
Secure Deduplication with Efficient and Reliable
Convergent Key Management

Jin Li, Xiaofeng Chen, Mingqiang Li, Jingwei Li, Patrick P.C. Lee, and Wenjing Lou

Abstract—Data deduplication is a technique for eliminating duplicate copies of data, and has been widely used in cloud storage
to reduce storage space and upload bandwidth. Promising as it is, an arising challenge is to perform secure deduplication in cloud
storage. Although convergent encryption has been extensively adopted for secure deduplication, a critical issue of making
convergent encryption practical is to efficiently and reliably manage a huge number of convergent keys. This paper makes the
first attempt to formally address the problem of achieving efficient and reliable key management in secure deduplication. We first
introduce a baseline approach in which each user holds an independent master key for encrypting the convergent keys and
outsourcing them to the cloud. However, such a baseline key management scheme generates an enormous number of keys with the
increasing number of users and requires users to dedicatedly protect the master keys. To this end, we propose Dekey, a new
construction in which users do not need to manage any keys on their own but instead securely distribute the convergent key
shares across multiple servers. Security analysis demonstrates that Dekey is secure in terms of the definitions specified in the
proposed security model. As a proof of concept, we implement Dekey using the Ramp secret sharing scheme and demonstrate
that Dekey incurs limited overhead in realistic environments.

Index Terms—Deduplication, proof of ownership, convergent encryption, key management

Ç

1 INTRODUCTION

THE advent of cloud storage motivates enterprises and
organizations to outsource data storage to third-party

cloud providers, as evidenced by many real-life case
studies [3]. One critical challenge of today’s cloud storage
services is the management of the ever-increasing volume
of data. According to the analysis report of IDC, the volume
of data in the wild is expected to reach 40 trillion gigabytes
in 2020 [9]. To make data management scalable, deduplica-
tion has been a well-known technique to reduce storage
space and upload bandwidth in cloud storage. Instead
of keeping multiple data copies with the same content,
deduplication eliminates redundant data by keeping only
one physical copy and referring other redundant data to
that copy. Each such copy can be defined based on different
granularities: it may refer to either a whole file (i.e., file-
level deduplication), or a more fine-grained fixed-size or

variable-size data block (i.e., block-level deduplication).
Today’s commercial cloud storage services, such as Drop-
box, Mozy, and Memopal, have been applying deduplica-
tion to user data to save maintenance cost [12].

From a user’s perspective, data outsourcing raises
security and privacy concerns. We must trust third-party
cloud providers to properly enforce confidentiality, integ-
rity checking, and access control mechanisms against any
insider and outsider attacks. However, deduplication,
while improving storage and bandwidth efficiency, is
incompatible with traditional encryption. Specifically,
traditional encryption requires different users to encrypt
their data with their own keys. Thus, identical data copies
of different users will lead to different ciphertexts, making
deduplication impossible.

Convergent encryption [8] provides a viable option to
enforce data confidentiality while realizing deduplication.
It encrypts/decrypts a data copy with a convergent key,
which is derived by computing the cryptographic hash
value of the content of the data copy itself [8]. After key
generation and data encryption, users retain the keys
and send the ciphertext to the cloud. Since encryption is
deterministic, identical data copies will generate the same
convergent key and the same ciphertext. This allows the
cloud to perform deduplication on the ciphertexts. The
ciphertexts can only be decrypted by the corresponding
data owners with their convergent keys.

To understand how convergent encryption can be
realized, we consider a baseline approach that implements
convergent encryption based on a layered approach. That
is, the original data copy is first encrypted with a
convergent key derived by the data copy itself, and the
convergent key is then encrypted by a master key that
will be kept locally and securely by each user. The
encrypted convergent keys are then stored, along with

. J. Li is with the School of Computer Science, Guangzhou University,
China, and also with the Department of Computer Science, Virginia
Polytechnic Institute and State University, USA. E-mail: lijin@gzhu.
edu.cn.

. X. Chen is with the State Key Laboratory of Integrated Service Networks
(ISN), Xidian University, Xi’an, China, and also with the Department of
Computer Science, Virginia Polytechnic Institute and State University,
USA. E-mail: xfchen@xidian.edu.cn.

. M. Li and P.P.C. Lee are with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong. E-mail: {mqli,
pclee}@cse.cuhk.edu.hk.

. J. Li is with the College of Information Technical Science, Nankai
University, China. E-mail: lijw@mail.nankai.edu.cn.

. W. Lou is with the Department of Computer Science, Virginia Polytechnic
Institute and State University, USA. E-mail: wjlou@vt.edu.

Manuscript received 7 July 2013; revised 21 Oct. 2013; accepted 30 Oct. 2013.
Date of publication 7 Nov. 2013; date of current version 16 May 2014.
Recommended for acceptance by D. Xuan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.284

1045-9219 � 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 6, JUNE 2014 1615

the corresponding encrypted data copies, in cloud storage.
The master key can be used to recover the encrypted keys
and hence the encrypted files. In this way, each user only
needs to keep the master key and the metadata about the
outsourced data.

However, the baseline approach suffers two critical
deployment issues. First, it is inefficient, as it will generate
an enormous number of keys with the increasing number
of users. Specifically, each user must associate an en-
crypted convergent key with each block of its outsourced
encrypted data copies, so as to later restore the data copies.
Although different users may share the same data copies,
they must have their own set of convergent keys so that no
other users can access their files. As a result, the number of
convergent keys being introduced linearly scales with the
number of blocks being stored and the number of users.
This key management overhead becomes more prominent
if we exploit fine-grained block-level deduplication. For
example, suppose that a user stores 1 TB of data with all
unique blocks of size 4 KB each, and that each convergent
key is the hash value of SHA-256, which is used by
Dropbox for deduplication [17]. Then the total size of keys
will be 8 GB. The number of keys is further multiplied by
the number of users. The resulting intensive key manage-
ment overhead leads to the huge storage cost, as users must
be billed for storing the large number of keys in the cloud
under the pay-as-you-go model.

Second, the baseline approach is unreliable, as it
requires each user to dedicatedly protect his own master
key. If the master key is accidentally lost, then the user data
cannot be recovered; if it is compromised by attackers, then
the user data will be leaked.

This motivates us to explore how to efficiently and
reliably manage enormous convergent keys, while still
achieving secure deduplication. To this end, we propose a
new construction called Dekey, which provides efficiency
and reliability guarantees for convergent key management
on both user and cloud storage sides. Our idea is to apply
deduplication to the convergent keys and leverage secret
sharing techniques. Specifically, we construct secret shares
for the convergent keys and distribute them across
multiple independent key servers. Only the first user
who uploads the data is required to compute and
distribute such secret shares, while all following users
who own the same data copy need not compute and store
these shares again. To recover data copies, a user must
access a minimum number of key servers through
authentication and obtain the secret shares to reconstruct
the convergent keys. In other words, the secret shares of a
convergent key will only be accessible by the authorized
users who own the corresponding data copy. This
significantly reduces the storage overhead of the conver-
gent keys and makes the key management reliable against
failures and attacks. To our knowledge, none of existing
studies formally address the problem of convergent key
management.

This paper makes the following contributions.

. A new construction Dekey is proposed to provide
efficient and reliable convergent key management
through convergent key deduplication and secret

sharing. Dekey supports both file-level and block-
level deduplications.

. Security analysis demonstrates that Dekey is secure
in terms of the definitions specified in the proposed
security model. In particular, Dekey remains secure
even the adversary controls a limited number of
key servers.

. We implement Dekey using the Ramp secret sharing
scheme that enables the key management to adapt to
different reliability and confidentiality levels. Our
evaluation demonstrates that Dekey incurs limited
overhead in normal upload/download operations
in realistic cloud environments.

This paper is organized as follows. In Section 2, we
describe some preliminaries. In Section 3, we present the
system model and security requirements of deduplication.
Our construction and its security and efficiency analysis
are presented in Section 4. The implementation and
evaluation have been given in Sections 5 and 6, respective-
ly. Finally, we draw conclusions in Section 7.

2 PRELIMINARIES

In this section, we formally define the cryptographic
primitives used in our secure deduplication.

2.1 Symmetric Encryption
Symmetric encryption uses a common secret key � to
encrypt and decrypt information. A symmetric encryption
scheme consists of three primitive functions:

. KeyGenSEð1�Þ ! � is the key generation algorithm
that generates � using security parameter 1�;

. EncryptSEð�;MÞ ! C is the symmetric encryption
algorithm that takes the secret � and message M and
then outputs the ciphertext C;

. DecryptSEð�; CÞ !M is the symmetric decryption
algorithm that takes the secret � and ciphertext C
and then outputs the original message M.

2.2 Convergent Encryption
Convergent encryption [5], [8] provides data confidential-
ity in deduplication. A user (or data owner) derives a
convergent key from each original data copy and encrypts
the data copy with the convergent key. In addition, the user
derives a tag for the data copy, such that the tag will be
used to detect duplicates. Here, we assume that the tag
correctness property [5] holds, i.e., if two data copies are
the same, then their tags are the same. To detect duplicates,
the user first sends the tag to the server side to check if the
identical copy has been already stored. Note that both the
convergent key and the tag are independently derived, and
the tag cannot be used to deduce the convergent key and
compromise data confidentiality. Both the encrypted data
copy and its corresponding tag will be stored on the server
side. Formally, a convergent encryption scheme can be
defined with four primitive functions:

. KeyGenCEðMÞ ! K is the key generation algorithm
that maps a data copy M to a convergent key K;

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 6, JUNE 20141616

. EncryptCEðK;MÞ ! C is the symmetric encryption
algorithm that takes both the convergent key K and
the data copy M as inputs and then outputs a
ciphertext C;

. DecryptCEðK;CÞ !M is the decryption algorithm
that takes both the ciphertext C and the convergent
key K as inputs and then outputs the original data
copy M; and

. TagGenCEðMÞ ! T ðMÞ is the tag generation algo-
rithm that maps the original data copyM and outputs
a tag T ðMÞ. We allow TagGenCE to generate a tag
from the corresponding ciphertext as in [5], by using
T ðMÞ¼TagGenCEðCÞ, where C¼EncryptCEðK;MÞ.

2.3 Proof of Ownership
The notion of proof of ownership (PoW) is to solve the
problem of using a small hash value as a proxy for
the entire file in client-side deduplication [11], where the
adversary could use the storage service as a content
distribution network. This proof mechanism in PoW
provides a solution to protect the security in client-side
deduplication. In this way, a client can prove to the server
that it indeed has the file. Dekey supports client-side
deduplication with PoW to enable users to prove their
ownership of data copies to the storage server. Specifically,
PoW is implemented as an interactive algorithm (denoted
by PoW) run by a prover (i.e., user) and a verifier (i.e.,
storage server). The verifier derives a short value �ðMÞ
from a data copy M. To prove the ownership of the data
copy M, the prover needs to send �0 and run a proof
algorithm with the verifier. It is passed if and only if
�0 ¼ �ðMÞ and the proof is correct. In our paper, we use the
notations of PoWF and PoWB to denote PoW for a file F and
block B, respectively. Specifically, the notation of PoWF;j

will be used to denote a PoW protocol with respect to
TjðF Þ ¼ TagGenCEðF; jÞ. These notations will be further
explained in Section 4.

2.4 Ramp Secret Sharing
Dekey uses the Ramp secret sharing scheme (RSSS) [6], [25]
to store convergent keys. Specifically, the ðn; k; rÞ-RSSS
(where n9 k9 r � 0) generates n shares from a secret such
that 1) the secret can be recovered from any k shares but
cannot be recovered from fewer than k shares, and 2) no
information about the secret can be deduced from any r
shares. It is known that when r ¼ 0, the ðn; k; 0Þ-RSSS
becomes the ðn; kÞ Rabin’s Information Dispersal Algo-
rithm (IDA) [23]; when r ¼ k� 1, the ðn; k; k� 1Þ-RSSS
becomes the ðn; kÞ Shamir’s Secret Sharing Scheme (SSSS)
[26]. The ðn; k; rÞ-RSSS builds on two primitive functions:

. Share divides a secret S into ðk� rÞ pieces of equal
size, generates r random pieces of the same size, and
encodes the k pieces using a non-systematic k-of-n
erasure code1 into n shares of the same size;

. Recover takes any k out of n shares as inputs and
then outputs the original secret S.

To make the generated shares appropriate for deduplica-
tion, we replace the above random pieces with pseudoran-
dom pieces in the implementation of Dekey. The details of
how to generate such pseudorandom pieces are elaborated
in Section 5.

Dekey uses RSSS to provide a tunable key management
mechanism to balance among confidentiality, reliability,
storage overhead, and performance. We study the effects of
different parameters in Section 6.

3 PROBLEM FORMULATION

3.1 System Model
We first formulate a data outsourcing model used by
Dekey. There are three entities, namely: the user, the
storage cloud service provider (S-CSP), and the key-
management cloud service provider (KM-CSP), as elabo-
rated below.

. User. A user is an entity that wants to outsource data
storage to the S-CSP and access the data later. To
save the upload bandwidth, the user only uploads
unique data but does not upload any duplicate data,
which may be owned by the same user or different
users.

. S-CSP. The S-CSP provides the data outsourcing
service and stores data on behalf of the users. To
reduce the storage cost, the S-CSP eliminates the
storage of redundant data via deduplication and
keeps only unique data.

. KM-CSP. A KM-CSP maintains convergent keys for
users, and provides users with minimal storage and
computation services to facilitate key management.
For fault tolerance of key management, we consider
a quorum of KM-CSPs, each being an independent
entity. Each convergent key is distributed across
multiple KM-CSPs using RSSS (see Section 2).

In this work, we refer a data copy to be either a whole file
or a smaller-size block, and this leads to two types of
deduplication: 1) file-level deduplication, which eliminates
the storage of any redundant files, and 2) block-level
deduplication, which divides a file into smaller fixed-size
or variable-size blocks and eliminates the storage of any
redundant blocks. Using fixed-size blocks simplifies the
computations of block boundaries, while using variable-
size blocks (e.g., based on Rabin fingerprinting [22])
provides better deduplication efficiency. We deploy our
deduplication mechanism in both file and block levels.
Specifically, to upload a file, a user first performs the file-
level duplicate check. If the file is a duplicate, then all its
blocks must be duplicates as well; otherwise, the user
further performs the block-level duplicate check and
identifies the unique blocks to be uploaded. Each data
copy (i.e., a file or a block) is associated with a tag for the
duplicate check (see Section 2). All data copies and tags
will be stored in the S-CSP.

1. As discussed in [14], not all non-systematic k-of-n erasure codes
can be used here. To provide the confidentiality that an ðn; k; rÞ-RSSS
promises, we choose the erasure code whose generator matrix is a
Cauchy matrix.

LI ET AL.: SECURE DEDUPLICATION WITH EFFICIENT AND RELIABLE CONVERGENT KEY MANAGEMENT 1617

3.2 Threat Model and Security Goals
Our threat model considers two types of attackers: 1) An
outside attacker may obtain some knowledge (e.g., a hash
value) of the data copy of interest via public channels. It
plays a role of a user that interacts with the S-CSP. This
kind of attacker includes the adversary who uses the S-CSP
as an content distribution network; 2) An inside attacker is
honest-but-curious, and it could refer to the S-CSP or any of
the KM-CSPs. Its goal is to extract useful information
of user data or convergent keys. We require the inside
attacker to follow the protocol correctly.

Here, we allow the collusion between the S-CSP and
KM-CSPs. However, we require that the number of
colluded KM-CSPs is not more than a predefined thresh-
old r if the ðn; k; rÞ-RSSS is used (see Section 2), such that
a convergent key cannot be guessed for an unpredict-
able message by a brute-force attack from the colluded
KM-CSPs.

We aim to achieve the following security goals:

. Semantic security of convergent keys. We require that
the convergent keys distributed stored among the
KM-CSPs remain semantically secure, even if the
adversary controls a predefined number of KM-
CSPs. Furthermore, these KM-CSPs are also allowed
to collude with S-CSP and users. The goal of the
adversary is to retrieve and recover the convergent
keys for files that do not belong to them.

. Data confidentiality. We require that the encrypted
data copies be semantically secure when they are
unpredictable (i.e., have high min-entropy). Actu-
ally, this requirement has recently been formalized
in [5] and called the privacy against chosen
distribution attack. This also implies that the data
is secure against the adversary who does not own
the data. That is, the user cannot get the ownership
of the data from the S-CSP and KM-CSPs by
running the PoW protocol if the user does not
have the file.

4 CONSTRUCTIONS

In this section, we present a baseline approach that realizes
convergent encryption in deduplication, and discuss the
limitations of the baseline approach in key management.
To this end, we present our construction Dekey, which aims
to mitigate the key management overhead and provide
fault tolerance guarantees for key management, while
preserving the required security properties of secure
deduplication.

4.1 Baseline Approach
The baseline approach involves only the user and the
S-CSP (i.e., no KM-CSPs are required). Its idea is that each
user has all his data copies encrypted by the corres-
ponding convergent keys, which are then further en-
crypted by an independent master key. The encrypted
convergent keys are outsourced to the S-CSP, while the
master key is securely maintained by the user. The details
of the baseline approach are elaborated as follows.

4.1.1 System Setup
The system setup phase initializes the necessary para-
meters in the following two steps:

S1: The following entities are initialized: 1) a symmetric
encryption scheme with the primitive functions ðKeyGenSE;
EncryptSE;DecryptSEÞ and the user’s master key � ¼
KeyGenSEð1�Þ for some security parameter 1�; 2) a
convergent encryption scheme with the primitive functions
ðKeyGenCE;EncryptCE;DecryptCE;TagGenCEÞ; and 3) a PoW
algorithm PoWF for the file and a PoW algorithm for the
block, which is denoted by PoWB.

S2: The S-CSP initializes two types of storage systems: a
rapid storage system for storing the tags for efficient
duplicate checks, and a file storage system for storing both
encrypted data copies and encrypted convergent keys.
Both storage systems are initialized to be ?.

4.1.2 File Upload
Suppose that a user uploads a file F . First, it performs file-
level deduplication as follows.

S1: On input file F , the user computes and sends the file
tag T ðF Þ ¼ TagGenCEðF Þ to the S-CSP.

S2: Upon receiving T ðF Þ, the S-CSP checks whether there
exists the same tag on the S-CSP. If so, the S-CSP replies the
user with a response ‘‘file duplicate,’’ or ‘‘no file duplicate’’
otherwise.

S3: If the user receives the response ‘‘no file duplicate’’,
then it jumps to S5 to proceed with block-level deduplica-
tion. If the response is ‘‘file duplicate,’’ then the user runs
PoWF on F with the S-CSP to prove that it actually owns
the same file F that is stored on the S-CSP.

S4: If PoWF is passed, the S-CSP simply returns a file
pointer of F to the user, and no further information will
be uploaded. If PoWF fails, the S-CSP aborts the upload
operation.

The user then performs block-level deduplication to
further eliminate any redundant blocks, as described
below.

S5: On input file F and the master key �, the user
performs the following computations: 1) Divide F into
a set of blocks fBig (where i ¼ 1; 2; . . .); 2) for each block
Bi, compute block tag T ðBiÞ ¼ TagGenCEðBiÞ; and 3) Send
the set of block tags fT ðBiÞg to the S-CSP for duplicate
checks.

S6: Upon receiving block tags fT ðBiÞg, the S-CSP com-
putes a block signal vector �B in the following manner: for
each i, if there exists some stored block tag that matches
T ðBiÞ, the S-CSP sets �B½i� ¼ 1 to indicate ‘‘block dupli-
cate’’; otherwise it sets �B½i� ¼ 0 to indicate ‘‘no block
duplicate’’ and also stores T ðBiÞ in its rapid storage. Then,
the S-CSP returns �B to the user.

S7: Upon receiving the signal �B, the user performs the
following operations: for each i, if �B½i� ¼ 1, the user runs
PoWB on Bi with the S-CSP to prove that it owns the block
Bi. If it is passed, the S-CSP simply returns a block poiner of
Bi to the user. Then, the user keeps the block pointer of Bi

and does not need to upload Bi; otherwise it computes the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 6, JUNE 20141618

encrypted block Ci ¼ EncryptCEðKi;BiÞ with the conver-
gent key Ki ¼ KeyGenCEðBiÞ.

S8:For allblocksfBig, theuser alsocomputes the encrypted
convergent keys fCKig, where CKi ¼ EncryptSEð�;KiÞ with
the master key � and convergent keyKi.

S9: The user uploads the unique blocksBi’s with�B½i� ¼ 0,
all encrypted convergent keys fCKig and T ðF Þ to the
S-CSP, which then stores them in the file storage system.

4.1.3 File Download
Suppose a user wants to download a file F . It first sends
a request and the file name to the S-CSP and performs the
following steps.

S1: Upon receiving the request and file name, the S-CSP
will check whether the user is eligible to download F . If
failed, the S-CSP sends back an abort signal to the user to
indicate the download failure. Otherwise, the S-CSP
returns the corresponding ciphertexts fCig and the en-
crypted convergent keys fCKig to the user.

S2: Upon receiving the encrypted data from the S-CSP,
the user first uses his master key to recover each convergent
key Ki ¼ DecryptSEð�; CKiÞ. Then it uses Ki to recover the
original block Bi ¼ DecryptCEðKi; CiÞ. Finally, the user can
obtain the original file F ¼ fBig.

4.1.4 Limitations
The baseline approach suffers two major problems. The
first problem is the enormous storage overhead in key
management. In particular, each user must associate a
convergent key with each data copy that he owns and
encrypts all convergent keys with his own master key. The
encrypted convergent keys (i.e., CKi’s) are different across
users due to the different master keys. Thus, the number
of convergent keys increases linearly with the number of
unique data copies being stored and the number of users,
thereby imposing heavy storage overhead. Another prob-
lem is that the master key presents the single-point-of-
failure and needs to be securely and reliably maintained by
the user.

4.2 Dekey
Dekey is designed to efficiently and reliably maintain
convergent keys. Its idea is to enable deduplication in
convergent keys and distribute the convergent keys across
multiple KM-CSPs. Instead of encrypting the convergent
keys on a per-user basis, Dekey constructs secret shares on
the original convergent keys (that are in plain) and
distributes the shares across multiple KM-CSPs. If multiple
users share the same block, they can access the same
corresponding convergent key. This significantly reduces
the storage overhead for convergent keys. In addition, this
approach provides fault tolerance and allows the conver-
gent keys to remain accessible even if any subset of KM-
CSPs fails. We now elaborate the details of Dekey as follows.

4.2.1 System Setup
The system setup phase in Dekey is similar to that in the
baseline approach, but involves an additional step for

initializing the key storage in KM-CSPs. In Dekey, we
assume that the number of KM-CSPs is n.

S1: On input security parameter 1�, the user initializes a
convergent encryption scheme, and two PoW protocols
POWF and POWB for the file ownership proof and block
ownership proof, respectively.

S2: The S-CSP initializes both the rapid storage system
and the file storage system and set them to be ?.

S3: Each KM-CSP initializes a rapid storage system for
block tags and a lightweight storage system for holding
convergent key shares, and sets them to be ?.

4.2.2 File Upload
To upload file F , the user and the S-CSP perform both file-
level and block-level deduplications. The file-level dedu-
plication operation is identical to that in the baseline
approach. More precisely, the user sends the file tag T ðF Þ
to the S-CSP for the file duplicate check. If a file duplicate is
found, the user will run the PoW protocol POWF with the
S-CSP to prove the file ownership. It skips the block-level
duplicate check and jumps to the key distribution stage. If
no duplicate exists, then block-level deduplication will be
performed as the same as S5-S7 of the baseline scheme.
Finally, the S-CSP stores the ciphertext Ci with �B½i� ¼ 0
and returns the corresponding pointers back to user for
local storage.

After both file-level and block-level duplicate checks, an
additional stage called key distribution is performed. As
opposed to the baseline approach, this stage enables Dekey
to not rely on keeping a master secret key for each user,
but instead share each convergent key among multiple
KM-CSPs. If a file duplicate is found on S-CSP, the user
will run the PoW protocol POWF;j for the tag TjðF Þ ¼
TagGenCEðF; jÞ with the j-th KM-CSP to prove the file
ownership. All the pointers for the key shares of F stored
on the j-the KM-CSP will be returned to the user if the
proof is passed. If no file duplicate is found, the following
steps will be taken.

S1: On input file F ¼ fBig, for each block Bi, the user
computes and sends the block tag T ðBiÞ ¼ TagGenCEðBiÞ
to each KM-CSP. Furthermore, a file tag TjðF Þ ¼
TagGenCEðF; jÞ will be computed and sent to the j-th
KM-CSP, 1 � j � n.

S2: For each received T ðBiÞ, the j-th KM-CSP checks
whether another same tag has been stored: if so, a PoW
for block POWB;j will be performed between the user and
j-th KM-CSP with respect to TjðBiÞ ¼ TagGenCEðBi; jÞ. If it
is passed, the j-th KM-CSP will return a pointer for the
secret share stored for the convergent key Ki to the user;
otherwise it keeps T ðBiÞ and sends back a signal to ask for
the secret share on the convergent key.

S3: Upon receiving results for a block Bi returned from
KM-CSPs, if it is a valid pointer, the user stores it locally;
otherwise the user computes the secret shares Ki1; Ki2;
. . . ; Kik by running ShareðKiÞ using the ðn; k; rÞ-RSSS.
It then sends the share Kij and TjðBiÞ ¼ TagGenCEðBi; jÞ
to the j-th KM-CSP for j ¼ 1; 2; . . . ; n via a secure
channel.

LI ET AL.: SECURE DEDUPLICATION WITH EFFICIENT AND RELIABLE CONVERGENT KEY MANAGEMENT 1619

S4: Upon receiving Kij and TjðBiÞ, the j-th KM-CSP
stores them and sends back the pointer for Kij to the user
for future access.

4.2.3 File Download
To download file F , the user first downloads the encrypted
blocks fCig from the S-CSP as described in the baseline
scheme. It needs to decrypt these encrypted blocks by
recovering the convergent keys. Specifically, the user sends
all the pointers for F to k out of n KM-CSPs and fetches the
corresponding shares Kij for each block Bi. After gathering
all the shares, the user continues to reconstruct the
convergent key Ki ¼ RecoverðfKijgÞ for Bi. Finally, the
encrypted blocks fCig can be decrypted with fKig to obtain
the original file F .

Remarks. Note that the reason of introducing an index j in
Step S2 in the file upload phase is to prevent one server
from getting the key shares of the other KM-CSPs for the
same block. For example, we can implement
TjðBiÞ ¼ HjðBiÞ with a cryptographic hash function
and use it as a proof of POWB;j. In this way, a server with
TjðBiÞ could not compute and send a valid proof Tj0 ðBiÞ
to the j0-th KM-CSP. To further save the communication
cost, the user could perform the duplicate check with
only one of KM-CSPs at first. Then he processes the
proof with the other servers depends on the result
returned from this KM-CSP, which could save his
communication cost.

4.3 Security Analysis
Dekey is designed to solve the key management problem in
secure deduplication where the files have been encrypted
by utilizing convergent encryption. Some basic tools have
been used to construct the secure deduplication and key
management protocols. Thus, we assume that the under-
lying building blocks are secure, which include the con-
vergent encryption scheme, symmetric encryption scheme,
and the PoW scheme. Based on this assumption, we show
that Dekey is secure with respect to the security of keys and
data, as detailed below.

4.3.1 Confidentiality of Outsourced Data at S-CSP
The files have been encoded by the convergent encryption
scheme before being outsourced to the S-CSP. Thus, the
confidentiality of data can be achieved if the adversary
cannot get the secret keys in convergent encryption or
break the security of convergent encryption. Several
security notions, for example, privacy against chosen
distribution attack, have been defined for the confidenti-
ality. Thus, our construction can also achieve the security
for data based on a secure convergent encryption scheme
if the encryption key is securely kept by the user.

4.3.2 Security of Convergent Encryption Key
In our construction, the convergent encryption keys are
securely stored at the KM-CSPs in a distributed manner.
Thus, the semantic security of convergent keys could be
guaranteed even if any r KM-CSPs collude. This could be
easily achieved because RSSS is a semantically secure

secret sharing scheme even if any r of n shares have been
leaked. Recall that it requires the user to perform a PoW
protocol for the corresponding shares stored at different
KM-CSPs. We require that the values used in PoW with
different KM-CSPs are independent and the adversary
cannot compute the other short value even if he has the
knowledge of r values TjðBiÞ. Actually, in our implemen-
tation, TjðBiÞ is implemented with a cryptographic hash
function Hjð�Þ and the above assumption will be held
obviously. In this way, if the adversary wants to get the j-th
key share that it does not have, then he has to convince
the j-th KM-CSP by running a PoW protocol. However,
the values used to perform PoW with different KM-CSPs
are different and the adversary cannot derive the other
key shares even if he could get r shares from dishonest
KM-CSPs controlled by him.

5 IMPLEMENTATION

In this section, we discuss the implementation details of
Dekey. Dekey builds on the Ramp secret sharing scheme
(RSSS) [6], [25] to distribute the shares of convergent keys
across multiple key servers (see Section 2).

5.1 RSSS with Pseudorandomness
In Dekey, the RSSS secret is the hash key H0 of a data block
B, where H0 ¼ hashðBÞ. Recall from Section 2 that the
Share function of the ðn; k; rÞ-RSSS embeds r random
pieces to achieve a confidentiality level of r. One challenge
is that randomization conflicts with deduplication, since
the random pieces cannot be deduplicated with each other.
Instead of directly adopting RSSS, we here replace these
random pieces with pseudorandom pieces in our Dekey
implementation.

We generate the r pseudorandom pieces as follows. Let
m ¼ d r

ðk�rÞe. We first generate m additional hash values as
H1 ¼ hashðB þ 1Þ; H2¼ hashðB þ 2Þ; . . . ; Hm¼hashðBþ mÞ.
We then fill in the r pieces with the generated m additional
hash values H1; H2; . . . ; Hm. These r pieces are pseudoran-
dom because

1. H1; H2; . . . ; Hm cannot be guessed by attackers as
long as the corresponding data block B is unknown;
and

2. H1; H2; . . . ; Hm together with H0 cannot be deduced
from each other as long as the corresponding data
block B is unknown.

The parameters n, k, and r determine the following four
factors, whose effects are evaluated in Section 6:

. Confidentiality level: It is decided by the parameter r.

. Reliability level: It depends on the parameters n and
k, and can be defined by n� k.

. Storage blowup: It determines the key management
overhead and depends on the parameters n, k, and r.
It can be theoretically calculated by n

k�r.
. Performance: It refers to the encoding performance

and decoding performance when using the k-of-n
erasure code in the Share and Recover functions,
respectively.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 6, JUNE 20141620

5.2 Implementation Details
Fig. 1 presents the flow block diagrams of core modules in
the baseline approach and Dekey that we implement. In
this figure, we omit the ordinary file transfer and
deduplication modules for simplification. To make full
use of the multi-core feature of contemporary processors,
we assume that these modules running in parallel on
different cores in a pipeline style. In the baseline approach,
we simply encrypt each hash key H0 with the user’s master
key, while in Dekey, we generate n shares of H0.

We choose 4 KB as the default data block size. A larger
data block size (e.g., 8 KB instead of 4 KB) results in better
encoding/decoding performance due to fewer chunks
being managed, but has less storage reduction offered by
deduplication [7], [15], [16], [29]. For each data block, a
hash key of size 32 bytes is generated using the hash
function SHA-256, which belongs to the family of SHA-2
that is now recommended by the US National Institute of
Standards and Technology (NIST) [2]. In addition, we
adopt the symmetric-key encryption algorithm AES-256
in Cipher-Block Chaining (CBC) mode as the default
encryption algorithm. Both SHA-256 and AES-256 are
implemented using the EVP library of OpenSSL Version
1.0.1e [1].

We implement the RSSS based on Jerasure Version 1.2
[20]. Regarding to the encoding and decoding modules in
Fig. 1b, the choice of code symbol size w (in bits) deserves
our discussion here. For an erasure code, a code symbol of
size w bits refers to a basic unit of encoding and decoding

operations, both of which are performed in a finite field
GF ð2wÞ. In the ðn; k; rÞ-RSSS, we choose the erasure code
whose generator matrix is a Cauchy matrix, and thus, w
should meet the condition 2w � nþ k [21]. However, when
each hash key is divided into ðk� rÞ pieces with a size of
multiple w, its size (i.e., 32 bytes) is often not a multiple of
w� ðk� rÞ. We thus often need to pad additional zeros to
fill in the ðk� rÞ pieces, resulting in different storage
blowup ratios. Fig. 2a shows the storage blowup ratios
versus different values of w for (6, 4, 2)-RSSS. We see that
for some w, the storage blowup ratio can be much higher
than the theoretical value calculated by n

ðk�rÞ. However, we
find that if the minimum w is chosen, the practical storage
blowup can often be closely matched to the theoretical
value. In addition, we evaluate the corresponding encod-
ing and decoding times on an Intel Xeon E5530 (2.40 GHz)
server with Linux 3.2.0-23-generic OS, and the results
are shown in Fig. 2b. We find that the encoding and
decoding times increase with w. Therefore, our Dekey im-
plementation always chooses the minimum w that meets
2w � nþ k.

6 EVALUATION

In this section, we evaluate the encoding and decoding
performance of Dekey on generating and recovering key
shares, respectively. All our experiments were performed
on an Intel Xeon E5530 (2.40 GHz) server with Linux 3.2.0-
23-generic OS.

Fig. 1. Flow block diagrams of core modules in two different approaches. (a) Baseline approach (keeping the hash key with an encryption scheme).
(b) Dekey (keeping the hash key with ðn; k; rÞ-RSSS).

LI ET AL.: SECURE DEDUPLICATION WITH EFFICIENT AND RELIABLE CONVERGENT KEY MANAGEMENT 1621

6.1 Overall Results
With ðn; k; rÞ-RSSS being used, we test all the following
cases: 3 � n � 8, 2 � k � n� 1, and 1 � r � k� 1, as shown
in Fig. 3. We can see that the encoding and decoding times
of Dekey for each hash key (per 4 KB data block) are always
on the order of microseconds, and hence are negligible
compared to the data transfer performance in the Internet
setting. Note that the encoding time in general is higher
than the decoding time, mainly because the encoding
operation involves all n shares, while the decoding
operation only involves a subset of kGn shares.

We first evaluate several basic modules that appear
in both the baseline approach and Dekey:

. Average time for generating a 32-byte hash from a
4 KB data block: 25.196 usec;

. Average time for encrypting a 4 KB data block with
its 32-byte hash: 23.518 usec;

. Average time for decrypting a 4 KB data block with
its 32-byte hash: 22.683 usec.

Comparing the above results and those in Fig. 3, we can see
that the encoding/decoding overhead of Dekey can be
masked by that of the basic modules via parallelization (see
Section 5.2). Specifically, during the file upload, the
encoding time of Dekey is less than 20 usec in most cases,
and is less than that of encrypting a data block. If we parallelize
both the encoding and encryption modules, then the bottle-
neck lies in the encryption part. During the file download, the
decoding time is less than the time of decrypting a data block.
We can pipeline both the decoding and decryption modules,
making the decryption part become the bottleneck. We have
also tested the cases with other data block sizes (like 2 KB and
8 KB) and made similar observations.

In the following, we highlight some evaluation results
with respect to some specific factors, including the number
of KM-CSPs n, the confidentiality level r, and the reliability
level n� k.

6.2 Number of KM-CSPs n
Fig. 4 shows the encoding/decoding times versus the
number of KM-CSPs n, where we fix the confidentiality
level r ¼ 2 and the reliability level n� k ¼ 2. As expected,
the encoding/decoding times increase with n since more
shares are involved.

6.3 Confidentiality Level r
Fig. 5 shows the encoding/decoding times versus the
confidentiality level r, where we fix the number of KM-
CSPs n ¼ 6 and the reliability level n� k ¼ 2. The encod-
ing/decoding times increase with r. Recall that the Share
function of RSSS divides a secret into k� r equal-size
pieces (see Section 2). With a larger r, the size of each piece
increases, and this increases the encoding/decoding over-
head as well.

6.4 Reliability Level n� k
Fig. 6 shows the encoding/decoding times versus the
reliability level n� k, where we fix n ¼ 6 and the

Fig. 3. Encoding and decoding times for Dekey.

Fig. 2. Impact of code symbol size w on storage blowup and
performance in the case of (6, 4, 2)-RSSS. (a) Storage blowup. (b)
Encoding/decoding time.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 6, JUNE 20141622

confidentiality level r ¼ 2. With the increase of n� k,
the encoding/decoding times decrease since fewer pieces
(i.e., k) are being erasure-coded.

7 RELATED WORK

7.1 Traditional Encryption
To protect the confidentiality of outsourced data, various
cryptographic solutions have been proposed in the litera-
ture (e.g., [13], [30], [31], [33]). Their idea builds on
traditional (symmetric) encryption, in which each user
encrypts data with an independent secret key. Some
studies [10], [28] propose to use threshold secret sharing
[26] to maintain the robustness of key management.
However, the above studies do not consider deduplication.
Using traditional encryption, different users will simply
encrypt identical data copies with their own keys, but this
will lead to different ciphertexts and hence make dedupli-
cation impossible.

7.2 Convergent Encryption
Convergent encryption [8] ensures data privacy in de-
duplication. Bellare et al. [5] formalize this primitive as
message-locked encryption, and explore its application in
space-efficient secure outsourced storage. There are also
several implementations of convergent implementations of
different convergent encryption variants for secure dedu-
plication (e.g., [4], [24], [27], [32]). It is known that some
commercial cloud storage providers, such as Bitcasa, also
deploy convergent encryption [5]. However, as stated
before, convergent encryption leads to a significant num-
ber of convergent keys.

7.3 Proof of Ownership
Halevi et al. [11] propose ‘‘proofs of ownership’’ (PoW) for
deduplication systems, such that a client can efficiently
prove to the cloud storage server that he/she owns a file
without uploading the file itself. Several PoW constructions
based on the Merkle Hash Tree are proposed [11] to enable
client-side deduplication, which include the bounded
leakage setting. Pietro and Sorniotti [19] propose another
efficient PoW scheme by choosing the projection of a file
onto some randomly selected bit-positions as the file proof.
Note that all the above schemes do not consider data

privacy. Recently, Ng et al. [18] extend PoW for encrypted
files, but they do not address how to minimize the key
management overhead.

8 CONCLUSION

We propose Dekey, an efficient and reliable convergent key
management scheme for secure deduplication. Dekey
applies deduplication among convergent keys and dis-
tributes convergent key shares across multiple key servers,
while preserving semantic security of convergent keys and
confidentiality of outsourced data. We implement Dekey
using the Ramp secret sharing scheme and demonstrate
that it incurs small encoding/decoding overhead com-
pared to the network transmission overhead in the regular
upload/download operations.

ACKNOWLEDGMENT

This work was supported in part by National Natural
Science Foundation of China (61100224 and 61272455), the
Fundamental Research Funds for the Central Universities
(K50511010001 and JY10000901034), China 111 Project
(B08038), GRF CUHK 413813 from the Research Grant
Council of Hong Kong, and seed grants from the CUHK
MoE-Microsoft Key Laboratory of Human-centric Com-
puting and Interface Technologies. Besides, Lou’s work is
supported by U.S. National Science Foundation under
Grant (CNS-1217889).

Fig. 5. Impact of confidentiality level r on the encoding/decoding times
where n ¼ 6 and n� k ¼ 2.

Fig. 6. Impact of reliability level n� k on encoding/decoding times,
where n ¼ 6 and r ¼ 2.

Fig. 4. Impact of number of KM-CSPs n on encoding/decoding times,
where r ¼ 2 and n� k ¼ 2.

LI ET AL.: SECURE DEDUPLICATION WITH EFFICIENT AND RELIABLE CONVERGENT KEY MANAGEMENT 1623

REFERENCES

[1] OpenSSL Project. [Online]. Available: http://www.openssl.
org/.

[2] NIST’s Policy on Hash Functions, Sept. 2012. [Online]. Available:
http://csrc.nist.gov/groups/ST/hash/policy.html.

[3] AmazonCase Studies. [Online]. Available: https://aws.amazon.
com/solutions/case-studies/#backup.

[4] P. Anderson and L. Zhang, ‘‘Fast and Secure Laptop Backups
with Encrypted De-Duplication,’’ in Proc. USENIX LISA, 2010,
pp. 1-8.

[5] M. Bellare, S. Keelveedhi, and T. Ristenpart, ‘‘Message-Locked
Encryption and Secure Deduplication,’’ in Proc. IACR Cryptology
ePrint Archive, 2012, pp. 296-3122012:631.

[6] G.R. Blakley and C. Meadows, ‘‘Security of Ramp Schemes,’’ in
Proc. Adv. CRYPTO, vol. 196, Lecture Notes in Computer Science,
G.R. Blakley and D. Chaum, Eds., 1985, pp. 242-268.

[7] A.T. Clements, I. Ahmad, M. Vilayannur, and J. Li, ‘‘Decen-
tralized Deduplication in San Cluster File Systems,’’ in Proc.
USENIX ATC, 2009, p. 8.

[8] J.R. Douceur, A. Adya, W.J. Bolosky, D. Simon, and M. Theimer,
‘‘Reclaiming Space from Duplicate Files in a Serverless Distrib-
uted File System,’’ in Proc. ICDCS, 2002, pp. 617-624.

[9] J. Gantz and D. Reinsel, The Digital Universe in 2020: Big Data,
Bigger Digital Shadows, Biggest Growth in the Far East, Dec. 2012.
[Online]. Available: http://www.emc.com/collateral/analyst-
reports/idc-the-digital-universe-in-2020.pdf.

[10] R. Geambasu, T. Kohno, A. Levy, and H.M. Levy, ‘‘Vanish:
Increasing Data Privacy with Self-Destructing Data,’’ in Proc.
USENIX Security Symp., Aug. 2009, pp. 316-299.

[11] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg,
‘‘Proofs of Ownership in Remote Storage Systems,’’ in Proc.
ACM Conf. Comput. Commun. Security, Y. Chen, G. Danezis,
and V. Shmatikov, Eds., 2011, pp. 491-500.

[12] D. Harnik, B. Pinkas, and A. Shulman-Peleg, ‘‘Side Channels in
Cloud Services: Deduplication in Cloud Storage,’’ IEEE Security
Privacy, vol. 8, no. 6, pp. 40-47, Nov./Dec. 2010.

[13] S. Kamara and K. Lauter, ‘‘Cryptographic Cloud Storage,’’ in
Proc. Financial Cryptography: Workshop Real-Life Cryptograph.
Protocols Standardization, 2010, pp. 136-149.

[14] M. Li, ‘‘On the Confidentiality of Information Dispersal Algo-
rithms and their Erasure Codes,’’ in Proc. CoRR, 2012, pp. 1-4abs/
1206.4123.

[15] D. Meister and A. Brinkmann, ‘‘Multi-Level Comparison of Data
Deduplication in a Backup Scenario,’’ in Proc. SYSTOR, 2009,
pp. 1-12.

[16] D.T. Meyer and W.J. Bolosky, ‘‘A Study of Practical Deduplica-
tion,’’ in Proc. 9th USENIX Conf. FAST, 2011, pp. 1-13.

[17] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and
E. Weippl, ‘‘Dark Clouds on the Horizon: Using Cloud Storage
as Attack Vector and Online Slack Space,’’ in Proc. USENIX
Security, 2011, p. 5.

[18] W.K. Ng, Y. Wen, and H. Zhu, ‘‘Private Data Deduplication
Protocols in Cloud Storage,’’ in Proc. 27th Annu. ACM Symp.
Appl. Comput., S. Ossowski and P. Lecca, Eds., 2012,
pp. 441-446.

[19] R.D. Pietro and A. Sorniotti, ‘‘Boosting Efficiency and Security in
Proof of Ownership for Deduplication,’’ in Proc. ACM Symp. Inf.,
Comput. Commun. Security, H.Y. Youm and Y. Won, Eds., 2012,
pp. 81-82.

[20] J.S. Plank, S. Simmerman, and C.D. Schuman, ‘‘Jerasure: A
Library in C/C++ Facilitating Erasure Coding for Storage
ApplicationsVVersion 1.2,’’ University of Tennessee, Knoxville,
TN, USA, Tech. Rep. CS-08-627, Aug. 2008.

[21] J.S. Plank and L. Xu, ‘‘Optimizing Cauchy Reed-Solomon Codes
for Fault-Tolerant Network Storage Applications,’’ in Proc.
5th IEEE Int’l Symp. NCA, Cambridge, MA, USA, July 2006,
pp. 173-180.

[22] M.O. Rabin, ‘‘Fingerprinting by Random Polynomials,’’ Center
for Research in Computing Technology, Harvard University,
Cambridge, MA, USA, Tech. Rep. TR-CSE-03-01, 1981.

[23] M.O. Rabin, ‘‘Efficient Dispersal of Information for Security,
Load Balancing, Fault Tolerance,’’ J. ACM, vol. 36, no. 2, pp. 335-
348, Apr. 1989.

[24] A. Rahumed, H.C.H. Chen, Y. Tang, P.P.C. Lee, and J.C.S. Lui,
‘‘A secure Cloud Backup System with Assured Deletion and
Version Control,’’ in Proc. 3rd Int’l Workshop Security Cloud
Comput., 2011, pp. 160-167.

[25] A.D. Santis and B. Masucci, ‘‘Multiple Ramp Schemes,’’ IEEE
Trans. Inf. Theory, vol. 45, no. 5, pp. 1720-1728, July 1999.

[26] A. Shamir, ‘‘How to Share a Secret,’’ Commun. ACM, vol. 22,
no. 11, pp. 612-613, 1979.

[27] M.W. Storer, K. Greenan, D.D.E. Long, and E.L. Miller, ‘‘Secure
Data Deduplication,’’ in Proc. StorageSS, 2008, pp. 1-10.

[28] Y. Tang, P.P. Lee, J.C. Lui, and R. Perlman, ‘‘Secure Overlay
Cloud Storage with Access Control and Assured Deletion,’’
IEEE Trans. Dependable Secure Comput., vol. 9, no. 6, pp. 903-916,
Nov./Dec. 2012.

[29] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone,
M. Chamness, and W. Hsu, ‘‘Characteristics of Backup Work-
loads in Production Systems,’’ in Proc. 10th USENIX Conf. FAST,
2012, pp. 1-16.

[30] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, ‘‘Enabling Public
Auditability and Data Dynamics for Storage Security in Cloud
Computing,’’ IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 5,
pp. 847-859, May 2011.

[31] W. Wang, Z. Li, R. Owens, and B. Bhargava, ‘‘Secure and
Efficient Access to Outsourced Data,’’ in Proc. ACM CCSW,
Nov. 2009, pp. 55-66.

[32] Z. Wilcox-O’Hearn and B. Warner, ‘‘Tahoe: The Least-Authority
Filesystem,’’ in Proc. ACM StorageSS, 2008, pp. 21-26.

[33] A. Yun, C. Shi, and Y. Kim, ‘‘On Protecting Integrity and
Confidentiality of Cryptographic File System for Outsourced
Storage,’’ in Proc. ACM CCSW, Nov. 2009, pp. 67-76.

Jin Li received his BS degree in mathematics
from Southwest University, in 2002. He got his
PhD degree in information security from Sun
Yat-sen University, in 2007. Currently, he works
at Guangzhou University as a professor. He has
been selected as one of science and technology
new star in Guangdong province. His research
interests include Applied Cryptography and
Security in Cloud Computing. He has published
over 50 research papers in refereed internation-
al conferences and journals and has served as

the program chair or program committee member in many international
conferences.

Xiaofeng Chen received his BS and MS
degrees in mathematics from Northwest Univer-
sity, China. He got his PhD degree in cryptog-
raphy from Xidian University, in 2003. Currently,
he works at Xidian University as a professor. His
research interests include applied cryptography
and cloud computing security. He has published
over 80 research papers in refereed international
conferences and journals. His work has been
cited more than 1,000 times at Google Scholar.
He has served as the program/general chair or

program committee member in over 20 international conferences.

Mingqiang Li received the PhD degree (with
honors) in computer science from Tsinghua
University, in June 2011. He also received the
BS degree in mathematics from the University of
Electronic Science and Technology of China, in
July 2006. He worked as a Staff Researcher at
the IBM China Research Laboratory from July
2011 to February 2013. He is now a Postdoctoral
Fellow at the Department of Computer Science
and Engineering, The Chinese University of
Hong Kong. His current research interests

include storage systems, data reliability, data security, data compres-
sion, virtual machines, distributed systems, and wireless networking.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 6, JUNE 20141624

Jingwei Li received his BS degree in mathe-
matics, in 2005 from the Hebei University of Tech-
nology, China. He is currently a visiting student
(sponsored by The State Scholarship Fund of
China) in Penn State University, USA. Besides,
he is a PhD candidate in computer technology in
Nankai University. His research interests include
applied cryptography, cloud security.

Patrick P.C. Lee received the BEng degree (first-
class honors) in information engineering from the
Chinese University of Hong Kong, in 2001, the
MPhil degree in computer science and engineer-
ing from the Chinese University of Hong Kong, in
2003, and the PhD degree in computer science
from Columbia University, USA, in 2008. He is
now an Assistant Professor of the Department
of Computer Science and Engineering at the
Chinese University of Hong Kong. His research
interests are in cloud storage, distributed systems

and networks, and security/resilience.

Wenjing Lou received the BS and MS degrees
in computer science and engineering from the
Xián Jiaotong University, China, the MASc degree
in computer communications from the Nanyang
Technological University, Singapore, and the PhD
degree in electrical and computer engineering
from the University of Florida, USA. She is now an
Associate Professor in the Computer Science
Department at Virginia Polytechnic Institute and
State University, USA.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LI ET AL.: SECURE DEDUPLICATION WITH EFFICIENT AND RELIABLE CONVERGENT KEY MANAGEMENT 1625

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

