
66 IEEE Network • July/August 20160890-8044/16/$25.00 © 2016 IEEE

With the number of wearable, mobile, and embed-
ded devices on the rise, we are increasingly faced 

with the limitations of traditional network security control 
and management solutions. The vast majority of these solu-
tions heavily rely on pre-established security contexts that are 
manually configured using out-of-band channels. Not only 
are these security contexts subject to theft and/or forgery, but 
they are also inadequate to cope with the evolving and ad hoc 
nature of trust relationships in dynamic networks of autono-
mous mobile/embedded devices. In fact, reestablishing and 
maintaining trust in these environments is a critical element 
of maintaining security control chains, since users and devic-
es must be networked on each encounter. Another drawback 
of the traditional methods is their reliance on users’ abili-
ty to retain and recall appropriate secrets. Unfortunately, 
human memory is limited and unreliable when it comes to 
storing and retrieving cryptic security contexts, especially 
as the number of such secrets increases. As a result, faulty 
memory and human errors are becoming the bane of network 
security.

To overcome these limitations, a new class of cogni-
tive-inspired security methods have been proposed rang-

ing from intelligent credential generation to autonomous 
dynamic trust establishment and management. Instead of 
relying on preconfigured secrets, these new methods seek 
to authenticate users or devices by recognizing patterns of 
behavior or correlations in information collected by such 
devices. Such patterns or correlations can be explicit, such 
as a device’s geolocations or a user’s keystroke dynamics, 
or implicit, such as location fingerprints from ambient radio 
signals or a user’s social preferences. Such patterns and/or 
correlations can serve as a secondary means for verifying 
users’ identity, hence augmenting traditional authentica-
tion methods to achieve greater assurance through use of 
nonintrusive and innocuous means. We refer to this family 
of methods as cognitive security, as they typically involve an 
intelligent reasoning process informed by machine learning 
(ML) techniques. We refer to the corresponding patterns or 
knowledge as cognitive features.

There has been limited progress in advancing the basic 
ideas underpinning cognitive security. Riva et al. [1] designed 
a decision-tree-based cognitive system to determine when it is 
necessary to revalidate users’ identities based on their behav-
iors. Zheng et al. [2] designed a location tag-based cognitive 
security system to verify the geographical proximity of devices 
using ambient radio signals. However, their prototypes are 
generally considered as pure academic practices, and are not 
adopted as mainstream authentication measures. While critics 
of cognitive security often question the viability of such mech-
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anisms due to their low accuracy, we believe that the root of 
the problem runs much deeper.

In this article, to help understand the current state of cog-
nitive security, we review the recent cognitive security systems 
and distill a common architecture. As a guideline, we present 
the desiderata for evaluating and selecting cognitive securi-
ty features, and discuss the pros and cons of each one. We 
identify several critical factors that impede broad adoption of 
cognitive security architecture, including the tension between 
security automation and authentication, and potential vulner-
ability stemming from using ML-based algorithms within a 
cognitive authentication system.

A Canonical Cognitive Security Architecture
Cognitive security systems replace traditional chal-
lenge-and-response authentication methods with a 
sense-and-recognize decision process that is informed by 
near-real-time analysis of aggregated sensor data collected 
using various onboard sensor devices. A device equipped 
with a cognitive security module (CSM) authenticates its 
legitimate users or owners through a sense-and-recognize 
process, thus eliminating the need for negotiating a shared 
security context between the device and its users. Figure 1 
depicts our canonical cognitive security architecture, orga-
nized into three functionally distinct tiers. The first tier 
consists of all the onboard sensors, and is responsible for 
monitoring and tracking all the interactions between the 
device and its environment including users or other near-
by devices. Personal devices are increasingly integrating a 
larger array of onboard sensors and, as such, are an ideal 
platform for hosting a sense-and-recognize cognitive securi-
ty system. Raw data collected by two or more sensors can be 
analyzed, correlated, and/or fused to facilitate a robust rec-
ognition decision process. A cognitive security system can 
utilize a touchscreen sensor to monitor its user’s gestures, 
a gyro sensor to register users’ gaits, or a microphone to 
record a user’s voice. For device identification, a cognitive 
security system can utilize an available GPS sensor to estab-
lish presence of nearby devices, a camera can measure visual 
alignments, while an accelerometer can detect synchronized 

cross-device gestures. Raw sensor data 
collected by the first tier is aggregated at 
the second tier, and appropriate cognitive 
features are then extracted. Statistical 
analyses and MLtechniques are common-
ly employed in this tier to facilitate the 
recognition process. For example, voice 
data can be represented by and analyzed 
using a hidden Markov chain. An image 
can be segmented into a conditional 
random field. A series of accelerometer 
readings can be converted into velocities, 
accelerations, and moments. Selected 
cognitive features are then transferred to 
the third tier, which serves as the main 
processing engine for the cognitive secu-
rity system. The third-tier functionality 
operates in two modes: learning and rec-
ognition. Learning occurs during the first 
long and feature-rich encounter between 
the device and a new (legitimate) subject; 
in this mode, the device learns to recog-
nize its legitimate subject by fitting appro-
priately selected cognitive features using 
a strong classifier. To ensure the overall 
integrity of the cognitive security system, 
the classifier is enclosed in sealed, tam-

perproof, isolated storage protected by a trusted platform 
module (TPM). No one, including the device owner, can 
tamper with the classifier. Later, when the device inter-
acts with a yet-to-be-recognized subject (a user or another 
device), it consults the classifier to categorize the subject’s 
cognitive feature(s) to recognize its subject, thus ascertain-
ing subject’s legitimacy.

Two characteristics differentiate cognitive secu-
rity systems from traditional security systems. First, the 
three-tier architecture does not implement an explicit chal-
lenge-and-response strategy. Rather, it relies on identity 
cues acquired through interactions with users. There is an 
advantage and a disadvantage for this design choice. The 
advantage is that, without a disruptive challenge-and-re-
sponse protocol, the system can continuously recognize 
(authenticate) users and/or devices without interrupting 
ongoing user-device or device-device interactions. The dis-
advantage is that if the cognitive features do not support 
instantaneous authentication, there will be a delay between 
the suspicious activities and the authentication decision, 
which might be just long enough for adversaries to accom-
plish their goals. Second, compared to traditional security 
systems, cognitive security systems are usually multi-modal. 
Unlike traditional credentials, any cognitive feature alone 
cannot accurately determine users’ identities [3]. Therefore, 
the behavior classification models for cognitive security sys-
tems usually require multiple cognitive features. To repre-
sent such models, information fusion and ensemble learning 
techniques are commonly employed to build a high-capacity 
model by combining low-fidelity cognitive features and weak 
classifiers.

Cognitive Features
Cognitive features are a key component of cognitive secu-
rity architectures, and, as such, selecting the right features 
can go a long way in creating a robust and effective security 
architecture. Broadly speaking, cognitive features can be 
divided into three general categories: physiological, behav-
ioral, and environmental. Physiological features represent 
intrinsic characteristics of users or devices such as heritage 

Figure 1. A three-tier general architecture for CMA.
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traits or manufacturing variations. Behavioral features char-
acterize acquired skills or idiosyncratic aspects developed 
by users or devices, such as motor skills or inter-device 
communication patterns. Finally, environmental features 
represent contextual influences or conditions surrounding 
a user or device such as social relationships for humans or 
ambiance signals for devices.

Desiderata for Cognitive Features
Distinguishability: The most basic desideratum for 

qualifying as a cognitive feature is that it must allow us 
to distinguish between authorized and unauthorized users. 
Unfortunately, no single feature alone can provide suffi-
cient evidence to categorically establish the identity of a 
specific user [3]. Among the three aforementioned types, 
physiological features tend to be used most mainly because 
they exploit intrinsic patterns of a user or a device, and 
are usually most useful to differentiate a particular user or 
device among others.

Consistency: Another factor that affects the design of cog-
nitive security systems is the consistency of cognitive features 
employed by the system. Cognitive features of the same user 
or device can be mutually inconsistent across authentication 
sessions, making them less than reliable to use. This prob-
lem is common to most cognitive features often collected by 
mobile devices due to sporadic and erratic patterns of interac-
tions between users and their devices.

Invisibility: Since cognitive security systems employ 
sense-and-recognize architecture, they are often vulnerable to 
shoulder surfing attacks, which often rely on similar sensing 
techniques. Physiological and behavioral features are often 
readily available to an adversary should he/she engage in 
surveilling the user. Environmental cognitive features, which 
involve identity cues hidden within natural or social environ-
ments, are more robust against shoulder surfing.

Unforgeability: The philosophy of cognitive security is 
based on the assumption that an adversary cannot imperson-
ate a victim subject well enough to fool the authentication 
mechanism. Therefore, a natural question to ask is whether 
a particular cognitive feature can be forged by an attacker. 
Unforgeability clearly depends on not only the nature of the 
feature of choice but also the manner in which it is sensed, 
collected, processed, and ultimately used for decision making 
For example, a user’s social circle of friends lists are easy to 
forge if they are used as answers to authentication questions. 
However, they can also be unforgeable in a vouch system 
where users’ friends are contacted to vouch for the users’ 
identities. 

Cognitive Security Features
Table 1 presents three broad categories of cog-
nitive features used in all cognitive security 
architectures. Each category is analogous to a 
class of mechanisms by which a human recogniz-
es an object. For instance, physiological features 
correspond to the physiological characteristics 
on which humans rely to identify other entities 
or objects, including sound, pattern of speech, 
and so on. Physiological features excel at provid-
ing highly distinguishable and consistent identity 
cues. Mock et al. [4] combined an iris recogni-
tion algorithm with an eye tracking algorithm to 
provide a continuous authentication mechanism 
to identify desktop computer users. Kim et al. 
[5] designed a device authentication scheme by 
exploiting the unique power-up values in the 
embedded SRAM memory chip. Despite many 
strengths, physiological features suffer from cer-

tain weaknesses such as low, insufficient entropy. They are also 
highly exposed and visible, which makes them easy targets for 
duplication by an adversary.

Behavioral features constitute the second category 
of cognitive features. Gafurov [6] provided a survey for 
mobile user authentication using gait patterns. Ming et al. 
[7] reviewed spontaneous device association based on user 
interactions. Cognitive features in this category do not 
offer significant advantages or disadvantages with respect 
to the aforementioned desiderata. They are not as distin-
guishable and consistent as physiological features. Tey et 
al. [8] show that a user’s typing pattern varies significantly 
under different physical and psychological conditions, such 
as postures and moods. As a result, behavioral features 
may result in a higher false rejection rate (FRR), hence 
undermining their own usability and effectiveness. On 
the positive side, behavioral features are not as exposed 
as physiological cognitive features, which prevents adver-
saries from learning such features through observation. 
Certain behavioral features, such as motor skills, can also 
be highly unforgeable. Bike riding and video gaming are 
everyday examples that fit this description. They can easily 
be verified through observation or statistics but cannot 
easily be duplicated.

The last category is environmental cognitive features, which 
associate contextual environment factors with identities. For 
user authentication, a user’s social environment is common-
ly exploited to validate his/her identity. Brainard et al. [9] 
designed a cryptographic vouching system that authenticates 
a user by verifying multiple vouching codes sent by the user’s 
social friends. For device authentication, the ambient context 
collected from onboard sensors is used. The most recent work 
is from [10], where Miettinen et al. utilized the ambient signals 
to update the devices’ pairing credentials. The advantages 
of environmental cognitive features are two-fold. First, the 
features are physically separated from users or devices, which 
prevents adversaries from extracting credentials through coer-
cion or break-in. Second, the rapidly changing environment 
contains high entropy information, which is difficult to forge 
by adversaries. However, environmental cognitive features can 
be fairly inconsistent due to the unpredictable factors within 
the environment, which reduces their applicability in certain 
scenarios.

Grand Challenges
Combining multiple cognitive features from distinct 
domains can potentially enhance the usability and efficacy 
of a cognitive security system. That being said, cognitive 

Table 1. Three categories of cognitive features.

Physiological Behavioral Environmental

Human analogy What do they 
look/sound like?

How do they 
behave?

With whom do 
they associate?

Examples
Heritage traits, 
manufacturing  
variations

Motor skills, 
inter-device 
communication 
patterns

Social relationship, 
ambiance signals

Distinguishability High Medium Low

Consistency High Medium Low

Invisibility Low Medium High

Unforgeability Low Medium to high High



IEEE Network • July/August 2016 69

security systems face unique challeng-
es stemming from their very architecture, 
which makes them very difficult to over-
come. In this section, we introduce three 
key challenges faced by cognitive securi-
ty systems and examine potential solution 
approaches. In particular, we consider the 
perils of applying security automation to 
authentication and discuss vulnerabilities 
introduced by using low-complexity ML 
algorithms. Finally, we define the revo-
cation problem of cognitive security and 
show how it impacts selection of cognitive 
features.

Security Automation for Authentication
Cognitive security is an artificial intelligence (AI) realiza-
tion of security automation, which encompasses any system 
or technology that effectively removes the security decision 
and management from users. Edwards et al. [11] defined a 
range of strategies for security automation. Figure 2 pres-
ents the spectrum of automation strategies, with more rigid, 
less flexible automation strategies on the left and more 
flexible strategies on the right side of the spectrum. In 
this figure, the AI approach adopted by cognitive security 
is located on the far right end of the spectrum, where a 
dynamic security policy and a continuous-time adaptive sys-
tem are employed for the automation. Security automation 
strategies of this category allow tailoring and personaliza-
tion of the security environment for individual users, and as 
a result, they can more effectively reflect security require-
ments for a given situation.

However, the problem for cognitive security resides in 
the way security automation handles failures. Due to the 
existence of outliers in cognitive features, there will be false 
positive and false negative cases when a cognitive security 
system fails to determine users’ or devices’ identities, thus 
resulting in automation failure. Traditional security auto-
mation approaches handle such failures by incorporating 
an exception-handle-feedback loop. For instance, when a 
Bayesian spam filter fails to determine whether a message 
is spam or not, it leaves it to the user to make the decision. 
Based on the user’s decision, the filter then retrains the 
spam classifier so that it can handle similar cases in the 
future. For cognitive security systems, however, establishing 
such a feedback loop is difficult. When a cognitive security 
system fails to identify users or devices, there is no higher 
authority that can handle the exception. Clearly, the system 
cannot rely on the very users or devices it is expected to 
authenticate to establish their own identities. Nor can it 
ignore authentication failures and let a potentially malicious 
user/device get by the system without any further checking. 
As a result, a legitimate user or device might be denied 
access without any further explanation.

One possible solution is to implement a secondary, more 
traditional authentication mechanism as a fallback measure. 
When the primary cognitive security system fails, it can send 
the unlock code to the legitimate user through an email 
address previously used on this device. This way, the system 
can hand the failure to the user and reestablish the loop. How-
ever, some users might consider this as a disruption in work-
flow and distraction of attention.

Another possibility is to seek “assistance” from peer trusted 
devices instead, that is, to delegate authentication services to a 
trusted device within the immediate network of devices. This 
is a practical approach as users are expected to carry multiple 
smart devices with distinct sensing capabilities. They are often 

equipped with peer-to-peer communication protocols such as 
WiFi and Bluetooth. Therefore, if the cognitive security sys-
tem of one mobile device fails, it can rely on other devices in 
close vicinity that have successfully authenticated the users or 
devices. This solution essentially expands the ensemble classifi-
er from intra-device cognitive features to inter-device cognitive 
features to minimize exception handling.

Finally, a more graceful way to acquire users’ feedback 
is to contextualize cognitive security decisions. Instead of 
simply rejecting unidentified users or devices without further 
explanation, a cognitive security system may present more 
detailed explanation of a failed classification result, thus 
helping users to decide on the course of corrective actions. 
However, as we show later, due to the low computational 
complexity of machine learning algorithms, a detailed output 
may enable adversaries to rapidly reverse engineer and break 
the system.

Impact of Machine Learning on Security Functions
Here we examine the advantages and disadvantages of using 
ML in cognitive security systems. As stated previously, cog-
nitive security systems rely on ubiquitous sensing of their 
environments to recognize users and/or other devices they 
encounter. As a practical matter, ML techniques can be 
used to discover otherwise hidden patterns and uncover 
correlations in sensor data collected from disparate sources. 
Using ML techniques can assist a cognitive security system 
to discern users’ identities by fusing evidence from mul-
tiple sources. For example, a password can be associated 
with typing patterns, while face data can be linked to vocal 
sequences. Using a reliable learning algorithm such as SVM 
or Boosting, the system can then combine these separate 
sources of evidence to make a better judgment concerning 
a user’s legitimacy.

A disadvantage of using ML in the context of securi-
ty decision making is that ML techniques are not suited to 
protecting secrecy. The reason is that the computational 
complexity of ML algorithms is generally much lower than 
that of cryptographic functions. As an example, consider a 
cognitive security system that relies on a learning algorithm 
to decide users’ or devices’ identities using a classifier f: X  
{0, 1} chosen by the learning algorithm. Such classifiers are 
often reversible and not collision-resistant. For instance, the 
classifier of a linear SVM is the composition of sigmoid and 
a linear function

f (x)= h(g(x))= 1
1+ e−g(x)

=
1

1+ e−w
T x
,
 

where x  Rm is the cognitive feature vector and w  Rm is 
the weight vector. If adversaries are allowed to query f with 
m with distinct cognitive feature vectors, they can reconstruct 
the classifier’s decision boundary and fabricate a bogus cog-

Figure 2. The spectrum of automation approaches
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nitive feature vector to fool the system [12]. Additionally, if 
the adversaries gain control over a portion of the training 
data, they can break the integrity of the classifier by inject-
ing fraudulent data during the training process [12]. In both 
cases, by exploiting the low-complexity ML algorithms, the 
adversaries can either slip past the security system as false 
negatives or block the access of legitimate users via false 
positives.

There are a few techniques to protect the confidentiality of 
the data or the classifiers in ML systems. Graepel et al. [13] 
devised a fully homomorphic Encryption (FHE) based training 
procedure that operates on encrypted data. Bost et al. [14] 
constructed a suite of FHE-based classification protocols that 
allow users to query a classifier without learning its parame-
ters. However, these types of techniques usually rely on pre-
shared security context, which contradicts the sole purpose of 
cognitive security systems.

Another solution to circumvent this problem is to use 
unforgeable cognitive features. This way, even if adversaries 
know the requirements of legitimate cognitive features, they 
cannot fabricate one that fits such requirements. For example, 
using ambient noise and luminosity to find co-present devic-
es [2, 10] is an example that exploits the unforgeable envi-
ronmental features for cognitive security. However, in these 
schemes, the ML algorithms are only responsible for extract-
ing the cognitive features, whereas other mechanisms are used 
for the recognition/authentication process.

Appropriate use of ML techniques in a cognitive security 
system directly affects the system’s security objective. Cur-
rent cognitive security research mainly focuses on discovering 
the right features, that is, the ones that can uniquely identify 
individual users or devices. However, there is little research 
evaluating the system’s vulnerabilities when adversaries can 
exploit the adaptive nature of cognitive security systems. As a 
result, the security analyses on most cognitive security systems 
are usually based on unrealistic attack models and lack rigor-
ous proofs.

Revocation
In traditional security systems, compromised credentials 
must be revoked and reissued by a legitimate authority. 
The same principle applies to cognitive security systems; 
however, revoking certain features may be problematic or 
infeasible as is the case with biometric-based authentication 
systems. Nearly all the features exploited by cognitive secu-
rity systems tend to be intrinsic to devices or humans and 
as such cannot easily be replaced or reissued. This poses 
a serious problem if an attacker successfully compromises 
the classifier used in the system. In traditional biometric 
authentication systems, to safeguard user biometrics, col-
lected samples are stored as seeded hashed digests so that 
if they are compromised, users can easily be reenrolled and 
a distinct biometric template can be generated using a dif-
ferent seed. Unfortunately, applying such a technique to 
cognitive security features may not be feasible as hashing 
may render cognitive features indistinguishable.

One possible approach to dealing with revocation involves 
using modifiable cognitive security features such as acquired 
skills. For example, Bojinov et al. [15] discovered that, using 
serial interception sequence learning (SISL), users often sub-
consciously memorize specific typing sequences, which allows 
them to achieve typing speeds exceeding those of professional 
typists. This effect can be further boosted if users’ original 
typing habits are used to select the training sequences. An 
adversary cannot quickly duplicate such a skill even if he/she 
knows the target typing speed required to authenticate. Better 
yet, users can be trained with new sequences when the old 

ones are compromised, which makes the method more amena-
ble to revocation. Unfortunately, this method is suited to user 
authentication only, and finding a revocation-friendly cognitive 
security system for authenticating devices remains an open 
challenge.

Conclusion
With the rapid proliferation of mobile and networkable 
devices, there is a pressing need for an intelligent, adapt-
able security solution. Cognitive security systems replace 
the traditional challenge-and-response authentication model 
with a sense-recognize model that allows these devices to 
continuously identify (i.e., recognize) their legitimate users 
without relying on pre-established security context (e.g., 
shared secrets or cryptographic means). The new security 
model exploits the built-in sensing capabilities of each device 
to continuously collect information about its environment, 
user, and other nearby devices, then analyzes the sensed 
data using machine learning techniques to first learn, then 
recognize the identity of its subject during future encounters. 
In this article, we have presented the basic building blocks 
of a cognitive security architecture and categorized contex-
tual features commonly used by cognitive security systems. 
We believe that selecting appropriate cognitive features is 
only the first step in developing a robust and effective cog-
nitive security solution and an important topic for cognitive 
security research. To create a truly intelligent, adaptable, 
context-aware cognitive security solution, great challenges 
remain ahead, including devising an elegant security auto-
mation feedback mechanism, overcoming the limitations and 
improving the capacity of machine learning, and addressing 
system maintenance issues such as revocation. Historically, 
solving many network security and AI problems have proved 
to be challenging. We believe that combining ideas and solu-
tion techniques from two already established fields will offer 
new insights and opportunities for synthesizing novel solution 
approaches that could not have been possible otherwise and 
at the same time will open up new research vistas.
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