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Abstract—Encrypted data search allows cloud to offer funda-
mental information retrieval service to its users in a privacy-
preserving way. In most existing schemes, search result is re-
turned by a semi-trustedserver and usually considered authentic.
However, in practice, the server may malfunction or even
be malicious itself. Therefore, users need a result verification
mechanism to detect the potential misbehavior in this compu-
tation outsourcing model and rebuild their confidence in the
whole search process. On the other hand, cloud typically hosts
large outsourced data of users in its storage. The verification
cost should be efficient enough for practical use, i.e., it only
depends on the corresponding search operation, regardlessof
the file collection size. In this paper, we are among the first
to investigate the efficient search result verification problem
and propose an encrypted data search scheme that enables
users to conduct secure conjunctive keyword search, updatethe
outsourced file collection and verify the authenticity of the search
result efficiently. The proposed verification mechanism is efficient
and flexible, which can be either delegated to apublic trusted
authority (TA) or be executedprivatelyby data users. We formally
prove the universally composable(UC) security of our scheme.
Experimental result shows its practical efficiency even with a
large dataset.

I. I NTRODUCTION

While cloud computing provides unparalleled benefits to
its users in a “pay-as-you-go” manner, such as on-demand
computing resource configuration, ubiquitous and flexible ac-
cess, considerable capital expenditure savings, etc., security
concern is still the major inhibitor of cloud adoption for many
large companies, organizations and individuals [1]. Encrypting
sensitive data before uploading them to cloud storage, e.g.,
Google Drive, Dropbox, etc., can avoid user privacy breach,
but the obfuscated data thwart the cloud to quickly sort out
intended information as per user-selected keywords of interest.

In the literature, encrypted data search is proposed to ad-
dress the above challenges, but the majority of these schemes
[2], [3], [4], [5], [6], [7], [8] assume that the cloud serveris
semi-trusted. In other words, the server will not deviate from
the designated protocol and return erroneous search result.
This assumption is usually insufficient in the real world due
to the underlying software/hardware malfunctions, financial
incentives (cloud server may intentionally save computational
resources and return false result), or even the existence of
a malicious server controlled by an outside attacker, etc.
Therefore, cloud users may desire a more trustworthy secure
search system beyond thesemi-trustedmodel, i.e., they can be

assured of the authenticity of returned search result in a more
challenging scenario where a fullymalicious cloud server
exists. Furthermore, the result verification cost should be
minimal and affordable to users irrespective of the outsourced
large data collection. Otherwise it will not be of practicalvalue
considering the dramatically increasing number of resource-
constrained mobile devices.

On the other hand, a preferredverifiable search scheme
should be constructed without sacrificing other critical search
functionalities. One of these isconjunctive keyword search
[3], [6], [7], [8], i.e., it allows the cloud server to produce
search result containing all the queried keywords within one
search operation. This multi-keyword search capability not
only boosts search efficiency, but also improves the overall
user experience. Moreover, a practical scheme should also
work for dynamic data[4], [5], [9], [10], i.e., search can be
conducted even afterinserting, deleting, or modifyinga file,
which is specially appealing to users who would like to update
their files while retaining the encrypted data search function-
ality without rebuilding the whole system from scratch.

In this paper, aiming to provide all the above search func-
tionalities in a challengingmaliciousmodel while preserving
search privacy, we propose an efficient verifiable conjunctive
keyword search scheme (VCKS) over large dynamic encrypted
cloud data. We use theinverted indexstructure [2], [11], [10]
to build our secure index and allow data user to delegate her
search task to a cloud server. We exploit thebilinear-map
accumulator[12], [13] technique to construct an authenticated
data structure. As such the user can verify the returned search
result eitherprivately by herself or with the assistance of a
public TA. The proposed VCKS scheme also supports file
collection update, i.e.,insertion, deletion and modification.
Finally, the extensive experimental evaluation shows the ef-
ficiency and practicality of our scheme. Our contributions can
be summarized as follows:

1) To the best of our knowledge, our proposed VCKS
scheme is the first secure search solution, which supports
conjunctive keyword search, dynamic data updateandsearch
result verificationsimultaneously.

2) We evaluate the performance of the scheme with large
real-world dataset and show that it is efficient enough for
practical use. The verification cost merely depends on the
corresponding search operation, irrespective of the size of the
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Fig. 1. System model.

searched data collection. Furthermore, the verification mecha-
nism is flexible in the sense that it can be either delegated to
a public TA or be executedprivately by a data user.

3)We formally prove that our proposed VCKS scheme is
UC-secureagainst amaliciousadversary.

II. RELATED WORK

Secure search technique has been achieved in both symmet-
ric [2], [3], [4], [5], [6], [7], [8] and asymmetric [14], [15], [18]
settings with a variety of search functionalities investigated in
the literature.

Static Search.In the symmetric setting, Curtmola et al. [2]
proposed an efficient secure single-keyword search scheme,
and gave a formal security notion, i.e.,security against chosen-
keyword attack(CKA1) and a stronger notion ofadaptive
security against chosen-keyword attack(CKA2). To enrich the
search functionality, secure multi-keyword search was realized
in [3], [6] (conjunctive keyword search) and [7], [8] (conjunc-
tive and disjunctive keyword search). Furthermore, Sun et al.
[8] improved the search efficiency and accuracy using a tree-
based index structure and thecosine similarity measurein the
vector space model. In the public key scenario, Boneh et al.
[14] presented the first public key encryption with keyword
search scheme constructed from identity-based encryption.
Recently, Sun et al. [15] proposed the first attribute-based
keyword search scheme to realize fine-grained owner-enforced
search authorization. Note that the above schemes only support
static data, and are secure against asemi-trustedserver.

Dynamic Search. Goh [16] proposed a dynamic secure
search scheme but the bloom filter based index may introduce
false positive into the final search result. Chang et al. [17]also
presented a dynamic search solution with linear search time.
Kamara et al. [4] proposed a dynamic version of [2], sup-
porting data insertion and deletion on the outsourced dataset,
and proved it CKA2-secure. Later they accelerated the search
process by using parallelization technique [5]. However, these
works will not be secure against amaliciousadversary, and
users cannot verify the authenticity of returned search result.

Verifiable Search. Wang et al. [19] use the hash chain
to verify the single keyword search result. In [20], a verifi-

able logarithmic-time search scheme was presented to sup-
port range queries. Kurosawa et al. proposed the first UC-
secure verifiable search scheme with single keyword [11]
and extended it to a dynamic version [10] later. For static
data, Sun et al. proposed the first verifiable multi-keyword
(conjunctive and disjunctive) search with hash and signature
techniques in [21] and later presented a verifiable attribute-
based keyword search in [22]. Stefanov et al. [9] recently gave
a dynamic encrypted data search scheme with small search
privacy leakage, which enables result verification for single
keyword search. It is worth noting that most of these search
verification mechanisms are heuristic constructions without
evaluating the practical performance, especially for large-scale
dataset stored in the cloud. In addition, no scheme can achieve
conjunctive, dynamic, andpublicly/privately verifiablesearch
at the same time as shown in Tab. I.

TABLE I
COMPARISON OF VERIFIABLE SEARCH SOLUTIONS

Scheme Query type Dynamism Verifiability PPE1

[19] single static private no
[20] range dynamic private no
[11] single static private no
[10] single dynamic public/private no
[21] conjunctive2 static private no
[22] conjunctive static private no
[9] single dynamic private no

This paper conjunctive dynamic public/private yes
1 PPE= Practical performance evaluation.
2 This work also supports disjunctive keyword search.

III. PROBLEM FORMULATION

Our proposed VCKS scheme consists of three main entities:
data owner, data user, and cloud server, as shown in Fig.
1. Data owner first prepares ciphertextsC = {c1, c2, ..., cn}
for the file collectionF = {f1, f2, ..., fn} of size n by
using any secure encryption algorithm, such as AES. She also
generates an encrypted index with a pre-defined dictionary
W = {w1, w2, ...wm} containingm keywords and verification
related data for these files. Then data owner uploads all
the above information to cloud server. Later she can update
the server-hosted file collection arbitrarily, i.e., fileinsertion,
deletion or modification. Authorized data users are able to
obtain a search token from data owner for multiple keywords
of interest and other auxiliary information via the search
control mechanism [2], which is outside the scope of this
paper. On receiving the search token from data user, server
performs theconjunctive keyword searchover the secure index
of C. Our scheme supports bothprivate and public search
result verification as shown in Fig. 1. For the latter, data user
can offload the computational burden of verification to apublic
TA. In this case, server returns the result and its proof to the
TA. The TA will send the result to the user if it is valid.
Otherwise, it notifies the user of its rejection.

A. Definition of VCKS

We give the definition of our scheme in the following.
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Definition 1: (Verifiable conjunctive keyword search).A ver-
ifiable conjunctive keyword search scheme for dynamic data
is a tuple(Setup, Enc, GenTree, GenToken, Search, Gen-
Proof, UpdToken, Update, Verify, Dec) of ten polynomial-
time algorithms such that:

• (K, s, pub)← Setup(1λ): On input a security parameter
λ, this probabilistic algorithm outputs secret keysK, s,
and other public parameterspub.

• (γ, C) ← Enc(K, δ, F ): On input a secret keyK, an
index δ and a set of filesF , this probabilistic algorithm
outputs an encrypted indexγ, and a set of ciphertextsC.

• T ← GenTree(s, δ, C): On input a secret keys, an index
δ and ciphertextsC, this deterministic algorithm outputs
an accumulation treeT (c.f. Sect. IV).

• τQ ← GenToken(K,Q): On inputK and an intended
keyword setQ = {wj1 , wj2 , ..., wjt} ⊆ W , this (possibly
probabilistic) algorithm outputs a search tokenτQ.

• C(Q)← Search(γ, τQ, C): On input an encrypted index
γ, a search tokenτQ and ciphertextsC, this deterministic
algorithm outputs the search resultC(Q) for the file list
LQ, where each ciphertextci contains all the intended
keywords inQ and its identifieri is included inLQ.

• Π← GenProof(C(Q), T, pub): On input a search result
C(Q), an accumulation treeT for the file storage and
public parameterspub, this deterministic algorithm out-
puts a proofΠ.

• τu ← UpdToken(u, fi, d(v)): On input an update oper-
ation u ∈ {modify, insert, delete}, a file fi and corre-
sponding digestsd(v) for nodesv in T , this (possibly
probabilistic) algorithm outputs an update tokenτu.

• (γ′, C′, T ′) ← Update(γ, C, T, τu): On input an en-
crypted indexγ, a set of ciphertextsC, an accumulation
tree T and an update tokenτu, this deterministic algo-
rithm outputs newγ′, C′, andT ′.

• (accept, reject)← Verify(C(Q),Π, d(r), pub): On input
a search resultC(Q), a proof Π, a root digestd(r)
from data owner, and parameterspub (also the secret key
s in the case of private verification), this deterministic
algorithm outputsaccept if the search result is valid; else,
it outputsreject.

• f ← Dec(K, c): On inputK and a file ciphertextc, this
deterministic algorithm outputs a plaintext filef .

B. Security Definition

1) Privacy: Almost all the existing secure search schemes
[2], [3], [4], [5], [7], [8], [9], [11], [10] leak search pattern,
i.e., whether the same keyword was used for search in the
past or not, andaccess pattern, i.e., after searching keywords
in Q, the file list LQ is disclosed. In practice, these privacy
information cannot be preserved efficiently. Thus, we in this
work do not aim to protect them. Similar to [5], we define two
stateful leakage functionsL1 andL2 to precisely capture what
is being revealed by ciphertext and the tokens: 1)L1(δ, F ).
On input the indexδ and the file collectionF , this function
outputs the dictionary size|W|, the file collection size|F |, the
file identifiersi and its size|i|, and the size of each file|fi|.

For update, this function also reveals the identifiers and/or the
size of the corresponding files; 2)L2(δ, F,Q). Given the index
δ, the file collectionF , and the keyword setQ searched in the
past, this leakage function revealssearchandaccess patterns.

We adapt theprivacy definition in [10] to a dynamic con-
junctive keyword search setting, where asemi-trustedserver
is considered. Note that this security definition is slightly
stronger than CKA2 security defined in [2], [4], [5].

Definition 2: (Privacy). For a dynamic conjunctive keyword
search scheme as given in Def. 1, we consider the following
experiments, whereA is a stateful adversary,S is a stateful
simulator, andL1 andL2 are stateful leakage functions.

RealA(λ): The challenger runsGen(1λ) to generate a key
K. A sends a tuple(F, δ) to the challenger and receives
(γ, C) ← Enc(K, δ, F ). The adversary makes a polynomial
number of queries by pickingq ∈ {Q, (u, i)}. If q = Q is
a search query then the adversary receives a search token
τQ ← GenToken(K,Q) from the challenger. Ifq = (u, i)
the adversary receives from the challenger an update token
τu ← UpdToken(u, i). Finally,A outputs a bitb.

IdealA,S(λ): A chooses a tuple(F, δ). Given L1(δ, F ),
simulator S outputs a tuple(γ, C) and returns it toA. In
the search phase, the adversary makes a polynomial number of
queries by pickingq ∈ {Q, (u, i)}. If q = Q is a search query,
revealL2(δ, F,Q) to S and returnτQ generated byS toA. If
q = (u, i), S is given the updated output ofL2(δ, F, {wj}) and
sendsτu to A. Finally,A outputs a bitb in this experiment.

We say that our dynamic conjunctive keyword search
scheme in Def. 1 satisfiesprivacy if there exists a probabilistic
polynomial-time (PPT) simulatorS such that for any PPT
adversaryA, |Pr[RealA(λ) = 1] − Pr[IdealA,S(λ) = 1]|
is negligible.

2) Verifiability: Due to possible data corruption, soft-
ware/hardware malfunctions, and even the existence of a
maliciousserver in the system, search result returned to the
user may be false or contain errors. The data user should be
able to detect such misbehavior to guarantee the validity of
the search operation. Specifically, given a valid search result
C(Q) and its proofΠ for a search tokenτQ , the adversary
A wins if she can forge invalidC∗(Q) andΠ∗ that will pass
the Verify algorithm. We have the following definition.

Definition 3: (Verifiability). A verifiable and dynamic con-
junctive keyword search scheme in Def. 1 satisfiesverifiability
if for any PPT adversaryA, the probability of successfully
forging search result and its proof is negligible for any fixed
(F,W , γ) and search tokensτQ.

3) UC-Security: The security of a protocol proven in a
stand-alone setting is preserved under composition if it is
secure in the universally composable security framework [23].
In the UC framework, an environmentZ exists to produce all
the input and read all the output in the system, and arbitrarily
interacts with an adversaryA. We say a protocol securely
realizes a given functionalityF if for any adversaryA, there
exists an ideal-world adversaryS such that noZ can tell
wether it is interacting withA and parties running the protocol,
or with S and parties that interact withF in the ideal world.
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We define the ideal functionalityF of our proposed VCKS
scheme in what follows.

Definition 4: (Ideal functionalityF ). The adversaryS is
only givenL1(δ, F ) andL2(δ, F,Q) in this ideal world. The
ideal functionalityF interacts with user (data owner or data
user)P1, serverP2 and adversaryS, and runs as below:

• On receiving(F, δ) from P1, verify that it is the first
upload input fromP1. If so, store (F, δ), and reveal
L1(δ, F ) to S. Otherwise discard this input.

• On receiving search tokenτQ fromP1, revealL2(δ, F,Q)
to S. If S returns “accept”, send search result toP1; else,
send “reject” toP1.

• On receiving update tokenτmod from P1, replace corre-
sponding file inF and revealL1(δ, F ) to S.

• On receiving update tokenτdel from P1, delete corre-
sponding file inF and revealL1(δ, F ) to S.

• On receiving update tokenτin fromP1, insert correspond-
ing file to F and revealL1(δ, F ) to S.

IV. PRELIMINARIES

Bilinear-map Accumulator. Bilinear-map accumulator
[12], [13] is an efficient data authentication mechanism that
provides a constant-size digest for an arbitrarily large set of
inputs, and a constant-size witness for any element in the set
such that it can be used to verify the (non-)membership of the
element in this set. Bilinear-map accumulator can be realized
using eithersymmetricor asymmetricpairing. For ease of
illustration, we adopt the symmetric version in this paper.

Let G and GT be two cyclic multiplicative group with
the same prime orderp. g is a generator ofG. Thus, a
bilinear pairing is defined ase : G × G → GT with the
properties ofbilinearity, computabilityand non-degeneracy.
To construct a bilinear-map accumulator, we generate an
accumulation valueacc(L) = g

∏
ai∈L

(ai+s) in G for a set
L of n elements{a1, a2, ..., an} in Z∗

p, wheres ∈ Z∗
p is a

randomly chosen value and
∏

ai∈L(ai + s) is a characteristic
polynomial for the setL. For any subsetL′ ⊆ L, a witness
WitL′,L = g

∏
ai∈L−L′(ai+s) can be produced. Subsequently,

the subset test can be carried out by checking

e(g
∏

ai∈L′(ai+s),WitL′,L)
?
= e(acc(L), g). (1)

Note that only given corresponding elementsa and{gs
i

: 0 ≤
i ≤ q} where q is an upper bound onn, g

∏
(a+s) can be

constructed with polynomial interpolation [24]. The security
of the bilinear-map accumulator is derived from theq-strong
bilinear Diffie-Hellman (q-SBDH) assumption [25].

This data structure can also support update operation. For
example, to insert a new elementan+1 into the setL,
we can obtain a new set accumulation valueacc′(L) =

acc(L)(an+1+s), andacc′(L) = acc(L)(ai+s)−1

is an updated
accumulation value after deleting some elementai from L.

Accumulation Tree. To support efficient integrity check
over multiple sets in one data structure, we extend bilinear-map
accumulator to acollision-resistantaccumulation tree [25].
Specifically, suppose there arem sets{L1, ..., Lj , ..., Lm}, for

Fig. 2. Example of an accumulation tree withǫ = 0.5.

each of whichacc(Lj) is computed. By choosing a constant
0 ≤ ǫ ≤ 1, a treeT can be generated withl = ⌈1/ǫ⌉
levels andm leaves. Each leaf nodev represents a particular
setLj in the set collection. It stores the accumulation value
acc(Lj) andd(v) = acc(Lj)

(s+j) (this proves thatLj refers
to acc(Lj)). Each internal nodev of this constant-height tree
T has degreeO(mǫ) and contains the hashd(v) of a set
of its childrenN(v), whered(v) = g

∏
u∈N(v)(s+h(d(u))) and

h : G → Z
∗
p is a collision-resistant hash function. Hence,

the integrity of the set is protected by its accumulation value
and the accumulation tree protects the integrity of all the
accumulation values stored in the leaves. For instance, Fig.
2 shows a 2-degree accumulation tree of 2 levels for setsL1,
L2, L3 andL4 by selectingǫ = 0.5.

Not only does an accumulation tree support update op-
eration on dynamic data collection, which is inherent from
bilinear-map accumulator, it also can be used to verify set
operations, such as set intersection. More precisely, given
t queried sets{Lj1 , Lj2 , ..., Ljt}, the intersection setI =
Lj1∩Lj2∩...∩Ljt should satisfy the following two conditions.

• Subset: I ⊆ Lj1 ∩ I ⊆ Lj2 ∩ ... ∩ I ⊆ Ljt ;
• Completeness: (Lj1−I)∩(Lj2−I)∩ ...∩(Ljt−I) = ∅.

To meet the first requirement, the verifier only needs to
check Eq.1. As for completeness condition, supposeAjb(s)
is the characteristic polynomial of setLjb − I for 1 ≤
b ≤ t. We need find anothert polynomialsPjb(s) such that∑t

b=1 Pjb(s)Ajb (s) = 1, which can be computed efficiently
by Euclidean algorithm. Thus we obtain the completeness
witnessesCwitI,Ljb

= gPjb
(s) accordingly. Given the subset

witnessesWitI,Ljb
= gAjb

(s), we say the completeness
condition is satisfied if the following equation holds:

t∏

b=1

e(CwitI,Ljb
,WitI,Ljb

)
?
= e(g, g). (2)

V. OUR CONSTRUCTION

By indexing the dataset using inverted index structure [10],
we design our VCKS scheme with an efficient result verifica-
tion mechanism that can be realized in bothpublic andprivate
settings. The indexδ = {aj,i} in our scheme is anm × n
matrix as shown in Fig. 3 such that iffi contains the keyword
wj , then aj,i = 1; otherwise setaj,i = 0. We denoteδj as
the jth row of δ. In what follows, we begin to describe our
proposed VCKS scheme in terms of system level operations,
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Fig. 3. Illustration for matrix indexδ and insertion operation forfn+1.

i.e., Data Upload, Search, Data Download, Update, where
each operation may contain one or more algorithms in Def. 1.

A. Data Upload

In this initial operation, the data owner generates a secret
key setK = (k1, k2, k3) by calling the algorithmSetup,
wherek1 andk2 are keys of a pseudorandom functionprfk,
and the keyk3 is for the secure symmetric-key encryption
algorithmEnc and decryption algorithmDec shared with data
user. The data owner uses the algorithmEnc to encrypt the
file collectionF into a ciphertext setC. She then prepares the
secure indexγ = {(πϕ(j), δ

′
ϕ(j))1≤j≤m} as follows:

1) For each keywordwj ∈ W , computeπj = prfk1(wj);
2) Setδ′j equal to the firstn bits of δj ⊕ prfk2(wj);
3) Apply a random permutationϕ on {1, ...,m}.
TheSetup algorithm also outputs a secret keys, and public

parameterspub = {p,G,GT , g, e, h, g
s, gs

2

, ..., gs
q

}, where
q = max{m,n}. Subsequently, the data owner generates an
accumulation treeT for indexδ using the algorithmGenTree.
For a leaf nodev of T pointing to a ciphertext setC(i)j =
{ci|aj,i = 1} associated withδj , compute digestd(v) =

acc(C(i)j)
(πj+s) = g

∏
ci∈C(i)j

(h(i,ci)+s)(πj+s)
and store it in

this leaf node. Otherwise, letd(v) = g
∏

u∈N(v)(h(d(u))+s). d(r)
is the digest on the root noder of T .

The data owner retains the secret keys and all the node
digestsd(v) for v ∈ T . Then she uploads the file ciphertexts
C and the secure indexγ along with the accumulation treeT
to the cloud server.

B. Search

For a setQ of t intended keywords{wj1 , ..., wjt} from
data user, the data owner calls the algorithmGenToken to
obtain the search tokenτQ = {(αjb = prfk1(wjb ), βjb =
[prfk2(wjb )]1...n)} for 1 ≤ b ≤ t, whereβjb is the firstn bits
of prfk2(wjb ), and returns it to the user.

After receiving the search token from the data user, the
Search algorithm is invoked by the cloud server. More
precisely, it identifies each tuple(πϕ(jb), δ

′
ϕ(jb)

) in the secure
index γ if πϕ(jb) = αjb . Next, the cloud server is able to
recover δjb = δ′

ϕ(jb)
⊕ βjb for 1 ≤ b ≤ t. Finally, the

search resultC(Q) can be derived by performing intersection
operation on sets{δj1 , δj2 , ..., δjt}, whereci ∈ C(Q) contains
all t keywords of interest inQ.

The server also prepares the proofΠ for (public) result
verification with theGenProof algorithm as below:

• Accumulation valueacc(C(i)jb) and Πjb for each in-
dex row δjb . Let v0, v1, ..., vl be the path inT from
the leaf nodev0 associated withacc(C(i)jb) to the
root nodevl = r. Set ψz = g

∏
u∈N(vz)\vz−1

(h(d(u))+s)

for z = 1, 2, ..., l. As such, Πjb is defined as
{(d(v0), ψ1), (d(v1), ψ2), ..., (d(vl−1), ψl)};

• Subset witnessWitC(Q),C(i)jb
and completeness witness

CWitC(Q),C(i)jb
, for b = 1, 2, ..., t;

• Coefficientsσ0, σ1, ..., σρ of the characteristic polynomial
for {h(i, ci)}1, whereci ∈ C(Q) andρ is the size of the
search result;

• The root node digestd(r).

The cloud server returns all the encrypted filesC(Q) identified
in LQ and the proofΠ.

C. Data Download

The data user first verify the search result in eitherpublic
or private setting.

Algorithm 1: Public Search Result Verification

Input : Search resultC(Q), proofΠ, root node digest
d(r) from data user and system parameterspub.

Output : “accept” or “reject”.

1 Checkd(r) in Π with that from data user, and the
correctness of coefficientsσ0, σ1, ..., σρ. If any one fails
output “reject”, otherwise continue;

2 for b = 1→ t do

3 Checke(d(v0), g)
?
= e(acc(C(i)jb), g

πjb gs) (3);
4 for z = 1→ l − 1 do

5 checke(d(vz), g)
?
= e(ψz, g

h(d(vz−1))gs) (4);
6 end

7 Checke(d(r), g)
?
= e(ψl, g

h(d(vl−1))gs) (5);
8 If any one of the equations 3, 4 and 5 fails output

“reject”, otherwise continue;
9 end

10 Check subset condition by Eq. 6. If it fails output
“reject”, otherwise continue;

11 Check completeness condition by Eq. 2. If it fails output
“reject”, otherwise continue;

12 If none of the above fails, output “accept”;

1) Public verifiability: The data user delegates the verifi-
cation task to apublic TA. In this scenario, the cloud server
returns the search result and its proof to the TA. With only
access to public parameters, i.e.,gs

i

, the TA calls the algorithm
Verify to verify the search result as illustrated in Algorithm
1. Note that the user also needs to send the latest root node
digestd(r) acquired from the data owner to the TA in order to

1Given the roots of the polynomial, we can compute its coefficients effi-
ciently by polynomial interpolation [24]. Accumulation value, subset witness
and completeness witness can also be constructed by using the corresponding
coefficients and public parametersg, gs, ..., gs

q
.



6

facilitate the result verification (line 1)2. Given search result
C(Q), the coefficients can be verified efficiently (line 1) [25].
By checking equations 3, 4 and 5 (line 3, 5 and 7 respectively),
we can guarantee that the index rowδjb is associated with the
jb

th leaf node ofT . To check the subset condition for all the
correspondingC(i)jb in a batch manner (line 10), we make
use of the equation below

e(

ρ∏

ι=0

(gs
ι

)σι ,

t∏

b=1

WitC(Q),C(i)jb
)

?
= e(

t∏

b=1

acc(C(i)jb ), g), (6)

wheregs
i

is from the public parameterspub. If the algorithm
outputs “accept”,C(Q) is indeed the search result with respect
to the queried keyword setQ. the TA will send it to the data
user. The user then decryptsci to fi by calling the algorithm
Dec. Otherwise, the TA notifies the user of the rejection.

Algorithm 2: Private Search Result Verification

Input : Search resultC(Q), proofΠ (exclusive of the
coefficientsσ0, σ1, ..., σρ), root node digestd(r)
from data owner and system parameterspub.

Output : “accept” or “reject”.

1 Checkd(r) in Π with that from data owner. If it fails
output “reject”, otherwise continue;

2 for b = 1→ t do

3 Checke(d(v0), g)
?
= e(acc(C(i)jb), g

(πjb
+s)) (7);

4 for z = 1→ l − 1 do

5 checke(d(vz), g)
?
= e(ψz, g

(h(d(vz−1))+s)) (8);
6 end

7 Checke(d(r), g)
?
= e(ψl, g

(h(d(vl−1))+s)) (9);
8 If any one of the equations 7, 8 and 9 fails output

“reject”, otherwise continue;
9 end

10 Check subset condition by Eq. 10. If it fails output
“reject”, otherwise continue;

11 Check completeness condition by Eq. 2. If it fails output
“reject”, otherwise continue;

12 If none of the above fails, output “accept”;

2) Private verifiability: In case the TA is unreachable or
does not even exist, we are able to achieve more compu-
tationally efficient private search verification by giving the
secret keys to legitimate users as shown in Algorithm 2. The
cloud server directly returns the result and its proof to theuser.
The proofΠ does not include the coefficientsσ0, σ1, ..., σρ.
Note that with secret keys, equations 7, 8, 9 and 10 can be
computed more efficiently than their counterparts in thepublic
Verify algorithm. The subset condition can be verified by the

2The data owner can also sign this digest with a time stamp to guarantee
the freshness of the search result, but the TA (or user in the private setting)
needs additional cryptographic operations to verify this signature.

following equation:

e(g
∏

ci∈C(Q)(h(i,ci)+s),
t∏

b=1

WitC(Q),C(i)jb
)

?
=e(

t∏

b=1

acc(C(i)jb ), g). (10)

D. Update

In a dynamic cloud storage, the data owner is able tomodify,
insert or deletefiles arbitrarily.

1) Modify: This update operation only results in a modified
versionf ′

i of the original filefi and has the file identifieri
unchanged. Suppose thatf ′

i has the same keywords withfi.
Hence, the data owner does not need to update the secure
index. By the algorithmUpdToken, the data owner acquires
the update tokenτmod = (i, c′i, {d

′(v)}). c′i is the ciphertext of
f ′
i and{d′(v)} is the modified digest set computed as follows.

For the pathv0, v1, ..., vl from a leaf nodev0 containingc′i to
root nodevl = r, updated′(v0) = d(v0)

(h(i,ci)+s)−1(h(i,c′i)+s)

and setd′(vz) = d(vz)
(h(d(vz−1))+s)−1(h(d′(vz−1))+s) for z =

1, ..., l. On receiving this update request from the owner, the
cloud server updates the ciphertext set and accumulation tree.

2) Delete: To delete a filefi from the storage, the data
owner adopts theUpdToken algorithm to generate an update
token τdel = (i, {d′(v)}). The deletion operation is analogue
to file modification except that for each leaf node containing
ci, set correspondingd′(v0) = d(v0)

(h(i,ci)+s)−1

. Finally
the server uses theUpdate algorithm to delete the original
ciphertextci, and produce a new accumulation treeT ′.

3) Insert: To insert a new filefn+1 into current file
collection, the algorithmUpdToken generates a new(n+1)th

column cln+1 for the matrix indexδ as shown in Fig. 3.
For 1 ≤ j ≤ m, aj,n+1 = 1 if the file contains keyword
wj ; let aj,n+1 = 0 otherwise. Thencln+1 is obfuscated
to cl′n+1 by aj,n+1 ⊕ [prfk2(wj)]n+1 and apply the ran-
dom permutationϕ to cl′n+1, where [prfk2(wj)]n+1 is the
(n+1)th bit of prfk2(wj). The owner encryptsfn+1 to cn+1

by Enc. With the related new leaf node digestsd′(v0) =
d(v0)

(h(n+1,cn+1)+s), an updated digest set{d′(v)} can be
computed. The corresponding update tokenτin is a tuple
(n+1, cn+1, cl

′
n+1, {d

′(v)}), which allows the cloud server to
update the file collection, the secure index and accumulation
tree by calling theUpdate algorithm.

Remark. Data owner may keep a set of succinct file stubs
h(i, ci) after Data Upload operation for update efficiency.
The storage overhead is negligible compared with the size
of F . Otherwise, she need sign them and interact with server
every time theUpdate algorithm is triggered. In theprivate
setting, data user with secret keys and file digest information
from data owner can also update the file collection. This is
a desirable feature in the case that the outsourced dataset is
allowed to be written by multiple group users.

VI. SECURITY ANALYSIS

In this section, we analyze the security properties of our
proposed scheme and show that it achieves the defined security
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goals. We first prove that our VCKS scheme satisfiesprivacy
in Def. 2 with asemi-trustedserver (adversary). After incor-
porating theverifiability in Def. 3, our final scheme achieves
the stronger notion of security, namelyUC-securityagainst a
maliciousadversary (c.f. Sect. III.B ).

Theorem 1:The VCKS scheme satisfiesprivacy in Def. 2.
Proof: Let A and S be an adversary and a simulator

in IdealA,S(λ) in Def. 2, respectively. Given the leakage
functionL1(δ, F ), S outputs(γ′, C′) as follows. It simulates
the encrypted fileci = Enck1(0

|fi|) for i = 1, ..., n, wherek1
is randomly selected for the CPA-secure encryption algorithm
Enc, and|fi| is revealed byL1. To simulate the secure index
γ = {(πϕ(j), δ

′
ϕ(j))} for j = 1, ...,m, S setsπj as a random

number and choosesδj ∈ {0, 1}n at random.S then applies a
random permutationϕ on {1, ...,m} and sends(C′, γ′) to A.

AdversaryA can make a polynomial number of queries by
picking q ∈ {Q, (u, i)}. If q is a search query for a keyword
set Q of t conjunctive keywords{wjb}b=1,...,t, the leakage
function L2(δ, F,Q) revealsLQ to S. Given this, for b =
1, ..., t S can generateajb,i = 1 if i ∈ LQ; otherwise, set
ajb,i = 0. Then S setsαjb = πϕ(jb)

and computesβjb =
δ′ϕ(jb)

⊕ (ajb,1, ..., ajb,n). She returnsτ ′Q = {(αjb , βjb)} to
A. If q = (u, i) is an update query: 1)u = modify. Given
|f ′

i | from leakage function,S simulatesc′i = Enck1(0
|f ′

i |).
ThenS sendsτ ′mod = (i, c′i) to A; 2) u = delete. S returns
τ ′del = i to A; 3) u = insert. With |fn+1| from L1(δ, F ),
S computescn+1 = Enck1(0

|fn+1|). Choosecl′n+1 ∈ {0, 1}
m

and apply the random permutationϕ on it. ThenS sendsτ ′in =
(n+ 1, cn+1, cl

′
n+1) to A.

The adversaryA cannot distinguishC′ from C in ex-
periment RealA(λ) since Enc is CPA-secure. Due to the
pseudorandom functionprf used in RealA(λ) A cannot
distinguish γ′ from γ either. Likewise,A cannot tell the
differences between{τ ′Q, τ

′
mod, τ

′
del, τ

′
in} in IdealA,S(λ) and

{τQ, τmod, τdel, τin} in RealA(λ) because of the CPA-secure
Enc, pseudorandom functionprf and random permutationϕ.
Thus,A cannot distinguishRealA(λ) and IdealA,S(λ).

Next, we prove the VCKS scheme secure against amali-
ciousadversary.

Theorem 2:The proposed VCKS scheme satisfiesprivacy
in Def. 2 andverifiability in Def. 3.

Proof: (Sketch) Similar to the proof of Theorem 1, we can
proveprivacy property. Therefore we only proveverifiability.

Suppose the adversaryA can breakverifiability with non-
negligible probability for any fixed(F,W , γ) and search
tokensτQ. A can produce(C∗(Q),Π∗) 6= (C(Q),Π) but the
public Verify algorithm outputsaccept. C(Q) andΠ are valid
search result and its proof respectively.

We will show that the probability of the above situation is
negligible given the collision-resistant hash functionh and the
security of the accumulation tree proved in [25].

1) C∗(Q) = C(Q) andΠ∗ 6= Π. If only d∗(r) 6= d(r), the
Verify algorithm will definitely outputreject. If the coefficients
in Π∗ are computed incorrectly, the coefficient validity check
will fail with high probability. If either the accumulationvalue

or the relatedΠj is incorrect, one of the equations 3, 4 and 5
will not hold with non-negligible probability. Otherwise,the
subset condition by Eq. 6 or the completeness condition by
Eq. 2 will fail.

2)C∗(Q) 6= C(Q) andΠ∗ = Π. In this case, the probability
that Verify outputs accept is negligible because given the
coefficients inΠ∗ equal to those inΠ and different search
results, the coefficient validity check will succeed only with
negligible probability. Even if it passes this check, it will
not satisfy the subset condition by Eq. 6 or the completeness
condition by Eq. 2.

3) C∗(Q) 6= C(Q) and Π∗ 6= Π. If d∗(r) 6= d(r), the
Verify algorithm will output reject. If the integrity of the
accumulation tree and the corresponding accumulation values
is verified, and the coefficients inΠ∗ are computed correctly,
C∗(Q) will not satisfy the subset condition by Eq. 6 or the
completeness condition by Eq. 2.

For theprivate Verify algorithm, we are also able to prove
the verifiability property analogue to the above proof.

In what follows, we prove the UC-security of our scheme.
Theorem 3:The VCKS scheme is UC-secure if it satisfies

privacy in Def. 2 andverifiability in Def. 3.
Proof: (Sketch) 1) If no parties are compromised by the

adversaryA in our protocol, for each keyword setQ, the
user (P1) outputs the correct search resultC(Q). Thus the
environmentZ cannot distinguish the real world from the ideal
world since it only interacts withP1.

2) If P1 is corrupted byA, thenA can send the commu-
nication pattern ofP1 to Z. In the ideal world, an adversary
S can runA internally by playing the role of server (P2). All
messages betweenZ andA are forwarded byS. Z cannot
distinguish the real world from the ideal world since it will
not interact withP2 andS can play the role ofP2 faithfully.

3) If A corruptsP2 andP2 breaksverifiability in Def. 3 with
negligible probability, the ideal world adversaryS can runA
internally by playing the role ofP1. All messages betweenZ
andA are forwarded byS. As such,S acts as same as the
simulator in the Def. 2 and the ideal functionalityF will reveal
L1 andL2 to S. From the proof of the Theorem 1, we can see
that the inputs toA are distinguishable from those in the real
world. In other words,A in the ideal world behaves as same as
in the real world. On the other hand,Z cannot distinguish the
outputs of the user in the real world and in the ideal world from
the proof of the Theorem 2. For a search query, ifA returns the
valid ciphertext of the search result and its proof, the userwill
output correct plaintext of the search result in the real world,
and in the deal world,S will return “accept” toF andF will
send correct plaintext of the search result toP1; otherwise, the
user will output “reject”, andZ will receive “reject” in the real
world, and in the ideal world,S will return “reject” to F , F
will send “reject” toP1 andZ will receive “reject” fromP1.
For all the update queries, i.e.,modify, delete and insert,
the user receives nothing fromA. Therefore, she can always
update the corresponding authentication information correctly
and outputs nothing. Thus,Z cannot distinguish the real world
from the ideal world.
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Fig. 4. Search efficiency. (a) For the different size of file collection with the
number of queried keywordst = 2. (b) For the different number of queried
keywords with the number of filesn = 2× 10

5.

VII. PERFORMANCEEVALUATION

In this section, we evaluate the performance of our proposed
VCKS scheme with real-world dataset, i.e., the Enron Email
Dataset [26], which consists of about half million files. To
demonstrate the efficiency and effectiveness of the VCKS,
we extend the size of this dataset to one million by inserting
duplicates but with different file identifiers. For simplicity, we
set a two-level accumulation tree withǫ = 0.5. We conduct
the experiment using C and the Pairing-Based Cryptography
(PBC) Library [27] on a Linux server with Intel Core i7
Processor 2.4GHz. We adopt the type A elliptic curve of 160-
bit group order to realize the symmetric version of our pro-
posed scheme, which provides 1024-bit discrete log security
equivalently. Our scheme can also be implemented by any
other secure asymmetric pairing technique. The experimental
result is an average of 10 trials.

A. Storage Overhead

Server side.The cloud server only stores the file ciphertexts
C, the secure indexγ and the accumulation treeT after the
Setup operation by data owner. The storage overhead ofC
varies a lot for different file encryption method. Thus, we do
not consider it here. For the size ofγ, it is mainly determined
by file collection sizen and dictionary sizem. As shown in
Tab. II, if there are one million files in the collection, the size
of γ is linear tom. On the other hand, ifm is fixed, the size
of index is proportional ton as shown in Tab. III. Our search
verification scheme is storage-efficient, because Tab. IV shows
that the storage overhead ofT with the fixed number of levels
is only up tom, regardless of the dataset sizen, and a minimal
storage space suffices to host this tree structure.

Client side. The data owner and data users are all clients of
the secure search system. In thepublic scenario, apart from
the secret keys, data owner keeps the root node digestd(r)
after the accumulation tree generation phase and later sends
it to users for search verification propose. She also retains
the hash valuesh(i, ci) for all the files inC to efficiently
update the file collection. In theprivate setting, data owner
sends userss, d(r) and h(i, ci) to enable efficientUpdate
andprivateverification operations. The main storage overhead

on the client side is to host all the hash valuesh(i, ci). We
implement the hash function with SHA-256. Thus, for one
million files, the size of their hash values are merely 32 MB.

TABLE II
SIZE OF ENCRYPTED INDEX WITHn = 1, 000, 000

m 1,000 2,000 3,000 4,000 5,000
Size ofγ (MB) 125.03 250.06 375.10 500.13 625.16

TABLE III
SIZE OF ENCRYPTED INDEX WITHm = 2, 000

n (×105) 2 4 6 8 10
Size ofγ (MB) 50.06 100.06 150.06 200.06 250.06

TABLE IV
SIZE OF ACCUMULATION TREE WITH TWO LEVELS

m 1,000 2,000 3,000 4,000 5,000
Size ofT (KB) 66.1 103.9 195.6 260.1 324.6

B. Search Efficiency

The main computational cost for search process is to do
the set intersection ont binary index vectors of sizen with
complexityO(tn). We apply the bitwiseAND operation to the
queried keyword vectors{δjb} for b = 1, ..., t. As shown in
Fig. 4(a), given the same two queried keywords, time cost for
search is linear to file collection sizen. In Fig. 4(b), it shows
that search is more time-consuming with the increased number
of intended keywords. Experiment shows that our proposed
VCKS scheme enables very fast conjunctive keyword search
even with considerably large file collection. With a more
powerful cloud server in practice, we expect that the search
operation can be more efficient.

TABLE V
T IME OF GENERATING AN ACCUMULATION TREE WITHn = 1× 10

6

m 1,000 2,000 3,000 4,000 5,000
Time (s) 618.95 1,237.89 1,856.84 2,475.78 3,094.73

C. Verification Efficiency

We evaluate the performance of the proposed verification
mechanism in terms of the accumulation tree generation time,
and result verification time in thepublic andprivate scenario.

1) Accumulation tree generation:Constructing the accu-
mulation tree involves sum, multiplication and exponentiation
operations in groupG, and hash operation. Tab. V shows that
with the dataset containing one million files, tree generation
time is proportional to the dictionary sizem. Notice that this
computational burden on the data owner is a one-time cost.
After the accumulation tree along with the encrypted index
and dataset ciphertext is outsourced to the cloud server, the
following operations, i.e., update and search verification, can
be executed efficiently. Thus, the overall efficiency is totally
acceptable in practice.
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Fig. 5. Verification efficiency witht = 2. (a) Public verification. (b) Private
verification.

2) Search result verification:Kurosawa et al. [10] designed
a verification scheme forsingle keyword search by using
RSA accumulator [28], [29], which also supportspublic and
privateverifiability. However, the verification complexity there
is linear in the problem sizeO(tn). To compared with our
work, we adapt their scheme to be capable of conjunctive
keyword search verification, i.e., after verifying each intended
singlekeyword search, user will conduct conjunctive keyword
search locally by index vector intersection. As shown in Fig.
5(a) and Fig. 5(b), our scheme can be orders of magnitude
faster than theirs in bothpublicandprivatesettings. Moreover,
the verification time is almost constant irrespective ofn. In
fact, the verification complexity of our scheme isO(t+ρ), only
decided by the related search operation, whereρ is number of
files in the final search result. Therefore, our scheme is more
suitable and practical for conjunctive keyword search overa
large number of files stored in the cloud.

VIII. C ONCLUSION

In a more challengingmalicious model, we propose an
efficient verifiable conjunctive keyword search scheme over
large dynamic encrypted cloud data. Our scheme allows file
update, i.e., users can insert, delete or modify a file without
affecting the effectiveconjunctive keyword searchoperation.
Furthermore, the verification cost is only contingent on the
related search operation, regardless of the file collectionsize.
Experimental result with a large real-world dataset shows
the efficiency and practicality of our scheme. We also prove
that the proposed scheme isUC-secureagainst amalicious
adversary.
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