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New Publicly Verifiable Databases with
Efficient Updates

Xiaofeng Chen, Jin Li, Xinyi Huang, Jianfeng Ma, and Wenjing Lou

Abstract—The notion of verifiable database (VDB) enables a resource-constrained client to securely outsource a very large database
to an untrusted server so that it could later retrieve a database record and update it by assigning a new value. Also, any attempt by the
server to tamper with the data will be detected by the client. Very recently, Catalano and Fiore [17] proposed an elegant framework to
build efficient VDB that supports public verifiability from a new primitive named vector commitment. In this paper, we point out
Catalano-Fiore’s VDB framework from vector commitment is vulnerable to the so-called forward automatic update (FAU) attack.
Besides, we propose a new VDB framework from vector commitment based on the idea of commitment binding. The construction is not
only public verifiable but also secure under the FAU attack. Furthermore, we prove that our construction can achieve the desired

security properties.

Index Terms—Verifiable database, cloud computing, secure outsourcing, vector commitment

1 INTRODUCTION

WITH the rapid development of cloud computing, the
techniques for securely outsourcing prohibitively
expensive computations are getting widespread attentions
in the scientific community. In the outsourcing computation
paradigm, the client with resource-constraint devices can
outsource the heavy computation workloads into the cloud
server and enjoy unlimited computing resources in a pay-
per-use manner.

Despite the tremendous benefits, outsourcing computa-
tion inevitably suffers from some new security challenges.
Firstly, the computation tasks often contain some sensitive
information that should not be exposed to (semi-trusted)
cloud servers. Therefore, one security challenge is the
secrecy of inputs/outputs of the outsourcing computation.
We argue that the traditional encryption techniques can
only provide a partial solution to this problem since it is
very difficult to perform meaningful computations over the
encrypted data. Though the fully homomorphic encryption
could be a potential solution, the existing schemes are not
practical yet. Secondly, a semi-trusted cloud server may
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return a computationally indistinguishable (invalid) result
due to financial incentives. Therefore, another security chal-
lenge is the verifiability of the outsourcing computation.
That is, the client can verify the validity of computation
result efficiently. Trivially, the verification should never be
involved in some other complicated computations. At the
very least, it must be far more efficient than accomplishing
the computation task itself.

The primitive of verifiable computation has been well
studied by plenty of researchers in the past decades [8], [9],
[10], [301, [32], [39], [40], [41], [43], [53], [56]. Most of the
prior work focused on generic solutions for arbitrary func-
tions (encoded as a Boolean circuit). Though in general the
problem of verifiable computation has been theoretically
solved, the proposed solutions are still much inefficient for
real-world applications. Therefore, it is still meaningful to
seek for efficient protocols for verifiable computation of spe-
cific functions.

Benabbas et al. [15] first proposed the notion of verifiable
database (VDB, for short), which is extremely useful to solve
the problem of verifiable outsourcing storage. Assume that
a resource constrained client would like to store a very large
database on a server so that it could later retrieve a database
record and update it by assigning a new value. If the server
attempts to tamper with the database, it will be detected by
the client with an overwhelming probability. Besides, the
computation and storage resources invested by the client
must not depend on the size of the database (except for an
initial setup phase).

For the case of static database, we can achieve the goal
based on simple solutions using message authentication
codes or digital signatures. That is, the client signs each
database record before sending it to the server, and the
server is requested to output the record together with its
valid signature. The solution does not work if the client per-
forms update on the database. As noted in [15], the main
technical difficulty is that the client must have a mechanism
to revoke the signatures given to the server for the previous
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values. Trivially, the client could keep track of every change
locally in order to solve this issue. However, this totally con-
tradicts the goal of outsourcing, i.e., the client should use
much less resources than those needed to store the database
locally. This problem has been addressed by works on accu-
mulators [19], [20], [48] and authentication data structures
[44], [46], [50], [52]. However, these solutions either rely on
non-constant size assumptions (such as ¢-Strong Diffie-Hell-
man assumption), or require expensive operations such
as generation of primes and expensive “re-shuffling”
procedures.

Benabbas et al. [15] presented the first practical verifiable
computation scheme for high degree polynomial functions
and used it to design an efficient VDB scheme. The con-
struction relies on a constant size assumption in bilinear
groups of composite order, but does not support the public
verifiability (i.e., only the owner of the database can verify
the correctness of the proofs). Recently, Catalano and Fiore
[17] proposed an elegant solution to build VDB from a prim-
itive named vector commitment. The concrete construction
relies on standard constant-size assumption and supports
the public verifiability.

1.1 Our Contribution

In this paper, we further study the problem of constructing
verifiable database with efficient updates. Our contribution
is two fold:

e We point out a security weakness of Catalano-Fiore’s
elegant VDB framework from vector commitment.
That is, the framework is vulnerable to the so-called
forward automatic update (FAU) attack defined in
this paper.

e We propose a new VDB framework from vector
commitment based on the binding commitment. The
construction is not only public verifiable but also
secure under the FAU attack. Additionally, we pres-
ent a concrete scheme based on the standard con-
stant-size computational Diffie-Hellman (CDH)
assumption. The proposed scheme uses the bilinear
pairing groups of prime order instead of composite
one and thus is more efficient than Benabbas-Gen-
naro-Vahlis’s scheme [15].

1.2 Related Work

Plenty of researchers have devoted considerable attention to
the problem of how to securely outsource different kinds of
expensive computations. Abadi et al. [1] first proved the
impossibility of secure outsourcing an exponential compu-
tation while locally doing only polynomial time work.
Therefore, it is meaningful only to consider outsourcing
expensive polynomial time computations.

In the theoretical computer science community,
Atallah et al. [3] presented a framework for secure out-
sourcing of scientific computations such as matrix multi-
plications and quadrature. However, the solution used
the disguise technique and thus led to the leakage of pri-
vate information. Later, there are plenty of research work
that also investigated this problem [2], [6], [54], [55].
Atallah and Li [4] investigated the problem of computing
the edit distance between two sequences and presented

an efficient protocol to securely outsource sequence
comparisons to two servers. Recently, Blanton et al. pro-
posed a more efficient scheme for secure outsourcing
sequence comparisons [11].

In the cryptographic community, Chaum and Pedersen
[28] firstly introduced the notion of wallets with observers,
a piece of secure hardware installed on the client’s com-
puter to perform some expensive computations. Hohen-
berger and Lysyanskaya [38] proposed the first outsource-
secure algorithm for modular exponentiations based on the
two previous approaches of precomputation [13], [47], [51]
and server-aided computation [12], [14], [31]. Chen et al.
[26] proposed more efficient outsource-secure algorithms
for (simultaneously) modular exponentiation in the two
untrusted program model. Chevallier-Mames et al. [16] pre-
sented the first algorithm for secure delegation of elliptic-
curve pairings based on an untrusted server model. How-
ever, an obvious disadvantage of the algorithm is that the
outsourcer should carry out some other expensive opera-
tions such as scalar multiplications and exponentiations.
Green et al. [37] proposed new methods for efficiently and
securely outsourcing decryption of attribute-based encryp-
tion (ABE) ciphertexts.

Since the servers are not fully trusted by the out-
sourcers, there should exist an efficient way for the client
to check the validity of the computation result. Gennaro
et al. [36] first formalized the notion of verifiable compu-
tation. Though the solution allows a client to outsource
the computation of an arbitrary function, it is inefficient
for practical applications due to the complicated fully
homomorphic encryption techniques [34], [35]. Besides,
another disadvantage of the schemes based on fully
homomorphic encryption is that, the client must repeat
the expensive pre-processing stage if the malicious server
tries to cheat and learns a bit of information, i.e., the cli-
ent has accepted or rejected the computation result.
Benabbas et al. [15] presented the first practical verifiable
computation scheme for high degree polynomial func-
tions [36] and used it to construct efficient VDB schemes.
Very recently, Chen et al. [27] introduced the notion of
verifiable database with incremental updates. Parno et al.
[49] showed a construction of a multi-function verifiable
computation scheme based on the outsourced ABE.

Generally, there are three kinds of approaches to
achieve the verifiability of outsourcing computations. The
first one is mostly suitable for the case that the verifica-
tion itself is never involved in any expensive computa-
tions. For example, for the inversion of one-way function
class of outsourcing computations [5], [22], [23], [25], [33],
the client can directly verify the result since the verifica-
tion is just equivalent to compute the one-way functions.
The second approach is that the client uses multiple serv-
ers to achieve verifiability [21], [25], [38]. That is, the cli-
ent sends the random test query to multiple servers and
it accepts only if all the servers output the same result.
Trivially, the approach can only ensure the client to detect
the error with probability absolutely less than 1. The last
approach is based on one malicious server and might
leverage some proof systems [30], [39], [40], [43]. Obvi-
ously, an essential requirement is that the client must ver-
ify the proofs efficiently.
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1.3 Organization

This paper is organized as follows. In Section 2, we present
the formal definition and security requirements of VDB.
Some preliminaries are presented in Section 3. In Section 4,
we overview Catalano-Fiore’s VDB Framework from vector
commitment and present some security flaws of the con-
struction. We propose a new efficient VDB framework and
a concrete VDB scheme in Section 5. The security analysis of
the proposed VDB scheme and comparison with existing
schemes are given in Section 6. Finally, concluding remarks
will be made in Section 7.

2 VERIFIABLE DATABASE WITH UPDATES

2.1 Formal Definition
We consider the database DB as a set of tuples (z,m,) in
some appropriate domain, where z is an index and m,, is
the corresponding value. Informally, a VDB scheme allows
a resource-constrained client to outsource the storage of a
very large database to a server in such a way that the client
can later retrieve and update the database records from the
server. Inherently, any attempts to tamper with the data by
the dishonest server will be detected with an overwhelming
probability when the client queries the database. In order to
achieve the confidentiality of the data record m,, the client
can use a master secret key to encrypt each m, using a sym-
metric encryption scheme such as AES. Trivially, given the
ciphertext v,, only the client can compute the record m,.
Therefore, we only need to consider the case of encrypted
database (z,v,). This is implicitly assumed in the existing
academic research.

The formal definition for verifiable databases with
updates is given as follows [15], [17]:

Definition 1. A verifiable database scheme with updates VDB =
(Setup, Query, Verify, Update) consists of four algorithms
defined below.

e Setup(1*, DB): On input the security parameter k,
the setup algorithm is run by the client to generate a
secret key SK to be secretly stored by the client, a data-
base encoding S that is given to the server, and a public
key PK that is distributed to all users (including the
client itself) for verifying the proofs.

e Query(PK,S,z): On input an index x, the query
algorithm is run by the server, and returns a pair
7= (v, 7).

e Verify(PK/SK, z, t): The public verification algorithm
outputs a value v if t is correct with respect to x, and
an error L otherwise.

e Update(SK, z,v'): In the update algorithm, the client
firstly generates a token t! with the secret key SK and
then sends the pair (t,,v') to the server. Then, the
server uses v' to update the database record in index x,
and t), to update the public key PK.

Remark 1. There are two different kinds of verifiability for
the outputs of the query algorithm, i.e., T = (v, 7). In the
Catalano-Fiore’s scheme [17], anyone can verify the
validity of t with the public key PK. Therefore, it satisfies
the property of public verifiability. However, in some
applications, only the client can verify the proofs

generated by the server since the secret key of the client
is involved in the verification. This is called the private
verifiability [15]. A verifiable database scheme should
support both verifiability for various applications.

2.2 Security Requirements

In the following, we introduce some security requirements
for VDB. The first requirement is the security of VDB
scheme. Intuitively, a VDB scheme is secure if a malicious
server cannot convince a verifier to accept an invalid output,
i.e., v # v, where v, is the value of database record in the
index z. Note that v, can be either the initial value given by
the client in the setup stage or the latest value assigned by
the client in the update procedure. Benabbas et al. [15] pre-
sented the following definition:

Definition 2 (Security). A VDB scheme is secure if for any
database DB € [q] x {0,1}", where q = poly(k), and for any
probabilistic polynomial time (PPT) adversary A,

Adv,(VDB, DB, k) < negl(k),

where Adv(VDB, DB, k) = Pr[Exp\’®(DB,k) =1] is
defined as the advantage of A in the experiment as follows:

Experiment ExpY\°®[DB, k|
(PK, SK) « Setup(DB, k);
Fori=1,...,1 = poly(k);
Verify query :
(zi, 1) — APKt,, ..., th_,);
v; < Verify(PK/SK, z;, 7;);
Update query :
(zi,0l)) — APK £, ... t_,);
t; «— Update (SK, i, US?);
(z,7) <—A(PK,t'1, . ,t;);
0 «— Verify(PK/SK, %, )

Ifv#1 and v # vg), output 1; else output 0.

In the above experiment, after every update query, we
implicitly assign PK «— PK;.

The second requirement is the correctness of VDB
scheme. That is, the value and proof generated by the hon-
est server can be always verified successfully and accepted
by the client.

Definition 3 (Correctness). A VDB scheme is correct if for any
database DB € [q] x {0,1}", where q = poly(k), and for any
valid pair v = (v, ) generated by an honest server, the output
of verification algorithm is always the value v.

The third requirement is the efficiency of VDB scheme.
That is, the client in the verifiable database scheme should
not be involved in plenty of expensive computation and
storage (except for an initial pre-processing phase).'

1. In some scenarios, the client is allowed to invest a one-time expen-
sive computational effort. This is known as the amortized model of out-
sourcing computations [36].
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Definition 4 (Efficiency). A VDB scheme is efficient if for any
database DB € [q] x {0,1}", where g = poly(k), the computa-
tion and storage resources invested by the client must be inde-
pendent of q.

Finally, we introduce a new requirement named account-
ability for VDB scheme [27]. That is, after the client has
detected the tampering of dishonest server, he should pro-
vide some evidence to convince a judge of the facts.

Definition 5 (Accountability). A VDB scheme is accountable if
for any database DB € [q] x {0,1}", where q = poly(k), the
client can provide a proof if the dishonest server has tampered
with the database.

3 PRELIMINARIES

In this section, we first introduce the basic definition and
properties of bilinear pairings. We then present the formal
definition of vector commitment.

3.1 Bilinear Pairings

Let G; and G, be two cyclic multiplicative groups of prime
order p. Let g be a generator of G;. A bilinear pairing is a
map e : G; x G; — G, with the following properties:

1)  Bilinear. e(u®, ") = e(u,v)” for all w,v € G;, and
a,be Z;.

2)  Non-degenerate. e(g, g) # 1.

3)  Computable. There is an efficient algorithm to com-

pute e(u, v) for all u, v € Gy.

The examples of such groups can be found in supersin-
gular elliptic curves or hyperelliptic curves over finite fields,
and the bilinear pairings can be derived from the Weil or
Tate pairings. In the following, we introduce the Computa-
tional Diffie-Hellman problem in G;.

Definition 6. The Computational Diffie-Hellman problem in G,
is defined as follows: given a triple (g,¢",¢") for any
x,y €r L, as inputs, output gv. We say that the CDH
assumption holds in G, if for every probabilistic polynomial
time algorithm A, there exists a negligible function negl(-)
such that PrlA(1%, g, ¢, ¢¥) = ¢*] < negl(k) for all security
parameter k.

A variant of CDH problem is the Square Computational
Diffie-Hellman (Squ-CDH) problem. That is, given (g, ")

for x € Z, as inputs, output " It has been proved that the
Squ-CDH assumption is equivalent to the classical CDH
assumption [7].

3.2 Vector Commitments

Commitment is a fundamental primitive in cryptography
and plays an important role in almost all security proto-
cols such as voting, identification, zero-knowledge proof,
etc. Intuitively, a commitment scheme can be viewed as
the digital equivalent of a sealed envelope. The sender
places a message in the sealed envelope and gives it to
the receiver. On one hand, no one except the sender
could open the envelope to learn the message from the
commitment (this is called hiding). On the other hand,
the sender could not change the message any more (this
is called binding).

Very recently, Catalano and Fiore [17] proposed a new
primitive called Vector Commitment, which is closely
related to zero-knowledge sets [18], [24], [42], [45]. Infor-
mally speaking, a vector commitment scheme allows to
commit to an ordered sequence of values (m,...,m,) in
such a way that the committer can later open the com-
mitment at specific positions. Furthermore, anyone
should not be able to open a commitment to two differ-
ent values at the same position (this is called position
binding). Besides, vector can be required to be hiding.
That is, any adversary cannot distinguish whether a
commitment was created to a sequence (mq,...,m,) or
to (m,..., m;), even after seeing some openings at some
positions. However, hiding is not a critical property in
the realization of vector commitment for some applica-
tions, e.g., constructing verifiable database with efficient
updates. Therefore, the property of hiding is not consid-
ered in Catalano and Fiore’s constructions.” Besides the
properties of position binding and hiding, vector com-
mitment needs to be concise, i.e., the size of the commit-
ment string and the opening are both independent of g.
In the following, we present a formal definition of vector
commitment [17].

Definition 7. A vector commitment scheme VC = (VC.KeyGen,
VC.Com, VC.Open, VC.Veri, VC.Update, VC.ProofUpdate)
consists of the following algorithms:

e VC.KeyGen(1*, q). On input the security parameter
k and the size q = poly(k) of the committed vector,
the key gemeration algorithm outputs some public
parameters PP which also implicitly define the mes-
sage space M.

e VC.Compp(my,...,m,). On input a sequence of q
messages (mi, ..., my) € M?, and the public parame-
ters PP, the committing algorithm outputs a commit-
ment string C and an auxiliary information aux.

e VC.Openpp(m,i,aux). This algorithm is run by the
committer to produce a proof w; that m is the ith com-
mitted message.

o VC.Verpp(C,m,i,mn;). The verification algorithm out-
puts 1 only if 7; is a valid proof that C is a commit-
ment to a sequence (my, ..., my) such that m = m.

e VC.Updatepp(C,m,i,m'). This algorithm is run by
the original committer who wants to update C by
changing the ith message to m/. It takes as input the
old message m at the position i, the new message m/,
outputs a new commitment C' together with an update
information U.

e VC.ProofUpdatepp (C, U, m/,i,m;). The algorithm
can be run any user who holds a proof wt; for some mes-
sage at the position j w.r.t. C. It allows the user to
compute an updated proof 7\ (and the updated commit-
ment C') such that 7 is valid w.r.t C" which contains
m’ as the new message at the position i. Basically, the
value U contains the update information which is
needed to compute such values.

2. Trivially, a vector commitment scheme with hiding property can
be constructed by composing a standard commitment scheme with any
vector commitment scheme that does not satisfy hiding.
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4 CATALANO-FIORE VDB FRAMEWORK

Catalano and Fiore presented an elegant construction for
building a general VDB framework from vector commit-
ment [17]. In this section, we first overview their VDB gen-
eral framework and then present a security weakness of the
construction.

4.1 The General Framework
Catalano-Fiore’s VDB general construction from vector
commitment is given as follows.

e Setup(1*, DB). Let the database be DB = (i,v;) for
1 <i < g. Run the key generation algorithm of vector
commitment to obtain the public parameters
PP «— VC.KeyGen(1*,¢). Run the committing algo-
rithm to compute the commitment and auxiliary
information (C,aux) < VC.Compp(v1,...,v,). Define
PK = (PP,C) as the public key of VDB scheme,
S = (PP,aux,DB) as the database encoding, and
SK = as the secret key of the client.

e Query(PK,S,z). On input an index z, the server
firstly runs the opening algorithm to compute
7, < VC.Openpp (v, z,aux) and then returns
T = (Uy, Ty).

e Verify(PK,z,7). Parse the proofs t= (v;,7,). If
VC.Verpp(C, x,v,, ;) = 1, then return v,. Otherwise,
return an error L.

e Update(SK, z,v'). To update the record of index z,
the client firstly retrieves the current record v, from
the server. That 1is, the «client obtains
Query(PK,S,z) from the server and checks that
Verify(PK, z,7) = v, #L. Also, the client computes
(C",U) «— VC.Updatepp (C, v,, z,v,,) and outputs
PK' = (PP,C") and ¢, = (PK', v/, U). Then, the server
uses v/, to update the database record of index z, PK’
to update the public key, and U to update the auxil-
iary information.

T <

4.2 Forward Automatic Update Attack
We argue that Catalano-Fiore’s VDB construction suffers
from the following attack.

The attack is based on the fact that an adversary A (i.e.,
the malicious server) can perform Update in a same way
as the client. That is, the adversary A firstly retrieves
the current record wv,. Then, A computes (C* U) «
VC.Updatepp (C, v,, z,v%) and outputs PK* = (PP,C*) and
t* = (PK",v%,U) (note that all of the computations do not
need any secret knowledge of the client). Finally, the server
updates the corresponding database record with v!, and the
public key with PK". Trivially, the server can generate a
valid proof for any query based on PK". Besides, this forward
updated public key PK* and the real one PK' are totally
computationally indistinguishable from a viewpoint of any
third party. Therefore, when a dispute occurs, a judge can-
not deduce that the server is dishonest. We define this kind
of adversary as forward automatic update attacker.

We analyze why Catalano-Fiore’s VDB construction
suffers from the FAU attack. The main reason is that the
secret key in Catalano-Fiore’s VDB framework is assumed
to be empty, ie., SK= L. Trivially, if SK= 1, then

anyone can verify the validity of output v and thus the
construction supports the public verifiability. However,
this also allows the adversary A to update the database
in an indistinguishable manner as the client since no
secret information is required in the update algorithm.?
Besides, it is more difficult for the third party to detect
the FAU attack than the client. Therefore, VDB schemes
that support the public verifiability are more vulnerable
to the FAU attack in the real-world applications.

In the following, we present the formal proof that Cata-
lano-Fiore’s framework violates the security definition of
VDB (i.e., Definition 2).

Proposition 4.1. The Catalano-Fiore’s VDB framework does not
satisfy the property of security.

Proof. A VDB scheme does not satisfy the property of secu-
rity means that the adversary A (i.e., the dishonest
server) can successfully simulate the experiment
Exp'PB[DB, k] and win the game with a non-negligible
probability. In the Catalano-Fiore’s VDB framework, the
secret key is assumed to be empty, i.e., SK = L. There-
fore, the adversary A can perform the algorithm Update
freely. Our main trick is that we require A to perform an
additional round of Update after finishing ! rounds of
Update queries of the client. However, in the last round
of Update, A also plays the role of client. More precisely,
the simulated experiment Exp’ XDB[DB, k] is defined as
follows:

Experiment Exp’XDB [DB, k|
(PK, L) «— Setup(DB, k);
Fori=1,...,1+ 1;wherel = poly(k);
Verify query :
(zi,7;) — APK ¢}, ... t,_,);
v; «— Verify(PK/ L, z;, 1;);
Update query :
(24, vf;ii)) — APK, t), ..., t_);
t; — Update(L, z;,v\);
(z,7) <—A(F’K7 t/l, .. 7t§+1)§
0« Verify(PK/ L, z,7).

Since we implicitly assign PK — PK; after every
update query in the experiment, the final public key

PK = PKy;y. Then, let =", Trivially, #+#1 and

U # vg). This violates the security definition of VDB
scheme. O

Remark 2. It seems that there are two naive approaches
against FAU attack for Catalano-Fiore’s VDB frame-
work. The first solution is that we can require the
server to compute a signature on the (updated) public
key. However, we argue that this solution does not

3. Note that the construction [15] only support the private verifiabil-
ity since the (non-empty) secret key SK is involved in the verification.
Besides, SK is also involved in the update algorithm and hence only the
client can update the database.
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Fig. 1. Commitment binding.

work since the dishonest server is an inherent FAU
attacker in Catalano-Fiore’s VDB framework (the
server has the ability to compute the signature on any
public key). The second one is that the client computes
a signature on the (updated) public key. Obviously,
the server cannot forge the client’s signature. However,
it requires that the client must have a mechanism to
revoke the previous signatures (surprisingly, it
reverted to the same problem of VDB). Therefore, nei-
ther of the two approaches can solve the security issue
of Catalano-Fiore’s constructions.

4.3 Backward Substitution Update (BSU) Attack

In this section, we consider another attack in VDB
schemes that is not explicitly stated in previous litera-
tures. We call it Backward Substitution Update attack. That
is, the dishonest server can utilize the previous (while
valid) public key and the corresponding database to sub-
stitute the current ones (trivially, this can also be viewed
as an update). We argue that the server in VDB has the
ability to update the public key freely. If this case hap-
pens, the effort of the later update by the client is no lon-
ger meaningful. Furthermore, if the client did not store
the public key locally, it is difficult for him to distinguish
the past public key from the latest one. On the other
hand, even if the client has stored the latest public key, it
seems still to be difficult for him to prove the fact that the
stored public key is the latest one.

We argue that Benabbas-Gennaro-Vahlis’s scheme [15]
does not suffers from BSU attack since the secret key of
the client is updated each time. Without loss of generality,
assume that the latest secret key of client is SK;. When the
dishonest server presents a previous public key PK,
including a counter 7, and the corresponding database
DB, it is trivial that the output of query algorithm by the
server cannot pass the verification with the secret key
SK,. As a result, the tampering will be detected by the cli-
ent. However, this cannot be viewed as a proof even if
the client presents his secret key to a judge. The reason is
that a malicious client also has the ability to frame a hon-
est server. That is, the malicious client can present a ran-
dom value as the secret key to invalidate the verification
on the output of an honest server. Thus, the judge cannot
deduce who is dishonest when a dispute occurred. In this
sense, we argue that Benabbas-Gennaro-Vahlis’s scheme
does not satisfy the property of accountability.

We provide a straightforward effective solution to this
problem: Similarly, we also introduce a counter 7" in the
public key to denote the update times. The difference is
that the server computes a signature o on the latest

counter 7; and the identity ID, of the client. Given a past
public key with the counter 7, the client provides the
pair (0,T;) to the judge as a proof. If o is valid and
T, < T, the judge claims that the server is dishonest. Triv-
ially, the storage workload of the client is only the latest
pair (o,1;). Therefore, we do not focus on the BSU attack
any more in our proposed construction.

5 NEw EFFICIENT VDB FRAMEWORK

In this section, we present a new efficient VDB framework
from vector commitment which is secure against the FAU
attack. Additionally, we present a concrete VDB construc-
tion from Catalano-Fiore’s vector commitment scheme
based on the CDH assumption [17].

5.1 Design Philosophy

As stated above, the main reason that Catalano-Fiore’s
framework suffers from the FUA attack is that the secret
key SK of the client (actually, SK is assumed to be 1) is
not involved in the computation and update of the public
key PK. This will enable the adversary (especially the dis-
honest server) to update PK freely. Note that
PK= (PP,C’) and the public parameter PP of vector
commitment is never updatecl.4 That is, the server can
update the vector commitment C” at its own will and this
equals to update the databases. We argue that it is mean-
ingless if we add a signature of the server on C’ to PK
since the server can compute such a signature on any
message. On the other hand, if we use SK to compute the
updated public key PK (more precisely, the commitment
(") just as in the scheme [15], the proposed VDB scheme
might no longer support the public verifiability. The
main reason is that the secret key SK might be also
involved in the verification of C' and the corresponding
proofs (i.e., the openings of C). That is, only the client
with SK can verify the validity of the proofs. Therefore,
it seems to be contradictory to construct a VDB scheme
that is public verifiable and secure under the FUA attack
simultaneously.

We utilize the idea of commitment binding to solve this
problem. The main trick is that the client uses the secret key
SK to compute a signature on some binding information
which will be explained later. Also, the signature is used to
compute the updated commitment C’. Since the signature is
different for each updating, the server cannot compute a
new C’ without the cooperation of client.

The binding information consists of the last public key
Cr_, (a commitment value), the commitment C'7) on the
the current database vector, and the current counter 7.
Assume that the signature of client on binding informa-
tion is Hy = SIGN(Cr_1, C"), T), then the current public
key Cr = HyCT | So, the solution binds the commitment
Cr to the 3-tuple (Cr_y, co), T) in a recursion manner as
shown in Fig. 1. As a result, the adversary includes the
server cannot update the database and public key freely.

4. The definition and constructions of vector commitment are actu-
ally given in the public parameter model (also as know as auxiliary
string model). That is, the public parameters are generated and pub-
lished by a trusted party [29].
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5.2 New Proposed VDB Framework
The new proposed VDB framework is given as follows.

Setup(1¥, DB). Let the database be DB = (i,v;) for
1 <i < gq. Let VC be any secure vector commitment
scheme. Run the key generation algorithm of vector
commitment to obtain the public parameters
PP — VC.KeyGen(1*,¢). Run the committing algo-
rithm to compute the commitment and auxiliary
information (Cp,aux) < VC.Compp(vy,...,v,). Let
(sk,pk) be the secret/public key pair of the client.
Let SiGN be a provably secure digital signature
scheme. Let T be a counter with the initial value 0.
Let M) = VC.Compp (s, .. -,v{") be the commit-
ment on the latest database vector after the original
database DB has been updated 7' times. Trivially,
C") = Cp. Specially, let C_; = Cy. The client com-
putes and sends the signature Hj, = SIGNy(C_1,
cO), 0) to the server. If Hy is valid, then the server
computes Cy = HyC"). Also, the server adds the
information of 3 = (Hy,C_1,C"),0) to aux.

Set PK = (PP, pk, Cr, Cy) as the public key of VDB
scheme, S = (PP, aux, DB) as the database encoding,
and SK = sk as the secret key of the client.
Query(PK, S, z). Assume that the current public key
PK = (PP,Y,Cg,Cr). On input an index z, the server
runs the opening algorithm to compute m, «
VC.Openpp(v,, x,aux) and returns t = (v, 7y, 27),
where 37 = (Hy,Cp_1,C™), T).

Verify(PK, z, 7). Parse t = (v,, 7, 27). If Ver,,(2r) =
1 (this means that Hr is a valid signature of the client
on message (Cy_y,C") T)) and VC.Verpp(Cr, Hr,
Z, vz, 7,) = 1, then return v,. Otherwise, return an
error L.

Update(SK, z,v/,). To update the record of index z,
the client firstly retrieves the current record v, from
the server as in the above Verify algorithm. That is,
the client obtains 7+« Query(PK,S,z) from the
server and checks that Verify(PK, z,t) = v, #1. Set
T« T+1, the client firstly computes C7) =
VC.Compp(v{",...,vl")) and ), = Hy = S16N,4(Cr_1,
O™, T), and then sends (#,v.) to the server. If ¢/ is
valid, then the server computes Cr = HCT) and
updates the public key PK = (PP,pk,Cg,Cr) (note
that only the value of Cr needs to be updated). Also,
the server uses the value of v/, to update the database
record of index z, i.e., DB(z) < v/. Finally, the
server adds the information of 3y = (Hrp,Cr 1,
™), T) toauxin S.

Remark 3. It is trivial that the above framework supports
the property of public verifiability. Similarly, we can also
adopt the idea of using a verifiable random function to
achieve private verifiability. For more details, please
refer to [17].

5.3 A Concrete VDB Scheme

In this section, we follow the proposed new VDB frame-
work to propose a concrete VDB scheme from the vector
commitments based on the CDH assumption [17].

Setup(1*, DB). Let k be a security parameter. Let
the database be DB = (x,v,) for 1 <z < gq. Let G;
and G, be two cyclic multiplicative groups of
prime order p equipped with a bilinear pairing
e:G; X G; — Gy. Let g be a generator of G;. Let
H:Gy x Gy x {0,1}" — G be a cryptographic hash
function. Randomly choose ¢ elements z; € Z,
and compute h; = g%, h;; = g°%, where 1 <4, <¢q
and i#j. Set PP = (p,q,G1,Gz, H,e g, {hi} i<y
{hijti<ijeqiz;), and the message space M =Z,.
The client randomly selects an element y €y Z,
and then computes Y = ¢.

Let Cr =]]L,h/ be the root commitment on
the database vector (vi,vs,...,v,). Let T be a
counter with the initial value 0. Let C™) be the
commitment on the the latest database vector after
the original database DB has been updated T
times. Trivially, C*) = C. Specially, let C_; = Cp.
The client computes and sends H,=H(C_i,
C0)" to the server. If Hy is valid, then the server
computes Cy = HyC"). Also, the server adds the
information of (Hy, C_;, C?),0) to aux.

Set PK = (PP,Y,Cg,Cy), S=(PP,aux,DB) and

SK=y.

Query(PK, S, z). Assume that the current public key

PK = (PP,Y,Cgr,Cr). Given a query index z, the
(T)

server computes () = [Ti<j<qive hi’/ and returns

the proofs

T= (UECT),T[;T), HT, CTfl, C(T>,T).
Verify(PK, z, 7). Parse the proofs = (v\"), (") Hr,
C’T_l,C(T),T). Then, anyone (including the client)
can verify the validity of the proofs t by checking
whether the following two equations e(Hr,g) =

((H(Cry, CT.T),Y)  and  e(Cr/Hrh*  hy) =
e(n1), g) hold.” If the proofs 7 is valid, the verifier
accepts it and outputs v(). Otherwise, outputs an
error L.
Update(SK, z,v/). To update the record of index z,
the client firstly retrieves the current record v, from
the server. That 1is, the client obtains 7+
Query(PK,S,z) from the server and checks that
Verify(PK, z, 1) = v, #L.

Set T« T+1, the client firstly computes

O = S0 ™ and ¢, = Hy = H(Cp_y, O, TY,

and then sends (t,v)) to the server. If ¢/ is valid,
then the server computes Cr = HrC") and updates
the public key with PK = (PP,Y,Cg,Cr). Also, the
server uses the value of v/, to update the database
record of index z, i.e., DB(z)« v/. Finally, the
server adds the information of (¢, = Hyp,Cpr_y,

"), T)toauxin S.

5. If the verifier is client, then he needs only to check whether
Hyp = H(Cp_1,CT),T)” holds in order to decrease the computation
overload.
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TABLE 1

Comparison among Three Schemes
Schemes Benabbas-Gennaro-Vahlis Scheme Catalano-Fiore Scheme Our Proposed Scheme
Computational Model Amortized Model Amortized Model Amortized Model
Computational Assumption Subgroup Member Assumption CDH Assumption CDH Assumption
Secure against FAU Attack Yes No Yes
Public Verifiability No Yes Yes
Accountability No No Yes
Server Computation (Query) (g—1)M +2P (¢g—1)(M+E) (¢g—1H(M+E)
Verifier Computation (Verify) AM +3E +2F + 1P IM +1E + 11 +2P 2M +1E+11+4P
Client Computation (Update) 2M +3E+2F + 1P 1M+ 1FE 2M +2E + 11

6 ANALYSIS OF OUR PROPOSED VDB
6.1 Security Analysis
Theorem 6.1. The proposed VDB scheme is secure.

Proof. Similar to [17], we prove the theorem by contradic-
tion. Assume there exists a polynomial-time adversary A
that has a non-negligible advantage ¢ in the experiment
Exp'P®[DB, k] for some initial database DB, then we can
use A to build an efficient algorithm B to break the Squ-
CDH assumption. That is, B takes as input a tuple g, g*
and outputs g

First, B randomly chooses an element z* €z Z, as a
guess for the index «* on which A succeeds in the experi-
ment Exp'°®[DB, k|. Then, B randomly chooses z; €p Z,

and computes h; = g% all 1 <i# a* <q. Let hy = g*

Besides, B computes:
hij=g#iforalll <i#j<qandi,j#z%;
hige = hy=; = (¢)7 forall 1 <i < gandi # z*.

Set PP = (p7 q, Gl, GQ, H, e, q, {h7}, {hlj})' where 1 §

i # j < ¢q. Then, B randomly selects an element y € Z,

and computes Y = ¢¥. Given a database DB, B computes

the commitment Cgr =[], h/. Also, B computes

Hy ="H(Cg,Cg,0)? and C; = HyCg. Define PK = (PP,

Y,Cr,Cy), S = (PP,aux, DB) and SK = y. B sends PK to

A. Note that PK and S are perfectly distributed as the

real ones. To answer the verify and update queries of A

in the experiment, B just simply runs the real

Query(PK,S,z) and Update(SK,z,v)) algorithms and

responds with the same value. Note that the

Update(SK, z,v/,) algorithm requires the secret key y of

B, and A cannot perform this algorithm without the help

of B. Therefore, the FAU attack is no longer successful in

the experiment Exp’{"°[DB, k.

Suppose that (&, 7) be the tuple returned by A at the
end of the experiment, where T = (9,7, 3,). Besides, note
that if A wins with a non-negligible advantage ¢ in the

experiment, then we have 0 #.1, 0 # vg) and e¢(C", h;) =

27(}) ~
e(hy  ha)e(m?, g) = e(h, hy)e(#, g).

If & # z¥, B aborts the simulation and fails. Otherwise,
we have h; = ¢°. Trivially, B can compute

7 a0y

The success probability of Bis €/q. ]

Theorem 6.2. The proposed VDB scheme is correct.

Proof. If the server is assumed to be honest, then the
proofs = (v, 7 Hy, Cr_q,CT) T), where 1) =
oD )

ngjiq.,j#z h/; . Firstly, note that Hy=H(Cr1,CT,T),
therefore we have e(Hr,g) =e(H(Cr_1,CT) T),Y).
1;(,T) 7,',(T) 1'(T)

Secondly, due to Cr/Hrhy =CD /by = [licjcqivahi &

(T)
we have e(Cr/Hrhy ,h,) = e(x"), g). Hence, the out-
put of the verification algorithm is always the value
(T)
U(l? N D

Theorem 6.3. The proposed VDB scheme is efficient.

Proof. It is trivial that the computational resources invested
by the client in our scheme is independent of ¢ (except
for a one-time Setup phase). O

Theorem 6.4. The proposed VDB scheme is accountable.

Proof. Given the proofs t with the counter T, the client
firstly compares it with the latest counter 7, he stored. If
T < T, then the client sends the corresponding signature
o on T, to the judge as the proof. Otherwise, he sends 7 to
the judge as the proof since the verification of v will fail if
the server has tampered with the database. 0

6.2 Comparison

In this section, we compare the proposed scheme with
Benabbas-Gennaro-Vahlis scheme and Catalano-Fiore
scheme.

Firstly, all of the three schemes require a one-time
expensive computational effort in the Setup phase. Sec-
ondly, our proposed scheme is secure against FAU attack
and can support the public verifiability simultaneously
(this is different from the other two schemes). Besides,
our scheme is efficient since the computational resources
invested by the client is independent on the size of the
database. Trivially, most of the expensive computational
overhead are outsourced to the server (this is same in
all three schemes). Finally, the server invests all of the
storage resources in order to store and update the data-
base. That is, the client does not require to store any
data locally.

Table 1 presents the comparison among the three
schemes. We denote by M a multiplication in G; (or Gy), £
an exponentiation in Gy, I an inverse in G;, P a computation
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Fig. 2. Efficiency comparison.

of the pairing, and F' an operation on a pseudo-random
function. We omit other operations such as addition in G;
for all three schemes.

We argue that the groups G; and G; in Benabbas-Gen-
naro-Vahlis scheme are different from those in our scheme
since their scheme uses bilinear groups of composite order.
Thus, the operations in the groups require different compu-
tational overload though we use the same notions for both
schemes. As a result, our scheme is more efficient than
Benabbas-Gennaro-Vahlis’s scheme since our scheme uses
bilinear groups of prime order.

6.3 Performance Evaluation

In this section, we provide a thorough experimental evalua-
tion of the proposed VDB scheme. Our experiments are sim-
ulated with the pairing-based cryptography (PBC) library
on a LINUX machine with Intel Core i5-3470 processors
running at 3.20 GHz and 4 G memory. Throughout this
experiment, to precisely evaluate the computation complex-
ity at both client and server sides, we simulate both entities
on this LINUX machine.

We provide the time costs simulation for schemes [15],
[17] and our scheme in Fig. 2 when ¢ = 500. The time cost of
query, verify and update algorithm for all three schemes are
shown in Figs. 2a, 2b and 2c, respectively. The simulation
results of Fig. 2a reveal that the growth rate of our scheme is
the same as that of scheme [17], while relatively higher than
that of scheme [15]. Therefore, both the scheme [17] and
ours require more overhead than that of scheme [15]. How-
ever, we argue that the computational overhead of query
algorithm is only performed by the cloud server rather than
the resource-constrained client. Therefore, it is practical in
cloud outsourcing environment. On the other hand, the sim-
ulation results in Figs. 2b and 2c indicate that our scheme
is much more efficient than scheme [15] in both verify and

4000 6000 8000 o 2000 4000 6000
Computing Counts. Computing Counts

2000

(a) Public Verifiability (b) Private Verifiability

Fig. 3. Client efficiency comparison.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Computing Counts

(b) Verify in VDB

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Computing Counts

(c) Update in VDB

update algorithms which are performed by client. Besides,
since the scheme [17] suffers from the FAU attack and the
scheme [15] only provides private verifiability, our scheme
is most suitable for real-world applications.

In Fig. 3, we provide the efficiency comparison for cli-
ent side (i.e., the total computational overhead for verify
and update algorithms) among three schemes. We pres-
ent the comparison for three schemes that support public
and private verifiability in Figs. 3a and 3b, respectively.
Trivially, the public verification requires more overhead
than the private one in our scheme. Also, it is obvious
that our scheme is superior to scheme [15] for client side
overhead.

Fig. 4 shows the efficiency comparison for server side
with the increasing of data size ¢. Trivially, the computa-
tional overhead of server side in our scheme is the same as
that of scheme [17], while much higher than that of scheme
[15]. However, our scheme is still efficient for real-word
applications. For example, given a very large database that
has 100,000 data records and each record could be arbitrary
payload sizes, the time cost of the server in our scheme is
only less than 5 minutes.

7 CONCLUSION

The primitive of verifiable database with efficient updates
is useful to solve the problem of verifiable outsourcing of
storage. However, the existing schemes either does not
support the public verifiability or suffer from the forward
automatic update attack. In this paper, we propose a new
framework for verifiable database with efficient updates
from vector commitment, which is not only public verifi-
able but also secure under the FAU attack. Besides, we
prove that our construction can achieve the desired secu-
rity properties.

—i—Scheme [15]
——Scheme [17]

~©- Our Scheme
250)

= w
2 2

Time Cost (s)

g

456
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Fig. 4. Server efficiency comparison.



CHEN ET AL.: NEW PUBLICLY VERIFIABLE DATABASES WITH EFFICIENT UPDATES

ACKNOWLEDGMENTS

The authors are grateful to the anonymous referees for
their invaluable suggestions. This work was supported
by the National Natural Science Foundation of China
(Nos. 61272455, 61202450 and 61100224), China 111 Project

(No.
Talents in University (No.

B08038), Program for New Century Excellent

NCET-13-0946), and the

Fundamental Research Funds for the Central Universities
(No. BDY151402). Besides, Lou’s work was supported

by

US National Science Foundation under grant

(CNS-1217889).

REFERENCES

[1]

[2]

[3]

[4]
[5]
[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

M. Abadi, J. Feigenbaum, and J. Kilian, “On hiding information
from an oracle,” in Proc. 19th Annu. ACM Symp. Theory Comput.,
1987, pp. 195-203.

M. J. Atallah and K. B. Frikken, “Securely outsourcing linear alge-
bra computations,” in Proc. 5th ACM Symp. Inf., Comput. Commun.
Security, 2010, pp. 48-59.

M. J. Atallah, K. N. Pantazopoulos, J. R. Rice, and E. H. Spafford,
“Secure outsourcing of scientific computations,” Adv. Comput.,
vol. 54, pp. 216-272,2001.

M. J. Atallah and J. Li, “Secure outsourcing of sequence
comparisons,” Int. |. Inf. Security, vol. 4, pp. 277-287, 2005.

M. Blanton, “Improved conditional e-payments,” in Proc. 6th Int.
Conf. Appl. Cryptography Netw. Security, 2008, pp. 188-206.

D. Benjamin and M. J. Atallah, “Private and cheating-free out-
sourcing of algebraic computations,” in Proc. 6th Annu. Conf. Pri-
vacy, Security Trust, 2008, pp. 240-245.

F. Bao, R. Deng, and H. Zhu, “Variations of Diffie-Hellman prob-
lem,” in Proc. Int. Conf. Inf. Commun. Syst., 2003, pp. 301-312.

M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson, “Multi-prover
interactive proofs: How to remove intractability assumptions,” in
Proc. ACM Symp. Theory Comput., 1988, pp. 113-131.

M. Blum, M. Luby, and R. Rubinfeld, “Program result checking
against adaptive programs and in cryptographic settings,” in
Proc. DIMACS Workshop Distrib. Comput. Crypthography, 1991,
pp- 107-118.

M. Blum, M. Luby, and R. Rubinfeld, “Self-testing/correcting
with applications to numerical problems,” J. Comput. Syst. Sci.,
vol. 47, pp. 549-595, 1993.

M. Blanton, M. J. Atallah, K. B. Frikken, and Q. Malluhi, “Secure
and efficient outsourcing of sequence comparisons,” in Proc. 17th
Eur. Symp. Res. Comput. Security, 2012, pp. 505-522.

D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway, “Locally ran-
dom reductions: Improvements and applications,” J. Cryptol.,
vol. 10, no. 1, pp. 17-36, 1997.

V. Boyko, M. Peinado, and R. Venkatesan, “Speeding up discrete
log and factoring based schemes via precomputations,” in Proc.
Int. Conf. Theory Appl. Cryptographic Techn., 1998, pp. 221-232.

K. Bicakci and N. Baykal, “Server assisted signatures revisited,” in
Proc. Cryptographers’ Track RSA Conf., 2004, pp. 1991-1992.

S. Benabbas, R. Gennaro, and Y. Vahlis, “Verifiable delegation of
computation over large datasets,” in Proc. 31st Annu. Conf. Adv.
Cryptol., 2011, pp. 111-131.

B. Chevallier-Mames, J. Coron, N. McCullagh, D. Naccache, and
M. Scott, “Secure delegation of elliptic-curve pairing,” in Proc. 9th
IFIP WG 8.8/11.2 Int. Conf. Smart Card Res. Adv. Appl., 2010,
pp- 24-35.

D. Catalano and D. Fiore, “Vector commitments and their
applications,” in Proc. PKC, 2013, pp. 55-72.

D. Catalano, D. Fiore, and M. Messina, “Zero-knowledge sets with
short proofs,” in Proc. Adv. Cryptol -EUROCRYPT, 2008, pp. 433—450.
J. Camenisch, M. Kohlweiss, and C. Soriente, “An accumulator
based on bilinear maps and efficient revocation for anonymous
credentials,” in Proc. 12th Int. Conf. Practice Theory Public Key Cryp-
tography, 2009, pp. 481-500.

J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and
application to efficient revocation of anony- mous credentials,” in
Proc. 22nd Annu. Int. Cryptol. Conf. Adv. Cryptol., 2002, pp. 61-76.
R. Canetti, B. Riva, and G. Rothblum, “Practical delegation of
computation using multiple servers,” in Proc. 18th ACM Conf.
Comput. Commun. Security, 2011, pp. 445-454.

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]
[46]

[471

[48]

[49]

555

B. Carbunar and M. Tripunitara, “Conditional payments for com-
puting markets,” in Proc. 7th Int. Conf. Cryptol. Netw. Security,
2008, pp. 317-331.

B. Carbunar and M. Tripunitara, “Fair payments for outsourced
computations,” in Proc. 7th Annu. IEEE Commun. Soc. Conf. Sens.,
Mesh Ad Hoc Commun. Netw., 2010, pp. 529-537.

X. Chen, W. Susilo, F. Zhang, H. Tian, and ]. Li, “Identity-based
trapdoor mercurial commitment and applications,” Theor. Comput.
Sci., vol. 412, no. 39, pp. 5498-5512, 2011.

X. Chen, J. Li, and W. Susilo, “Efficient fair conditional payments
for outsourcing computations,” IEEE Trans. Inf. Forensics Security,
vol. 7, no. 6, pp. 1687-1694, Dec. 2012.

X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou, “New algorithms for
secure outsourcing of modular exponentiations,” in Proc. Eur.
Symp. Res. Comput. Security, 2012, pp. 541-556.

X. Chen, J. Li, ]. Weng, ]. Ma, and W. Lou, “Verifiable computation
over large database with incremental updates,” in Proc. 19th Eur.
Symp. Res. Comput. Security, 2014, pp. 148-162.

D. Chaum and T. Pedersen, “Wallet databases with observers,” in
Proc. 12th Annu. Int. Cryptol. Conf. Adv. Cryptol., 1993, pp. 89-105.
M. Fischlin and R. Fischlin, “Efficient non-malleable commitment
schemes,” in Proc. Adv. Cryptol.-Crypto, 2000, pp. 413-431.

S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating com-
putation: Interactive proofs for muggles,” in Proc. ACM Symp. The-
ory Comput., 2008, pp. 113-122.

M. Girault and D. Lefranc, “Server-aided verification: Theory and
practice,” in Proc. 11th Int. Conf. Theory Appl. Cryptol. Inf. Security,
2005, pp. 605-623.

S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge com-
plexity of interactive proof-systems,” SIAM ]. Comput., vol. 18,
no. 1, pp. 186-208, 1989.

P. Golle and I. Mironov, “Uncheatable distributed computations,”
in Proc. Conf. Topics Cryptol.: The Cryptographer’s Track RSA, 2001,
pp- 425-440.

C. Gentry, “Fully homomorphic encryption using ideal lattices,”
in Proc. 41st Annu. ACM Symp. Theory Comput., 2009, pp. 169-178.
C. Gentry and S. Halevi, “Implementing Gentry’s fully-homomor-
phic encryption scheme,” in Proc. 30th Annu. Int. Conf. Theory
Appl. Cryptographic Techn.: Adv. Cryptol., 2011, pp. 129-148.

R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” in
Proc. 30th Annu. Conf. Adv. Cryptol., 2010, pp. 465—482.

M. Green, S. Hohenberger, and B. Waters. (2011). Outsourcing the
decryption of ABE Ciphertexts. Proc. 20th USENIX Conf. Security,
p- 34 [Online]. Available: http://static.usenix.org/events/secl1/
tech/full-papers/Green.pdf

S. Hohenberger and A. Lysyanskaya, “How to securely outsource
cryptographic computations,” in Proc. 2nd Int. Conf. Theory Cryp-
tography, 2005, pp. 264-282.

J. Kilian, “A note on efficient zero-knowledge proofs and
arguments,” in Proc. ACM Symp. Theory Comput., 1992, pp. 723-732.
J. Kilian, “Improved efficient arguments (preliminary version),” in
Proc. 15th Annu. Int. Cryptol. Conf. Adv. Cryptol., 1995, pp. 311-324.
J. Lai, R. H. Deng, H. Pang, and ]. Weng, “Verifiable computation
on outsourced encrypted data,” in Proc. Eur. Symp. Res. Comput.
Security, 2014, pp. 273-291.

B. Libert and M. Yung, “Concise mercurial vector commitments
and independent zero-knowledge sets with short proofs,” in Proc.
7th Int. Conf. Theory Cryptography, 2010, pp. 499-517.

S. Micali, “CS proofs,” in Proc. 35th Annu. Symp. Found. Comput.
Sci., 1994, pp. 436-453.

C. U. Martel, G. Nuckolls, P. T. Devanbu, M. Gertz, A. Kwong,
and S. G. Stubblebine, “A general model for authenticated data
structures,” Algorithmica, vol. 39, no. 1, pp. 21-41, 2004.

S. Micali, M. Rabin, and J. Kilian, “Zero-knowledge sets,” in Proc.
44th IEEE Symp. Found. Comput. Sci., 2003, pp. 80-91.

M. Naor and K. Nissim, “Certificate revocation and certificate
update,” in Proc. 7th Conf. USENIX Security Symp., 1998, vol. 7, p. 17.
P. Q. Nguyen, L. E. Shparlinski, and J. Stern, “Distribution of mod-
ular sums and the security of server aided exponentiation,” in
Proc. Workshop Comp. Number Theory Cryptol., 1999, pp. 1-16.

L. Nguyen, “Accumulators from bilinear pairings and
applications,” in Proc. Int. Conf. Topics Cryptol., 2005, pp. 275-292.
B. Parno, M. Raykova, and V. Vaikuntanathan, “How to delegate
and verify in public: verifiable computation from attribute-based
encryption,” in Proc. 9th Int. Conf. Theory Cryptography, 2012,
pp- 422-439.



556 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.12, NO.5, SEPTEMBER/OCTOBER 2015

[50] C.Papamanthou and R. Tamassia, “Time and space efficient algo-
rithms for two-party authenticated data structures,” in Proc. 9th
Int. Conf. Inf. Commun. Security, 2007, pp. 1-15.

C. P. Schnorr, “Efficient signature generation for smart cards,”
J. Cryptol., vol. 4, no. 3, pp. 239-252, 1991.

R. Tamassia and N. Triandopoulos. (2010). Certification and
authentication of data structures. Proc. Alberto Mendelzon Workshop
Found. Data Manage. [Online]. Available: http:/ /www.cs.bu.edu/
nikos/papers/cads.pdf

V. Vu, S. Setty, A. J. Blumberg, and M. Walfish, “A hybrid archi-
tecture for interactive verifiable computation,” in Proc. IEEE
Symp. Security Privacy, 2013, pp. 223-237.

C. Wang, K. Ren, and J. Wang, “Secure and practical outsourcing
of linear programming in cloud computing,” in Proc. 30th IEEE
Int. Conf. Comput. Commun., 2011, pp. 820-828.

C. Wang, K. Ren, J. Wang, and Q. Wang, “Harnessing the cloud
for securely outsourcing large-scale systems of linear equations,”
IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1172-1181, Jun.
2013. (A preliminary version of this paper is presented at ICDCS,
pp.- 820-828, 2011.)

L. Zhang and R. Safavi-Naini, “Verifiable delegation of computa-
tions with storage-verification trade-off,” in Proc. 19th Eur. Symp.
Res. Comput. Security, 2014, pp. 112-129.

[51]

[52]

[53]

[54]

[55]

[56]

Xiaofeng Chen received the BS and MS degrees
in mathematics from Northwest University, China.
He received the PhD degree in cryptography from
Xidian University in 2003. He is currently a pro-
fessor at Xidian University. His research interests
include applied cryptography and cloud comput-
ing security. He has published more than 100
research papers in refereed international confer-
ences and journals. His work has been cited
more than 1,600 times at Google Scholar. He
has served as the program/general chair or a pro-
gram committee member in more than 30 international conferences.

Jin Li received the BS degree in mathematics
from Southwest University in 2002. He received
the PhD degree in information security from
Sun Yat-sen University in 2007. He is currently
a professor at Guangzhou University. He has
been selected as one of science and technol-
ogy new star in Guangdong province. His
research interests include applied cryptography
and security in cloud computing. He has pub-
lished more than 50 research papers in refer-
eed international conferences and journals and
has served as the program chair or a program committee member in
many international conferences.

Xinyi Huang received the PhD degree from the
School of Computer Science and Software Engi-
neering, University of Wollongong, Australia, in
2009. He is currently a professor at the Fujian
Provincial Key Laboratory of Network Security
and Cryptology, School of Mathematics and
Computer Science, Fujian Normal University,
China. His research interests include cryptogra-
phy and information security. He has published
more than 60 research papers in refereed inter-
national conferences and journals. His work has
been cited more than 1,000 times at Google Scholar. He is in the edito-
rial board of International Journal of Information Security (1J1S, Springer)
and has served as the program/general chair or a program committee
member in more than 40 international conferences.

Jianfeng Ma received the BS degree in mathe-
matics from Shaanxi Normal University, China, in
1985, and the ME and PhD degrees in computer
software and communications engineering from
Xidian University, China, in 1988 and 1995,
respectively. From 1999 to 2001, he was with
Nanyang Technological University of Singapore
as a research fellow. He is currently a professor
in the School of Computer Science at Xidian Uni-
versity, China. His current research interests
include distributed systems, computer networks,
and information and network security.

Wenjing Lou received the BS and MS degrees
in computer science and engineering from Xi’an
Jiaotong University in China, the MASc degree
in computer communications from the Nanyang
Technological University in Singapore, and the
PhD degree in electrical and computer engi-
neering from the University of Florida. She is
currently a professor in the Computer Science
Department at Virginia Polytechnic Institute
and State University.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


