
REARGUARD: Secure Keyword Search
Using Trusted Hardware

Wenhai Sun, Ruide Zhang, Wenjing Lou, and Y. Thomas Hou
Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

Abstract—Search over encrypted data (SE) enables a client
to delegate his search task to a third-party server that hosts a
collection of encrypted documents while still guaranteeing some
measure of query privacy. Software-based solutions using diverse
cryptographic primitives have been extensively explored, leading
to a rich set of secure search indexes and algorithm designs.
However, each scheme can only implement a small subset of
information retrieval (IR) functions and often with considerable
search information leaked. Recently, the hardware-based secure
execution has emerged as an effective mechanism to securely
execute programs in an untrusted software environment. In this
paper, we exploit the hardware-based execution environment
(TEE) and explore a software and hardware combined approach
to address the challenging secure search problem. For function-
ality, our design can support the same spectrum of plaintext
IR functions. For security, we present oblivious keyword search
techniques to mitigate the index search trace leakage. We build
a prototype of the system using Intel SGX. We demonstrate
that the proposed system provides broad support of a variety of
search functions and achieves computation efficiency comparable
to plaintext data search with elevated security protection.

I. INTRODUCTION

Nearly two decades has passed since Song et al.’s seminal

work on the first encrypted data search scheme [1]. This

demonstrated that the fascinating concept of retrieving infor-

mation from encrypted data can be accomplished using cryp-

tography. Since then, SE has received a growing interest from

both academia [2], [3], [4], [5], [6] and industry [7]. Recently,

the importance of this technique has been highlighted due to

the advent of cloud computing, where there is a strong desire

to protect users’ sensitive information from prying eyes while

providing fundamental data services.

There are two main research directions in achieving the

grand vision of search over encrypted data. One is software-

based secure computation research, which often relies on cryp-

tography and focuses on algorithmic design and theoretical

proof. The other is the trusted execution solutions that depend

on hardware isolation and trusted computing. The conventional

SE is realized using software-based solutions. Albeit there

are extensive investigations along this research line, current

SE realization is not satisfactory in two aspects. First is the

obvious query function gap between SE and the plaintext IR

technology. This is because efficient practical SE solutions

are built on top of a variety of crypto primitives, such as

property-preserving encryption [8], functional encryption [6],

and searchable symmetric encryption (SSE) [2], and each

crypto tool only supports a specific class of query types by

incorporating different index structures and search algorithms.

In addition, existing realistic SE solutions have many security

limitations. In the symmetric setting, the most secure SSE we

can achieve is under the L1 leakage profile [9], which at least

reveals the index search trace, including search pattern and ac-

cess pattern (see Sect. II). Unfortunately, the once considered

“inconsequential” information disclosure has not been well

studied and already led to many devastating attacks in practice

[9], [10]. Besides the above information leakage, public-key

based schemes are inherently vulnerable to predicate privacy

breach [11], i.e. an adversary can generate ciphertexts with the

public key and infer the queried keywords during the search

process.

On the other hand, hardware-based trusted execution envi-

ronment has recently emerged as an effective security mecha-

nism in achieving trustworthy execution of applications [12],

[13], [14]. These systems adopt trusted hardware, such as

Trusted Platform Module (TPM), Intel Trusted Execution

Technology (TXT), ARM TrustZone, Intel Software Guard

Extensions (SGX) and a small size of firmware as the trusted

computing base (TCB). This TCB provides not only the root

of trust but also the necessary system isolation for the environ-

ment. While it might appear that one can simply migrate the

state-of-the-art IR techniques into the TEE to enable the same

spectrum of query functions with enhanced security, there are

several challenges that require careful design considerations to

take advantage of the technology.

While the hardware-based secure execution, such as Intel

SGX, can provide confidentiality and integrity of the appli-

cation inside the TEE, information side channel is often not

protected [15], [16]. The threat is greatly amplified when

users share resources with adversaries, yet resource sharing

is the basis of cloud computing. Recently, both control chan-

nel [15] and cache channel [16] have been demonstrated to

leak execution information on the Intel SGX platform. Thus,

direct adoption of TEE for secure search applications [17],

[18] can lead to the disclosure of the index search trace.

Another challenge lies in the programming environment. In

order to defend against the untrusted operating system, each

library function potentially needs to be redesigned to harden

the defense against attacks, such as Iago attack [19]. At the

time of writing, there are a limited number of library functions

available in the enclave, the TEE of Intel SGX. None of the

IR software we studied can be directly adopted as an enclave

library due to missing libraries from the version 1.6 of the

Intel SGX SDK.

Our contributions. In this work, we tackle the fundamental

yet challenging problem of search over encrypted data. We

propose secure keyword search using trusted hardware –

REARGUARD, built on TEEs such as Intel SGX [20] and

AMD Memory Encryption [21] to perform search computation

completely within the isolated memory even if the privileged

software is untrusted. Such hardware-enforced isolation pro-

vides the confidentiality and integrity of both data and com-

putation, which is essential in cloud computing. Furthermore,

REARGUARD enables IR functions comparable to plaintext

data search. Our scheme is also a departure from the pure

software-based approach whose computation overhead largely

depends on the underlying cryptographic primitives.

Current practical designs of software-based SE have the

leakage profile that reveals at least the index search trace.

REARGUARD can achieve better information protection and

significantly improve the security of SE by mitigating such

leakage. We define and realize two new leakage profiles, L+
0

and L0, in the dynamic SE scenario supporting index update.

In the L+
0 model, we completely hide the index search trace

and only reveal minimal information at the setup as prior

work. In the weaker notion L0, we allow some reasonable

leakage for a more efficient query. We identify several query-

dependent operations in the search algorithms and adapt them

to keyword-oblivious executions to satisfy the defined security

requirements. We prototype REARGUARD with 4,000 lines

of code (LOC). Considerable efforts are made to ensure that

the implementation meets the security requirement while at

the same time offering the desired query functions. REAR-

GUARD provides search functionality and performance com-

parable to the plaintext data search.

In summary, we make the following contributions in this

study. 1) We propose REARGUARD, an innovative approach

towards a dynamic secure keyword search scheme that em-

ploys the latest advancement in hardware-based secure exe-

cution – Intel SGX. The proposed system supports a rich set

of query functions comparable to plaintext IR while ensuring

the confidentiality and integrity of the query process. Our

design is secure against strong attacks including those from

compromised privileged software and low-level firmware. 2)

Our design mitigates the index search trace leakage from

the memory side channel by using oblivious keyword search

functions. This is one of the major concerns about SE in the

cloud where users and adversaries share resources. The system

defines and realizes two leakage profiles to balance security

and performance, both exhibiting substantially reduced index

search footprints. 3) We carefully design and implement the

popular IR functions into a fully-functional SGX-compatible

prototype. Our experiment with the real-world dataset reports a

performance close to that of plaintext data search with elevated

security protection.

II. BACKGROUND

This section provides background information on current SE

leakage, inverted index structure, and Intel SGX.

Privacy leakage in SE. Among many cryptographic primitives

for SE constructions, searchable symmetric encryption [2], [3],

computer | 13645:15;22005:1573,1579;26698:6352; |0.0333,0.0075,0.0018|1288.7500

Term Posting list

docID: Pos; TF IDF

Fig. 1. Example of an inverted index row.

[4] is the most publicized and investigated in the literature.

SSE exploits deterministic encryption for efficient keyword

match but its protection of keyword privacy is weak. Cash et
al. defined four leakage profiles, i.e. L4, L3, L2 and L1, for

SSE in the static setting to characterize the amount of informa-

tion leakage [9]. Specifically, L4 schemes reveal the number

of words, their orders and occurrence counts in a document.

Examples include some commercial products [7]. L3 profile

reveals all the above information except occurrence counts of

each keyword. L2-SSE schemes only disclose the keyword

number in a document. L1 reveals the same information as L2

but only for keywords that have been searched. Additionally,

all the leakage profiles also imply the revelation of index

search trace, including keyword search pattern, i.e. whether a

query is repeated, and access pattern, i.e. pointers to encrypted

files that satisfy the query. The majority of SSE adhere to

L2 or L1 leakage. Such information disclosure also leads to

forward privacy breach in the dynamic setting. This allows the

adversary to learn whether the newly added document contains

the keyword that has been queried before.

The consequence of the above leakage has not been well

studied. Many attacks against SSE have emerged to exploit the

leakage to partially or even fully recover the query and dataset

information [9], [10]. Further, public-key based constructions

are inherently vulnerable to predicate privacy leakage [11].

Namely, an adversary can generate ciphertexts with the public

key and infer the query during the search process.

Inverted index. Inverted index is widely adopted in modern

search engines and current SSE design. It enables sublinear

search complexity (w.r.t. the number of files in the dataset),

as well as rich query functions1 in the dynamic setting, such

as Boolean query, phrase query, ranked retrieval, spelling

correction. It is generated by applying the standard index-

ing techniques to the target dataset [22], e.g. tokenization,

stemming, stop words elimination, linguistic analysis, etc. In

particular, this data structure contains N index rows verti-

cally, where N equals the number of the extracted keywords

(or terms, we use them interchangeably hereafter) from the

dataset. Horizontally, it is divided into two major parts: a)

the vocabulary (or dictionary) that includes all the extracted

keywords, and b) the keyword-associated posting lists. Each

list as shown in Fig. 1 is composed of all the identifiers docID2

of the documents containing the keyword, term position Pos
in the corresponding documents, and other statistics, e.g. term

frequency (TF) and inverse document frequency (IDF), etc.

In general, a query is performed over the index by matching

the target keywords (Step 1), retrieving the associated posting

1Most SSE works only support simplified versions of inverted index for
extremely constrained query types, such as single keyword search.

2They can be pointers/URLs to the documents.

lists (Step 2) and evaluating query functions via information

from the acquired lists (Step 3). Note that in Step 1, we

can either linearly scan the vocabulary or use the hash table

with constant search cost. The observed leakage (see Sect. IV)

exists in both cases. For simplicity, here we choose to traverse

the vocabulary for keyword match.

Intel SGX. SGX is the latest Intel’s instruction extensions

that aim to offer integrity and confidentiality guarantees to

security-sensitive computation conducted on the commodity

computer. The privileged software and low-level firmware,

such as OS kernel, virtual machine hypervisor, and system

management mode, are all assumed to be potentially malicious

in the adversary model of SGX [20]. This is because the

TCB of SGX, compared to its predecessors, e.g., TPM, Intel

TXT, only contains the CPU and several privileged enclaves.

This significantly reduces the attack surface and provides

strong security guarantees. The memory region reserved for

the enclave, called enclave page cache (EPC), can only be

accessed when CPU enters the special enclave mode, which

enforces additional hardware checks on every external EPC

page access request. The EPC memory is encrypted and

authenticated by SGX Memory Encryption Engine (MEE)

[23], part of the memory controller within the CPU package.

Enclave can save the encrypted computation result onto the

untrusted persistent storage by using symmetric authenticated

encryption, such as GCM[AES]. The encryption key is derived

from the hard-coded root sealing key unknown to Intel. The

ciphertext can be loaded back and decrypted later by the same

enclave that encrypts it. In addition, SGX also provides the

remote attestation function to convince users of the integrity

of the established enclave before setting up the secure channel

and provisioning their secrets.

Besides physical attacks, SGX is also vulnerable to rollback

attack [23], Iago attack [19] and side-channel attacks, includ-

ing cache timing, power analysis, etc. SGX cannot defend

against DoS attack as the underlying resource allocation is still

controlled by the privileged system software. When applying

these attacks to an SGX-based search, the adversary can

interrupt the search process or/and infer the search privacy

by breaking the SGX protection. This is out of scope of this

paper. Further, memory trace leakage has been confirmed at

both page [15] and cache line level [16]. The leakage will

disclose index search trace to the adversary in SE. We aim to

mitigate such information disclosure in this work.

III. PROBLEM FORMULATION

A. Overview

Three entities, data owner, data user and SGX-enabled
server are involved in the system as shown in Fig. 2. Data

owner possesses a collection of n documents (we use “doc-

ument” or “file” to refer to any text content records, such

as text files, web pages), DB = {D1, D2, ..., Dn}, which in

turn contain m keywords W = {w1, w2, ..., wm}. Then he

generates an inverted index I for DB. Consistent with SSE

[2], [5] we decouple the storage of the dataset from the storage

Kernel space
Compromised

privileged codes

User space

Data
owner

Data
users

Enclave
Search Application

Remote attestation
& Key provision

Secure function call
& Encrypted data transfer SGX-enabled

Server

Untrusted
host

program

Fig. 2. REARGUARD framework

of its index3. We assume that the code of query algorithms

and associated parameters are public and have been preloaded

into the enclave that is set up by the server. Next, the data

owner authenticates himself to the server and launches remote

attestation to check the integrity of the code and static data in

the enclave. Then he establishes a secure channel and sends an

owner-generated secret key sko to the enclave. The data owner

also generates index ciphertext Ĩ under sko, for instance using

GCM[AES], and pass it to the server. Later he, under the same

sko
4, can issue an encrypted index update request τupd to add

or delete a document.

By going through a similar procedure, an authorized data

user i verifies the enclave that hosts the search code by remote

attestation. This guarantees the integrity of the execution of the

search program and correctness of the query result. The user

also shares his secret key skui
with the enclave and uploads

the query ciphertext τs under skui
to the server.

On the server side, search process begins with enclave

loading and decrypting index Ĩ and query τs with the corre-

sponding keys. The query is executed over the plaintext index

inside the enclave. The ciphertext ˜res of the result documents

id using skui
is sent back to user i. Another advantage of our

design over SSE is that it naturally supports the more realistic

multi-user setting because each user is able to search by his

own secret key shared with the enclave.

Definition 1: (REARGUARD) Our secure keyword search

scheme using trusted hardware is a tuple of three protocols

executed between the data owner, data users and the SGX-

enable server as follows:

• (sko, Ĩ) ← Setup(1λ, I): On input a security parameter

λ and an inverted index I for a dataset, it for the data

owner outputs a secret key sko that will be shared with

the verified enclave on the server and the encrypted index

structure Ĩ that will be stored on the server.

• (˜res, τs, skui) ← Search(1λ, Q, Ĩ, sko): On input the

security parameter λ, it outputs for the user i a secret

key skui
that will be shared with the attested enclave

on the server. Using skui
, it encrypts a query Q on some

keywords w into ciphertext τs, which is sent to the server.

3This is a common practice. For example, Google is only responsible for
index searching and maintaining, not hosting the actual web contents.

4A different secret key can be generated for each interaction with the server.

On input τs, Ĩ, sko, skui
, it outputs the search result

ciphertext ˜res under skui
for the user.

• (ĨΔ, τupd) ← Update(1λ, upd, Ĩ, sko): On input an in-

dex update request upd = {add/delete, w, id} (perform

addition or deletion of the file id over the posting list of

keyword w) and the owner’s secret key sko, it outputs an

update token τupd. On input τupd, Ĩ, sko, it produces an

updated index ĨΔ.

B. Adversary Model

We identify several keyword-dependent query operations

and propose oblivious index access techniques to ensure that

the adversary who observes a sequence of memory accesses

toward the index, including the addresses and encrypted con-

tents, has an indistinguishable view on index search (update)

operations from the exhibited memory traces given two search

(update) queries. Our security assumption is consistent with

SGX except that we extend the side-channel attacks to com-

prise any attacks using information not derived directly from

index access, such as target dataset statistics (e.g. posting

list length, keyword frequency, etc.), context information (e.g.

trending words, communication volume), and knowledge of

linguistics. We do not intend to defend against them in this

paper. We also aim to achieve query unlinkability, i.e. the

adversary cannot distinguish search tokens only by their ap-

pearances even for the same keywords, which is not supported

by most SSE. In what follows, we first define two leakage

profiles, L+
0 and L0 and then give our security definition.

Definition 2: (L+
0 – Complete index access trace hiding) It

reveals the initial index size at the setup phase, deterministic

index search trace and update pattern of the same operation

(add or delete) for any keyword.

Definition 3: (L0 – Partial index access trace hiding) This

profile reveals the initial index size at the setup phase, de-

terministic index search trace and update pattern of the same

operation for keywords in the same group (see Sect. IV).

Similar to SSE, we do not consider index access operation

types, i.e. search or update, to be sensitive information, albeit

they can be further protected at extra cost [24].

Security definition. We define the security of our scheme

based on the simulation model of the secure computation [4].

In particular, it requires that a real-world protocol execution

ΠF using the secure hardware functions be able to simulate

an ideal-world functionality F , such that an environment

Z , who produces all the input and reads all the output in

the system, cannot distinguish these two worlds. We define

the experiments RealΠF ,A,Z(λ) and IdealF,A,S,Z(λ) in real

world and ideal world respectively as follows based on both

leakage profiles L+
0 and L0.

RealΠF ,A,Z(λ): In the setup phase, an environment Z
instructs the data owner by sending him a “setup” message

to perform the Setup protocol with the real-world adversary

A. In each time step, Z specifies a search query Q for the

user or an update request upd = {add/delete, w, id} for

the data owner. The user (owner) executes Search (Update)

protocol. Z observes the protocol output for each search

(update) operation, which is either a protocol abortion ⊥,

search result, or update success. Finally, it outputs a bit b.
IdealF,A,S,Z(λ): In the setup phase, an environment Z

sends the data owner a message “setup”. Then the owner

forwards this message to an ideal functionality F , which

notifies an ideal-world adversary S of the leakage L+
0 (L0). In

each time step, Z specifies a search query Q for the user or

an update request upd = {add/delete, w, id} for data owner.

The user (owner) submits Q (upd) to F . Then S is notified

of the leakage L+
0 (L0) associated with the search (update)

operation by F . S sends F either “continue” or “abort”. F
outputs either search result, update success, or ⊥, which is

observed by the environment Z . Finally, Z outputs a bit b′.
Definition 4: (Semi-honest/malicious security) We say that

a protocol ΠF simulates the ideal functionality F in the semi-

honest/malicious model, if for PPT semi-honest/malicious

real-world adversary A, there exists an ideal-world simulator

S , such that for all non-uniform, polynomial-time Z ,

|Pr[RealΠF ,A,Z(λ) = 1]−Pr[IdealF,A,S,Z(λ) = 1]| ≤ neg(λ).

Our security definition covers both the semi-honest adver-

sary who faithfully follows the prescribed protocol and the

malicious adversary that arbitrarily deviates from the protocol.

Privacy of the scheme is guaranteed because S is only given

the leakage L+
0 or L0 during the simulation. The definition

also captures the correctness as data user or owner in the ideal

world receives either the expected result or a protocol abortion.

IV. OUR DESIGN

This section provides concrete design for REARGUARD,

especially focusing on the Search and Update phases. We

first deal with the fundamental single keyword query, which

is extensively studied in SSE. Then we describe the dynamic

setting and consider the scalability issue with SGX. In the end,

we discuss extensions to other common query functions, such

as spelling correction, Boolean query, phrase query, proximity

query, range query and similarity-based rank retrieval.

A. Single Keyword Query

1) Index Search Trace Leakage: The successful execution

of a single keyword query over an inverted index returns file

IDs within the posting list of the intended keyword. We iden-

tify two keyword-dependent operations in the single keyword

search algorithm in Fig. 4. The first sensitive operation is to

search for the intended keyword w in the vocabulary of the

index in Step 1 (see Sect. II). If and only if the condition

is met (line 3), the corresponding code block in Step 2 will

be executed to further retrieve the posting list of this keyword

(line 4) and then terminate the index search (line 5). We also

experimentally verify the existence of the leakage for different

keywords using Intel Pin framework [25] in Fig. 3. Memory

traces for different keyword matching in Step 1 are easily

distinguished in Fig. 3 (a) (b). If the first keyword is intended

as in Fig. 3 (a), the match hit can be observed followed by

a break operation. In the case of the third keyword being the

interest in Fig. 3 (b), we will first observe two misses, then the

Time

Ad
dr

es
s

index
preprocessing break

hit

(a)

Time

Ad
dr

es
s

index
preprocessing

break
miss

hit

(b)

Time

Ad
dr

es
s

For w1
For w2
For w3

preprocessing

posting list
retrieval

(c)

Fig. 3. Memory trace for keyword match in Step 1: (a) The first keyword match; (b) The third keyword match. (c) Memory trace for posting list retrieval
in Step 2 for the first three keywords.

Input: Query keyword w and inverted index I including m keywords, where Ri

is the ith index row. Define the data structure Rindex for Ri, where
Rindex.term is the term for this row and Rindex.plist is the
corresponding posting list with data structure Plist.

Output: Query result res.

1 res = ∅
2 for i = 1 → m do
3 if Ri.term == w then // Keyword-dependent condition

evaluation
4 res = Ri.plist // Keyword-dependent posting list

retrieval
5 break
6 end
7 end
8 return res

Fig. 4. Pseudocode for single keyword query.

match hit and the break in the end5. In Step 2 of posting list

retrieval, we can also differentiate the index search patterns

for different keywords effortlessly in Fig. 3 (c). The leakage

may still exist at different granularities even using SGX[15],

[16]. As a result, hiding memory traces of these two query-

dependent operations plays a critical role in our design.

2) Oblivious Keyword Search Primitives: In a nutshell, we

implement oblivious keyword search primitives to obfuscate

the memory traces during index access. The main idea is

similar to the techniques used in [12], [26] but we tailor them

for the purpose of secure keyword search. Specifically, we

realize the oblivious data transfer by X86 CMOVZ instruction,

which moves the source operand to the destination operand if

the condition code is true. When both source and destination

operands are put in registers, this data transfer turns out

to be oblivious and leaks no information about the branch

selection. Likewise, we are able to use CPU registers as private

storage to conceal the search footprints. For an oblivious read,

we first load contents into registers and then merely select

the data of interest. On the other hand, an oblivious write
operation is carried out as follows. It first obliviously read the

content. Should the data be intended, the updated content will

be stored; otherwise, the original data will be written back.

Since SGX uses randomized encryption to protect every write

operation by MEE, the adversary cannot infer the data content.

Moreover, we observe that the index search process consists of

5The miss may not be observable if we use a hash table, but we can still
capture the leakage by the address of the hit.

a sequence of read operations and that we only need to write

the index at the update phase. Note that it is unnecessary to

further obfuscate search and update operations similar to SSE,

while this can be done readily by additional dummy writes

after oblivious reads.

Oblivious keyword match. We design an OMatch() function

as shown in Fig. 5 to hide the trace from keyword match

by using the aforementioned oblivious data transfer primitive.

In particular, we store both the query and keyword in the

vocabulary in separate registers (line 8) and then compare them

(line 5). If there is a match, the pointer to the posting list of

the queried keyword will be returned; otherwise, it will return

a default dummy address (line 6).

Oblivious posting list retrieval. Another oblivious function

ORetrieval() is also adopted in order to hide the index search

trace for retrieving the posting list in Step 2. A posting list

will be obliviously retrieved only when its address matches

that returned by OMatch(); otherwise, ORetrieval() function

will return a dummy list. In addition, we can further improve

the efficiency of array reading by the vector register AVX2
instead of element-wise read using a general purpose register.

3) Put All Together: We will show the concrete design for

leakage profiles L+
0 and L0 respectively using the proposed

oblivious search functions.

L+
0 construction. The main idea behind the construction for

L+
0 leakage profile is to display the deterministic index search

trace for each query. Specifically, we first use OMatch() to

scan the entire vocabulary and obliviously match the queried

keyword. Then ORetrieval() function is executed to obtain

the posting list of the intended keyword after touching every

index row. We further obliviously pad the retrieved list for

every query to the predefined length l, l ≥ MaxLength(plists),
so as to further obscure the attacker’s view. Despite the

complexity O(N), our hardware-based scheme is efficient in

practice because of the fast protocol execution between the

CPU registers and DRAM of the server.

L0 construction. Our intention of creating L0 profile is to

speed up the search process by tolerating extra information

leakage compared to L+
0 but still to achieve better security

than SSE. We first randomly divide the keyword universe

W into groups and scan the index until the group including

the intended keyword has been searched. Next, the posting

1 OMatch(Rindex* rind, Term qterm, Plist* tmp){
2 Plist* match;
3 asm volatile (
4 “mov %3, %0;”
5 “cmp %1, %2;”
6 “cmovz %4, %0;”
7 : “=r” (match)
8 : “r” (rind → term), “r” (qterm), “r” (tmp), “r” (rind → plist)
9 : “cc”

10);
11 return match;
12 }

Fig. 5. OMatch() wrapper.

list of interest is obliviously retrieved from the group. This

construction results in a faster query process than L+
0 . Effi-

ciency can be further improved by using additional constant-

overhead data structures, such as hash table, Bloom filter, to

allow direct search over the target group. We also pad the

result list from group i to a preset length lgi , which is not

shorter than the longest list in the group. This L0 design

reveals which part of the index is being queried. However,

the adversary cannot differentiate two queries for the same

group through the disclosed aggregated group search pattern.

L+
0 can be considered a special case of L0 with only one group

– the entire index. We provide the detailed discussion on the

implication of group size in Sect. V.

4) Update: In the dynamic setting, the data owner is able

to update the index by adding (deleting) a file to (from)

the posting list of some keyword. We can leverage oblivious

write operation to blur the view on the update. In particular,

depending on the leakage profile, we first obliviously search

over the index and obtain the intended posting list. For file

addition, we insert the new file and its metadata to the retrieved

list. Then we obliviously write the updated list back to the

index, which increments the length of all the posting lists in

the group for L0 or in the entire index for L+
0 . Deleting a file

for a keyword follows the similar procedure by replacing the

target with a dummy file. In this case, the length of index

rows is unchanged. The type of update operation, add or

delete, is also revealed to the server by observing the size

of the updated index. Albeit we do not consider the leakage

sensitive, we can foil it by intentionally writing a dummy file

to the corresponding lists for the deletion operation.

The proposed approach may cause gradually increased index

storage over time. To address this issue, the data owner

downloads the index after a predefined number of update

operations. He then refreshes the index by deleting the dummy

files and randomly shuffles index rows. He also regroups the

index for L0 before encrypting and uploading it to the server.

As a result, the adversary only observes an aggregated update

pattern. The view can be further obfuscated by randomly

cleaning a portion of dummy files in the index.

5) Scalability: The problem with the straightforward im-

plementation of REARGUARD is that the EPC memory is

constrained by current SGX specification, i.e. 128MB in total.

Our experiment shows only about 95MB available for code

and data. This scalability problem affects all applications built

on Intel SGX at present. In the wake of indexing a large

dataset, the index size is likely to exceed the limitation. We

circumvent this pressing issue by splitting the original large

index into small partitions at the setup. These partition indexes

when sitting outside enclave are protected by authenticated

encryption, and loaded into enclave on demand. For L+
0 ,

all partitions are sequentially loaded and searched inside the

enclave. For L0, we adopt a hierarchical index structure for

efficient on-demand loading. Specifically, we put a small first-

level index (e.g. using hash table, Bloom filter) into the enclave

and use it to quickly pinpoint the second-level index partition

in the main memory containing the target group. Then the

enclave loads and obliviously searches over the partition. We

are also able to achieve faster search by dividing the original

index as per the groups. As such, only the intended group

index is fetched by the in-enclave primary index.

B. Additional Query Function Support

Besides the single keyword query, plaintext IR compasses

a variety of functions. Due to the page limit, we briefly

describe how to incorporate some popular functions into

REARGUARD design.

Spelling correction has a wide implementation in modern

search engines to provide users with correct search results

even in the presence of misspellings in the query. REAR-

GUARD can support this function by modifying OMatch().
Specifically, instead of exact keyword match, it checks whether

the keyword being accessed is within the predefined distance,

e.g. edit distance (ed), to the user input. If it is true, this

keyword is obliviously selected as the correct query.

Boolean query is another fundamental query type used

in database and free text search. The query is formed by

concatenating multiple keywords with logical operations, such

as AND, OR and NOT. Boolean query can be evaluated

by performing set operations, i.e. intersection, union, and

difference, in Step 3 based on the obliviously retrieved posting

lists. Related data manipulation does not touch the index in

this case. Thus, search trace will still be hidden.

Range query is extensively used in both database and free

text search to match the records with terms within a certain

range. We can either adopt a tree-based index in the enclave

with equivalent security level of SSE [17], or transform the

range query to a Boolean query [27] so as to achieve L0/L+
0

security. With the latter, we do not need to alter our base index

structure and seamlessly support this query type.

We observe that many query functions are carried out in

Step 3, the post index access phase. Proximity and phrase

queries are common query types. In phrase query, all the

matched documents should contain a particular sequence of

keywords while proximity query constrains the result by

specifying the allowed distances between queried keywords.

These two functions can be treated as special cases of Boolean

search with AND operation [22] and evaluated by using the

Pos information in the retrieved posting lists. Similarity-based

ranking is an advanced IR technique to rank result files by

their relevance to the query using statistics of the dataset, for

instance, the “TF × IDF” weight in the cosine measure of the

vector space model [28]. We can calculate the similarity score

after the posting lists are obliviously retrieved from the index.

V. SECURITY ANALYSIS

In this section, we prove the security of REARGUARD for

single keyword search. The proofs for other query functions

are similar due to the same protection methods.

Theorem 1: REARGUARD under L+
0 is secure against the

semi-honest adversary under Definition 4 if the underlying

SGX primitives are trusted and encryption is CPA-secure.

Proof: (Sketch). In the setup phase, S can output an index

I ′ with randomly generated index rows as per L+
0 . Then it

simulates the encrypted index Ĩ ′ = Encsko
(I ′), where sko is

randomly selected for the CPA-secure encryption Enc.
In the search phase, according to L+

0 , S randomly selects

a keyword w′ from I ′ as query Q′. τ ′s can be simulated by

Encsku
(Q′), where sku is randomly produced.

In the update phase, simulator S outputs upd′ =
{op, w′, id′} based on the leakage function L+

0 . Specifically,

op is either add or delete as per the revealed update pattern.

w′ is randomly chosen from I ′. id′ is also randomly selected

accordingly. Then S sets τ ′upd = Encsko
(upd′).

As a result, the environment Z in Definition 4 cannot

distinguish Ĩ ′, τ ′s and τ ′upd from Ĩ, τs and τupd in the experi-

ment RealΠF ,A,Z(λ) respectively due to the trusted execution

environment enforced by SGX and CPA-secure Enc.
Theorem 2: REARGUARD under L0 is secure against the

semi-honest adversary under Definition 4 if the underlying

SGX primitives are trusted and encryption is CPA-secure.

Proof: (Sketch). The proof for L0 construction is similar

to that in the L+
0 model except that

• For search, S randomly selects a keyword w′ in the

revealed group from L0.

• For update, w′ is randomly chosen from the revealed

group given the group access pattern leakage by L0.

Thus Z cannot distinguish Ĩ ′, τ ′s and τ ′upd from Ĩ, τs and

τupd in the experiment RealΠF ,A,Z(λ) respectively, due to

the secure hardware and CPA-secure encryption.

In addition, we are also able to realize the security against

the malicious adversary by proving the verifiability of the

scheme. In general, this can be done through the remote

attestation of SGX and replacing the CPA-secure encryption by

authenticated encryption. Our design implies forward privacy
(see Sect. II) as well by hiding the memory trace of index

update operation. Moreover, REARGUARD also achieves

query unlinkability by using semantically secure encryption

for the search and update token generation.

Privacy implication of group size in L0. Attacks on SSE

rely on precisely disclosed keyword search and access patterns

during the index search phase [9], [10] to uniquely iden-

tify the queried keyword and speculate the plaintext dataset

information. However, L0 only leaks the aggregated group

search/update pattern, including the number of keywords and

length of their associated posting lists in the group. The

adversary only knows if the queries are from the same group.

The probability of precise keyword-query linkage is 1/n for an

n-term group. Only given this, the adversary has no advantage

in compromising query privacy except for random guessing

as we have already proved. Therefore, regardless of the group

size, the probability of revealing a query is exactly 1/|W|, as

same as L+
0 . On the other hand, the adversary may exploit

side information, e.g. the lengths of posting lists, context,

communication volume, etc., to facilitate query identification.

These side-channel attacks are hard to defend even with fully

homomorphic encryption [29] and oblivious RAM (ORAM)

[24]. The group size makes no differences in this situation.

VI. IMPLEMENTATION AND EVALUATION

A. Implementation

In order for Intel SGX to offer its strong security guarantees,

libraries included in the enclave has to be carefully designed

to defend against potential malicious attacks [19]. At the

time of writing, SGX SDK (v1.6) supports only C/C++.

Many popular search software packages in other programming

languages, such as the JAVA-based Lucene, cannot be directly

adapted in the programming environment. Further, SGX uses

a customized version of C/C++ standard library that only

provides a limited subset of functions compared to the standard

C library for security reasons. Therefore, even applications

written in C/C++ such as Clucene cannot be directly migrated.

We developed our own implementation of the search functions

under the SGX development environment. To further alleviate

index search trace leakage, privacy-sensitive operations are

written using the memory-trace oblivious primitives. We built

a prototype of REARGUARD with about 4,000 LOC using

Intel SGX SDK v1.6 on Intel NUC, running Ubuntu 14.04

TLS. The NUC is powered by Intel i7-6770HQ Skylake CPU

with 6MB cache at 2.6 GHz and 8GB DRAM. According

to the vendor specification, the read and write speed of the

256GB SSD is 560 MB/s and 400 MB/s respectively. The AES

encryption and decryption are implemented with Intel AES-

NI instruction. This prototype supports common key query

types and functions, i.e. spelling correction, Boolean query,

proximity query, phrase query, range query (by converting to

Boolean query) and similarity-based ranking.

B. Performance Evaluation

The objective of our evaluation is to measure the perfor-

mance overhead of the proposed system with elevated security

protection. Existing SE work supports only a subset of all

the query functions we implemented. Plaintext and SGX-

only searches are used as the baselines and compared to

the proposed schemes in both L0 and L+
0 leakage models.

For plaintext search, we evaluate its performance over the

index entirely hosted in the main memory. SGX-only search

is conducted using SGX protection but without oblivious

operations, which can be generally deemed an L1-SE scheme

similar to [17]. Furthermore, we are interested in evaluating

the scalability of the proposed system when handling a large-

sized index that cannot be completely loaded into the EPC

memory.

1 2 3 4 5 6
Number of keywords

140

150

160

170

180

190

Ti
m

e
(m

s)

Plaintext
SGX only
L0

+

L0

(a)

1 2 3 4 5 6
Number of keywords

0

200

400

600

800

1000

1200

Ti
m

e
(m

s)

Plaintext
SGX only
L0

+

L0-1
L0-2

(b)

Fig. 6. (a) Search over small-sized index. (b) Scalable search over large-sized
index.

The experiments are conducted with a real-world dataset

– Enron Email Dataset [30], which contains about half mil-

lion files and has been extensively employed to evaluate SE

schemes [3], [5]. We extracted about 258, 000 keywords and

generated a 175MB inverted index after standard term stem-

ming and stop word elimination. We use 80-keyword groups

in L0. The performance was measured over AND Boolean

query, similarity-based ranking, and spelling correction (with

default ed = 1) at the same time in all cases to demonstrate the

efficiency and enriched query functions. We selected queries

uniformly from the keyword universe. The experimental result

is an average of 1,000 trials. For simplicity, we do not consider

the optimizations by advanced IR techniques, such as skip

pointers for AND Boolean query and index compression,

which are compatible with our scheme as we use the same

index structure.

Search over small-sized index. We first measure the effi-

ciency of searching over a small-sized index entirely residing

inside the enclave. In our experiment, we only have less than

40MB EPC memory available. We randomly select a portion of

the original index for all cases. The size of this index is about

35MB consisting of 50, 000 keywords approximately. It is

shown in Fig. 6 (a) that time efficiency for all the cases is pro-

portional to the number of keywords in the Boolean queries.

We find that search inside enclave is very efficient and only

costs about 0.62% additional time for encryption/decryption

operations, context switching, etc., compared to plaintext

search. On the other hand, REARGUARD are slightly slower

than plaintext case due to the proposed oblivious index access

functions. Although the L+
0 design brings an O(N) theoretical

complexity, our experiment shows that only 1.16× overhead

of plaintext search is incurred. The L0 construction is faster

than L+
0 as expected and displays a 6% efficiency loss versus

plaintext case. Note that 6 or fewer keywords in a query

accounts for more than 96% cases in reality [31], therefore

the experimental result in Fig. 6 is a representative for the

practical use.

Search over large-sized index. For the index with size

exceeding the available enclave memory, we divide it into

partitions. We set up 5 partition indexes, each about 35MB, in

our experiment. Plaintext search is still conducted over the

original index in the main memory. The SGX-only search

continues loading the index partitions until the match is

found. Compared to the plaintext query, the SGX-only case

in Fig. 6 (b) shows an average 1.12× efficiency loss due to

index loading, encryption/decryption, and context switching.

We sequentially load and search over all the partitions for

L+
0 , which is only about 1.45× slower than the plaintext

case. Although plaintext search time can further speed up by

optimizing the index structure, such as using our hierarchical

index design, the absolute time cost of L+
0 is still reasonable

considering its strong security assurance. In addition to the

overhead caused by SGX, the oblivious index access is the

most time-consuming operation.

We split L0 into two sub-cases. In L0-1, we exploit a

Bloom filter as the first-level index for each second-level index

partition. We construct five Bloom filter indexes with all the

false positive rate equal to 10−20, which merely consume

about 3.03MB EPC memory in total. When a hit is found

in the Bloom filter index, we only load and search over the

corresponding partition. In L0-2, we build the Bloom filter

for each group index with the same false positive rate as

in L0-1. The total size of the generated first-level index is

about 3.3MB. Only the target group index is loaded and

searched in the enclave in this case. In Fig. 6 (b), both cases

show nearly constant query time. L0-1 is slightly slower than

L0-2 mainly owing to the relatively large index used there.

Because we adopt a hierarchical index structure to allow search

over smaller indexes, the two L0 cases are faster than their

competitors. The plaintext and SGX-only search are expected

to be more efficient than L0 with the similar index design.

Index update. Updating index needs extra oblivious write

operations compared to the search. Two update query types

– add and delete – on the same index introduce almost the

same cost. For an update query toward a group index in

L0, the experiment shows about 1.09× slowdown versus its

counterpart search operation while L+
0 introduces 1.1× time

cost of the small-sized index search and 1.08× time cost of

the large-sized index search.

VII. RELATED WORK

Search over encrypted data. Curtmola et al. [2] proposed

the first searchable symmetric encryption scheme in the static

setting. It gave two security definitions, i.e. CKA1 and CKA2,

where the index search trace leakage is accepted for an

efficient query. Kamara et al. [3] proposed a dynamic version

of [2], supporting file insertion and deletion, but leaking

forward privacy during the update. A forward-private SE was

first explicitly considered in [4], where an ORAM-related tech-

nique was used to alleviate the privacy leakage but incurred

non-negligible overhead. Boneh et al. [6] built the first public

key encryption with keyword search from IBE. All the above

SE works only support single keyword query. Recently, the

secure Boolean query has been studied in the literature [5] but

it still leaks index search trace. Another line of works focus

on realizing secure range query. Sun et al. [27] solved this

problem by reducing a range query to a secure multi-keyword

query in the genomic study scenario. Recently a concurrent

work by Fuhry et al. [17] was proposed to realize secure

range query on an SGX-enabled server. However, the security

is still consistent with current software-based SSE. In [18], a

private database query scheme was proposed also using secure

hardware. But it did not provide formal security analysis and

their TCB is much larger than ours. Therefore, current SE

only covers a small subset of plaintext query functions and

cannot provide security guarantees beyond L1 leakage while

maintaining efficiency.

Applications with secure hardware. Recent years has seen

increasing interest in building applications on top of secure

hardware. Santos et al. [13] proposed a trusted language

runtime using ARM TrustZone framework to protect the con-

fidentiality and integrity of .NET mobile applications. In IoT

setting, Ambrosin et al. [14] exploited secure hardware com-

ponent to enable an asymmetric-key based swarm attestation

protocol on IoT devices. There are recent efforts on harnessing

Intel SGX to achieve security and privacy preservation for

various applications. VC3 [32] was designed to realize the

verifiable and confidential execution of MapReduce jobs in an

untrusted cloud environment by using SGX. Zhang et al. [33]

proposed an authenticated data feed system based on SGX,

which acted as a trustworthy proxy between HTTPS-enabled

servers and smart contracts. Ohrimenko et al. [12] studied the

problem of multi-party machine learning on an SGX-enabled

server. Besides the confidentiality, they also considered the

data-dependent memory trace leakage pertaining to the related

machine learning algorithms.

VIII. CONCLUSION

In this work, we propose REARGUARD, the first secure

keyword search scheme based on the off-the-shelf trusted

hardware to achieve query functions comparable to plaintext

IR while ensuring the confidentiality and integrity of the query

process. We define two new privacy leakage profiles for SE

and present corresponding constructions, which reveal much

fewer search footprints than the state-of-the-art software-based

solutions. We present approaches beyond the capability of the

underlying hardware primitive by designing effective oblivious

keyword search functions. Our implementation with the real-

world dataset shows its practicality and efficiency.

ACKNOWLEDGMENTS

We are grateful to Dr. Ning Zhang for his invaluable

suggestions and feedback. This work was supported in part

by the NSF grants CNS-1446478, CNS-1405747, and CNS-

1443889.

REFERENCES

[1] D. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proc. of IEEE S&P, 2000, pp. 44–55.

[2] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient constructions,”
in Proc. of ACM CCS, 2006, pp. 79–88.

[3] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proc. of ACM CCS, 2012, pp. 965–976.

[4] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable
encryption with small leakage.” in NDSS, vol. 71, 2014, pp. 72–75.

[5] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner,
“Highly-scalable searchable symmetric encryption with support for
boolean queries,” in CRYPTO 2013, pp. 353–373.

[6] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public key
encryption with keyword search,” in EUROCRYPT 2004, pp. 506–522.

[7] CipherCloud, “Cloud data encryption,” http://www.ciphercloud.com/
technologies/encryption/, 2017.

[8] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-preserving
symmetric encryption,” in EUROCRYPT 2009, pp. 224–241.

[9] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in Proc. of ACM CCS, 2015, pp. 668–
679.

[10] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong
to us: The power of file-injection attacks on searchable encryption,” in
Proc. of USENIX Security, 2016, pp. 707–720.

[11] E. Shen, E. Shi, and B. Waters, “Predicate privacy in encryption
systems,” in TC, 2009, pp. 457–473.

[12] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious multi-party machine learning on
trusted processors,” in Proc. of USENIX Security, 2016, pp. 619–636.

[13] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using ARM TrustZone
to build a trusted language runtime for mobile applications,” in Proc. of
ASPLOS, 2014, pp. 67–80.

[14] M. Ambrosin, M. Conti, A. Ibrahim, G. Neven, A.-R. Sadeghi, and
M. Schunter, “SANA: Secure and scalable aggregate network attesta-
tion,” in Proc. of ACM CCS, 2016, pp. 731–742.

[15] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Determin-
istic side channels for untrusted operating systems,” in Proc. of IEEE
S&P, 2015, pp. 640–656.

[16] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-
R. Sadeghi, “Software grand exposure: SGX cache attacks are practical,”
arXiv preprint arXiv:1702.07521, 2017.

[17] B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum, and A.-R.
Sadeghi, “HardIDX: Practical and secure index with SGX,” in Proc. of
DBSec, vol. 10359, 2017, p. 386.

[18] S. Bajaj and R. Sion, “TrustedDB: A trusted hardware-based database
with privacy and data confidentiality,” IEEE TKDE, vol. 26, no. 3, pp.
752–765, 2014.

[19] S. Checkoway and H. Shacham, “Iago attacks: Why the system call
API is a bad untrusted rpc interface,” in Proc. of ASPLOS, 2013, pp.
253–264.

[20] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” in Proc. of ACM HASP, 2013.

[21] D. Kaplan, J. Powell, and T. Woller, “AMD memory encryp-
tion,” http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/
12/AMD Memory Encryption Whitepaper v7-Public.pdf, 2016.

[22] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to informa-
tion retrieval. Cambridge university press, 2008, vol. 1, no. 1.

[23] V. Costan and S. Devadas, “Intel SGX explained,” IACR Cryptology
ePrint Archive, vol. 2016, p. 086, 2016.

[24] O. Goldreich, “Towards a theory of software protection and simulation
by oblivious rams,” in Proc. of ACM CCS, 1987, pp. 182–194.

[25] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in ACM Sigplan
Notices, vol. 40, no. 6, 2005, pp. 190–200.

[26] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels
through obfuscated execution,” in Proc. of USENIX Security, 2015, pp.
431–446.

[27] W. Sun, N. Zhang, W. Lou, and Y. T. Hou, “When gene meets cloud:
Enabling scalable and efficient range query on encrypted genomic data,”
in Proc. of IEEE INFOCOM, 2017, pp. 1–9.

[28] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and H. Li, “Privacy-
preserving multi-keyword text search in the cloud supporting similarity-
based ranking,” in Proc. of ACM AsiaCCS, 2013, pp. 71–82.

[29] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford University, 2009.

[30] W. W. Cohen, “Enron email dataset,” https://www.cs.cmu.edu/∼./enron/.
[31] KeywordDiscovery, “Keyword and search engines statistics,” https://

www.keyworddiscovery.com/keyword-stats.html?date=2017-04-01.
[32] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-

Ruiz, and M. Russinovich, “VC3: Trustworthy data analytics in the cloud
using SGX,” in Proc. of IEEE S&P, 2015, pp. 38–54.

[33] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier:
An authenticated data feed for smart contracts,” in Proc. of ACM CCS,
2016, pp. 270–282.

