-intrusive and does not need access
to highly sensitive sensors.

4. SYSTEM DESIGN

In this part, we discuss the detailed technologies applied in our supervised attacks.
We start with introducing the modeling of EMG signal and then we introduce the four
subsystems to accomplish the demonstrations.

4.1. EMG Signal Modeling

Input event detection subsystem is designed for detecting the starting points of the
motions. Detection of finger movement is based on the analysis and characterization
of forearm EMG during an action. In our case, the recorded electromyographic signals
can be modeled by a random process

z(t) = zn:ci(t) + Zn:Rz‘(t) +n(t) 1)
1

i=1 =

This equation is a composite of multiple types of signals collected by the EMG sensor
like activity burst and noise. > ; C;(t) are our target signals which are caused by the
pushing actions while }"" , R;(t) are caused by the releasing actions. The superscript
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Fig. 4. Analysis of EMG signals.

n means the number of keystrokes performed. Both the pushing and releasing actions
follow a pattern of short potentials which appear with the acts of fingers. At last, n(t)
is the white noise caused by multiple factors like environmental conditions or thermal
noise.

4.2. Input Event Detection

Detection of human movement by simple threshold methods and simple energy com-
parison between neighbor signal windows has been presented in [Chan et al. 2000;
Englehart et al. 1999; Tsenov et al. 2006] and in [Farry et al. 1996]. However, those
methods are not suitable for cases where signals appear dynamic and noisy. Also, to
obtain the starting point of movement visually as in [Jorgensen et al. 2003] is neither
accurate nor efficient in our case. In addition, no unique database can be set up for any
person [Khalil and Duchéne 2000]. Fortunately, the generalized likelihood ratio test in
[Fancourt and Principe 2000; Barkat 2005] can be utilized to build DCS which can be
used to detect human movement [Khalil and Duchéne 2000; Al-Assaf 2006; El1 Falou
et al. 2000; Mustapha et al. 2008b; Mustapha et al. 2008a]. Nonetheless, their method
cannot be directly applied to our case because our EMG signals has eight channels
and requires distinguishing between two similar patterns (i.e., pushing and releasing
of keys). In order to construct an accurate movement detection algorithm, we first ob-
tain the dynamic cumulative sum (DCS) of the collected EMG signals. Then we design
novel algorithms to obtain the starting point of each target action from DCS. The key
insight is that, DCS will reach maximum during the motion as proved in [Khalil and
Duchéne 1999].

4.2.1. Dynamic Cumulative Sum. DCS is an improvement of CUSUM (or cumulative sum
control chart) [Grigg et al. 2003]. However, CUSUM is only suitable for situations
where the priori knowledge of what change will happen to the signal after the point
of change is known. Thus we adopt DCS which suits circumstances where the pri-
ori knowledge is not required. One prerequisite of applying DCS is that signals must
follow Gaussian distribution. We will show that in the following part of this section.
Basically, DCS calculate local cumulative sum of likelihood ratios between segments

before and after time point ¢,,. Let us assume the two segments are Sét’") (before t,,)
and S((f’"’) (after t¢,,,) and the width of these two segments is . Si’" DT,

follows a pdf fy,(z;) and S} : @, ., ., ., follows a pdf fs, (z;). Thé:ﬁ;;aﬁié%;s
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Fig. 5. DCS of EMG signals.

0, and 0, are estimated using Sgt’") and Sét’"). The DCS is defined as the sum of the
logarithm of likelihood ratios from the beginning of the signal to the time ¢,,:

R )
DOS ) (88t gitm)y = 3™ [ fe 2)

where, the 6 can be estimated by the variance of each segments.

We further adopt wavelet transform (WT) [Chui 2014] to improve the movement de-
tection accuracy. The prerequisite of using WT in DCS is that the WT decompositions
of EMG signals are multidimensional Gaussian. Fig. 4.2 presents an example of the
histograms of randomly selected 600-sample and its WT decomposition at five scales.
It shows that our case meets the prerequisite. WT is applied to both the before and
after segments. The choice of motherlet is crucial when adopting WT in signal pro-
cessing. In [Al-Assaf 2006], they conclude that the best wavelet for human movement
EMG signal processing is the second-order Coiflet associated with the first five decom-
position scales obtained by Shannon entropy criterion. The results of our experiment
reinforce their conclusion. Fig. 4.1 illustrate multiscale decomposition of EMG signal
in Fig. 1 using a second-order Coiflet orthogonal wavelet. The time interval between
samples in is 5 milliseconds.

The DCS corresponding to signals in Fig. 4.1 is depicted in Fig. 5.1 and Fig. 5.2. We
observe that DCS in some channels has larger maximum than others and larger max-
imum can make the movement detection more accurate. From Fig. 5.2, channel 1 and
channel 8 which are next to each other have greatest maximum. This is because the
muscle used to perform these actions majorly sits close to each other. The detection de-
cision is included in Fig. 5.1 as blue circles. We easily observe that the turning point of
the DCS indicates the existence of an action as expected. In addition, we could find two
bumps which indicate the releasing movement in the DCS of the first two keystrokes.

4.2.2. Algorithms. Our next task is to extract the timestamps of starting points for
movements from the DCS described above. We develop two algorithms to accomplish
the task. Movement detection algorithm is developed to calculate the DCS and detect
the pushing movements in the EMG signals. In the movement detection algorithm,
we set up threshold 7' to get rid of the releasing movements. The value of T is set
to 350 empirically. Then we redirect the output timestamps to change point fusion
algorithm. Empirically, we use two channels and the threshold « in the change point
fusion algorithm is set to 20 which is 100 milliseconds.
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ALGORITHM 1: movement detection algorithm
1: At each sample, the DC'S is calculated according to (3) using the two segments

Slim Tty — Wt —1 and Sltlm Tt 4Lt AW

2: if The DCS has a turning point at that sample which indicates that it may be a finger pushing
movement or a finger releasing movement then

3:  if There is a releasing movement before then

4: This is a pushing movement, record the timestamp

5: Move to the next sample

6: else

7. if The difference between this movement and the former pushing movement exceeds a threshold

T then

8: This is a releasing movement

9: Move to the next sample

10: else

11: This is a pushing movement, record the timestamp

12: Move to the next sample

13: end if

14: endif

15: else

16:  Move to the next sample

17: end if

18: Output the timestamps recorded

ALGORITHM 2: change point fusion algorithm

1: Get the recorded timestamps from the output of movement detection algorithm for selected channels
and sort them into list L1 ascendingly.
: Generate an empty list L2
: Start from the first element ,,, in L1 and do the following.
if Any timestamp from other selected channels are close to /,, within threshold = then
Add [,,, into list L2
Delete timestamps close to l,, within threshold z in list L1
Delete [, in list L1
Go to the next element in list L1
else
10:  Go to the next element in list L1
11: end if
12: Output the list L2

LIS W

4.3. Finger And Number Classification

Finger and number classification subsystem are similar to each other, so we introduce
them together in this part. Finger classification subsystem is about classifying which
finger is a user using from a part of EMG signal. While the job of number classification
subsystem is to determine which number has been tapped from a segment of EMG
signal. With the input event detection subsystem, we now have the starting point for
each finger action. Here we set up a window for the EMG signal at each starting point.
Empirically, classification achieves decent performance when the size of the sliding
windows is 45 samples which is 225 milliseconds for finger classification subsystem
and 60 samples which is 300 milliseconds for number classification subsystem. The
insight here is that the action of tapping is larger than the action of stroking key.
Besides, we add offset to the starting point so that the sliding window could include
the signal for the whole action.

4.3.1. Feature extraction and classification. We extract Hudgins feature set [Englehart
et al. 1999] from each motion. The Hudgin’s time-domain features are comprised of
five different features for a given classification window. Here we divide the classifica-
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Fig. 6. Classification window and its divisions. Fig. 7. Acceleration after projection.

tion window into five equally-divided segments as in Fig. 6 and each of the segments
will have five features. So there will be a total of 30 features per channel (including the
undivided classification window). These features include mean absolute value (MAV),
difference MAYV, zero crossing, slope sign changes and waveform length. Then we take
advantage of the labeled samples collected in the initialization phase to do a super-
vised learning using SVM classifier in our implementation. After training, the SVM
classifier could give us which finger or number a new signal segment is related to.

4.4. Hand Movement Tracking

The last subsystem is coordinate transformation subsystem which calculates projec-
tion of distance and direction of the hand movement between every two successive
keystrokes onto keyboard plane. The distance and direction derivation sections are
similar to the technique used in [Wang et al. 2016] and we follow their symbol and
sign in our description of this subsystem. Our scheme and theirs differs on the co-
ordinate alignment part. [Wang et al. 2016] assume the adversary has placed other
accelerators on the target plane (which is keyboard plane in our case). However, in our
case, we only assume the keyboard is placing on a flat plane and all users’ forearms
have similar initial position towards the keyboard.

4.4.1. Projection matrix. In order to calculate the displacement of hand moving on key-
board, we need to perform coordinate system transformation. So our goal is to obtain
a projection matrix. According to our assumption, it only needs to be calculated once.
The first coordinate system we build is the keyboard coordinate and the second coordi-
nate system is the device coordinate. The job required is to transform the displacement
in the device coordinate to the keyboard coordinate. This way, we can observe the fin-
ger movement projected to keyboard plane directly. For the sake of calculating the
displacement between two consecutive keystrokes, we assume the origin of the two
coordinate systems overlap. To calculate the P matrix, we need to have the correspon-
dences between three different points in the two coordinate systems. According to our
assumptions, the gravity is parallel with the z axis of keyboard coordinate. Thus, we
assume the coordinate for gravity is (0,0, 1) for convenience, which will not affect the
construction of P. The initial reading of accelerometers in Myo is caused by the gravity,
so let us assume the initial readings are (z1,y1, 21). And (21,y1, 21) is according to the
device coordinate. This vector in the keyboard coordinate will be (0,0, 1) according to
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Fig. 8. Evaluation on inferring PIN sequence.

our assumption. We obtain the other two points by asking a user to type in ‘f’ ‘r’ and
" ‘g’ respectively. This way, we get the vector (0,1,0) and (1,0,0) on keyboard coordi-
nate and at the same time, we record the readings of Myo. The readings of Myo can be
used to construct the displacement of hand in every two consecutive keystrokes. The
method applied here to get the displacement is integration. It is well known that the
integral of acceleration is velocity and the integral of velocity is displacement. Let us

assume the recorded vectors are (xs, Y2, 22) and (z3, ys3, 23). So we get the linear algebra
formula (0 g 8) = (%é %’é % ) *x M. By solving these linear equations, we can obtain the
linear transformation matrix M. And the projection matrix P can be constructed by

extract the first two columns of M.

4.4.2. Distance estimation and direction derivation. Because we obtain the starting points
of the movements from movement detection, we can extract the accelerometer sensor
within the time interval between two consecutive keystrokes out accurately. Besides,
the movement of forearm is before the stroking of keys, so we add an offset here to
capture the whole interval of the movements. Fig. 7 shows an example of accelera-
tion data after projection between two keystrokes ‘v’ and ‘t’. To get rid of the noise
brought by hand vibration, we can easily observe that acceleration captured during
the two consecutive motions has unique patterns on xz and y axes (i.e., either up-and-
down or down-and-up shapes due to different moving directions). Thus, we follow the
technology in [Wang et al. 2016] to get the starting point and ending point by first
zero-crossing point occurring before and after the unique acceleration pattern. So the
acceleration is always like a pattern of [0, ax maz (@k,min), 0, Gk min (@k,maz), 0] (k could be
T or y).

Therefore, our strategy can be separated into following parts: 1) extract the 3-axis
acceleration between the releasing and pressing points of two consecutive keystrokes;
2) project the 3-axis accelerometer data to the keyboard plane; 3) examine the 2 di-
mensional data to find [as maz; @z,mins Gy, maz, @y,min]; 4) find the starting point of the
the movement by searching the first time that acceleration crosses the axis (i.e., zero-
crossing point) before aj pqz OF Gk min, Whichever comes first; 5) similarly, find the end-
ing point by searching the zero-crossing point after aj yqz Or af min, Whichever comes
later; The two accelerations after projection within the range of starting and ending
points correspond to forearm movement and are employed to calculate the distance
and direction of the forearm movement. And we set the hand position at starting point
as the origin of both coordinate systems.
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The distance calculation is trivial. We consider the movements in both x and y axes
bounded by their starting and ending points. As the distance is two times integration
of accelerations, we apply trapezoidal rule to approximate the distance on each axis.

We employ the acceleration data for » and y axis and the results of distance
calculation to do direction derivation. From the comparison of the positions of
(@2 mazs Gz min, Gy,maz: Gy,min), We can derive the direction range. The whole 360° can
be split into eight direction ranges (start from x-axis). 0° to 45° is range 1, 45° to 90°
is range 2 and so on. So if the position of ay 4. is before ay in, it means the direction
angle sits in 0° to 180°. If the position of a; 4z is before a; pin, it means the direction
angle sits in 270° to 90°. With these two comparisons, we can locate the direction angle
into a 90° range. Then we compare the distance obtained from distance calculation. If
the absolute value of distance along x axis is larger than the absolute value of distance
along y axis, it means the direction angle is either in 315° to 45° or 135° to 225°. Com-
bining this comparison with former comparisons, we can locate the direction angle into
a 45° range, which can be used to differentiate between consecutive keystrokes pairs
like f” v’ and ‘f” ‘b’

5. EXPERIMENTS AND RESULTS

We conduct experiments on 8 volunteers, and all the participants are between 20 and
40 years old, including 3 women and 5 men. All the volunteers have the ability to type
in words following the standard type method [onl 2016c] fluently. All participants are
instructed to type or tap as they usually do. The participants are also instructed to
avoid huge body movements and keep the wrist always above the desk when typing
words. They are instructed to hold the iPad with both hands and tab with thumbs
when unlocking screen.

5.1. Evaluation Matrices

We develop the following metrics to evaluate our system.

Classification accuracy: To evaluate the performance of classifier, we define clas-
sification accuracy as the possibility of correct classification. The ground truth is
recorded by us during the experiments.

Top-k success rate: Given an experimental run of a password or PIN activity, our
algorithm could return multiple top candidates of password or PIN sequence. We define
that a Top-k success hit if the password or PIN resides in the returned % candidates
list.

5.2. Implementation and Evaluation

In the experiment to infer PIN, we ask the volunteers to tap in ‘0’ to ‘9’ each for 20
times for two rounds. The data gathered from the first round is used to train the SVM
classifier while the data collected in the second round is used to do the testing. Then,
the volunteers are instructed to type in different length-4 PIN sequences. We adopt
the input event detection subsystem to extract the timestamps of starting points and
it fully detected all the movements. We start by evaluate the performance of number
classification subsystem. There is one SVM classifier for each volunteer trained by the
their own labeled samples. The classification accuracy for each volunteer is shown in
Fig. 8.1 We have also explored whether it is possible to generate a general classifier
for all volunteers. However, the general classifier achieves classification accuracy close
to random guess. The reason is that the EMG signals collected from volunteers relate
to the structure of the volunteers’ muscle and every volunteer has different muscle
structure.

We can observe that a big difference of the number detection accuracy between left
hand and right hand exists. This is because people tend to type in ‘1’ ‘4’ “7’ ‘8’ ‘0’ with left
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Fig. 9. Evaluation on inferring passwords.

hand and the others with right hand. And the numbers touched by right hand are close
to each other. The way we use to generate candidate is basically replacing classification
outcome one by one. For example, if the ground truth is ‘56709’. But the classifier give
us '5749’. Then the top-4 candidate list will be ‘0749’ ‘5049 ‘6709’ and ‘5740’. So we
have recovered the right typing in the top-3 candidate list. Fig. 8.2 presents the top-k
success rate of the PIN sequence reconstruction compared to simple brute-force.

In the experiment to recover passwords, we ask the volunteers to type in ‘a’ ‘s’ ‘d’ ‘f’
5 K 1 “ each for 20 times for classification, and another 20 times for testing. Then,
we ask volunteers to type in multiple passwords. The construction of the passwords
include lower case letters, upper case letters, numbers and symbols. We first evaluate
the performance of finger classification subsystem. Input event detection subsystem is
employed here and it has one hundred percent accuracy. There is one SVM classifier
for each volunteer trained by their own labeled samples. The classification accuracy
for each volunteer is shown in Fig. 9.1.

Basically, the way we use to generate candidate is to replace one classification out-
come one by one. For example, if the ground truth is ‘see’, which is {ring finger, middle
finger, middle finger}. But the classifier gives us {ring finger, index finger, middle fin-
ger}. Then the top-3 candidate list will be {pinky finger, index finger, middle finger},
{ring finger, middle finger, middle finger} and {ring finger, index finger, index finger}.
So we have recovered the right typing in the top-3 candidate list. The other factor we
use to generate the candidate list is from the coordinate transformation subsystem.
Coordinate transformation subsystem can make it easy to differentiate situations like
r’ and V. Fig. 9.2 presents the success rate of the password reconstruction.

6. FURTHER EXPLORATION: PASSWORD EXTRACTION WITHOUT PRIOR INFORMATION

In the supervised implementation, we assume our application includes an initializa-
tion phase, during which a user is instructed to do a series of tapping actions. We make
a further effort to make our attack even more stealthy and practical. We get rid of the
training phase in our unsupervised implementation. The assumption reduces to that
the application instead only need to have the ability to record EMG sensor data of the
user typing in an article.

6.1. Extracting user muscle models without labeled data

The difference between supervised and unsupervised implementation lies on the finger
classification subsystem. Other than that, the procedure is the same. In finger classi-
fication subsystem for unsupervised implementation, it uses model obtained from un-
supervised learning. We record the whole process of a user typing an article and then
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we apply k-means clustering method with principal component analysis (PCA) to all
the unlabeled samples collected from the article. With the letter frequency analysis of
English text, the subsystem can know which cluster corresponds to which finger. For
example, if one of the letters ‘a’ ‘q’ ‘z’ appears in the article, it means one keystroke
Wlth little finger. And according to the letter frequency rankmg of the sum of ‘a’ ‘q’

> in English text, we can know the correspondence between finger and cluster. Be—
cause the cluster with the greatest amount of samples relates to the finger used most
frequently in English text typing. The frequency analysis of English text is in Fig.
10.1 [Lewand 2000]. In comparison, Fig. 10.2 is the frequency analysis of the article
we used in our experiment. After training, the classifier could give us which finger a
new signal segment is related to.

6.2. Experiments and results

As usual, we evaluate the performance of finger classification subsystem first. We ask
the volunteers to type in an article with two thousand letters. Then, we ask volunteers
to type in same passwords as the first implementation. The EMG data gathered is put
into the input event detection subsystem. We implement a small experiment here to
test the performance of our input event detection subsystem. We extract the signal
segment of twenty letters from each volunteer and combine the signal segments to-
gether. Then we put the composite signal into our input event detection subsystem. It
turns out if we set the maximum false positive rate to be five percent, our subsystem
could detect eighty four percent of the events. With the timestamps, we can extract
the keystroke samples out. We adopt k-means clustering to the unlabeled samples to
find the centroids. The finger classification accuracy for each volunteer is shown in
Fig. 11.1. What worth mentioning here is that thumb movement is not required when
recovering password. So whenever the sample segment to be classified is close to the
centroid for thumb, we label it as index finger. We apply the same way as the first im-
plementation to generate candidate list and Fig. 11.2 presents the top-k success rate
of the password reconstruction.

7. MITIGATION AND LIMITATION
7.1. Mitigation

Given the severity of these information leakage, it would be important for future AR
system designers to take in the information leakage of input devices as a consideration
in actual deployment. There are two research directions to mitigate the side-channel
information leakage.

First, we can enforce the access control of the Myo raw signal. We can apply the
FlowFence programming framework proposed in [Fernandes et al. 2016]. FlowFence
presents a new information flow model. A data-publishing app (which controls the
raw EMG signal source) tags the EMG data with a taint label. Developers write
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Fig. 11. Evaluation on unsupervised typing model.

data-consuming apps (like a health monitoring app) so that EMG data is only pro-
cessed within designated functions that run in FlowFence-provided sandboxes for
which taints are automatically tracked. Therefore, an app consists of a set of desig-
nated functions that compute on EMG data, and code that does not compute on EMG
data. FlowFence only makes EMG data available to apps via functions that they sub-
mit for execution in FlowFence-provided sandboxes. So an app can not directly access
the raw EMG data but through functions and the track of its usage of processed EMG
data will be recorded by taint labels. A trusted service process in the background will
terminate any suspicious information flow of the app according to the taint analysis.
In the example provided in their paper, they show they can prevent raw camera data
from flowing to the Internet. With lightly modification, it can be applied to prevent raw
EMG data from flowing to the remote server.

The second research direction aims to obfuscate the finger movement from the
signal. A naive approach is to lower the sampling rate. Currently the EMG signals
are sampled and broadcast in maximum sampling frequency for the equipment [myo
2016]. However, depending on gestures to distinguish, it might not be necessary to
sample at such frequency to provide basic gesture differentiation. Furthermore, it is
also possible to add calculated noise can be added to signal to make finger movement
undetectable while in the mean time, gesture detection is still available. Privacy-
preserving techniques such as differential privacy [Dwork 2006] can also be applied
to the problem to quantitatively degrade the signal.

7.2. Limitation

The information leakage demonstrations presented in this work present the feasibil-
ity of exploiting the EMG side-channel information to recover sensitive passwords and
PINs of AR users. However, there remains some practical challenges when our method
is applied in different environments. For example, our scheme is affected by the sur-
face of the skin of the user. If there are significant amount of hair on the user’s arm, the
signal-to-noise ratio could still be good enough for coarse-grained information, which
is necessary for Myo armband to function. But the addition of these noise could signif-
icantly hinder the modeling of the finger movement and finger detection. Despite the
reduction in the information of the channel, our demonstrations can still be applied to
reduce the space of brute force attack. In addition, the performance of our proposed
scheme would increase with the development sensor technologies.
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8. CONCLUSION

In this work, we study on a new kind of side-channel information leakage on ges-
ture control device in AR. By taking advantage of the EMG and acceleration signals
available on the wearable device, we are able to recover passwords from keyboard and
user login PIN on touch screen device. To demonstrate the information leakage, we
address unique challenges in using the EMG signal. More specifically, we invent new
movement detection algorithms based on DCS to reliably detect movement events of
fingers. In our demonstration with unsupervised learning, we avoid the assumption
of labeled sensor data which makes our implementation stealthy. In the same time, it
is able to recover complex passwords constructed with lower case letters, upper case
letters, numbers and symbols with mean success rate of 56% in the first 5000 trials.
Furthermore, our method with supervised learning is able to achieve mean success
rate 91% in the same settings. Through experiment data recorded with volunteers, we
show that our implementations can be applied to users from different age and gender
group. Lastly, we provide a discussion on the possible mitigation to this kind of infor-
mation leakage. Through the successful demonstrations based on new EMG sensor,
we further emphasize the importance of understanding potential abuse of sensor data
type with the coming of various kinds of sensors.
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