
Abstract - It is well-known that Distributed Delay-Constrained
Least-Cost (DCLC) unicast routing problem is NP-complete. In
this paper we propose an efficient distributed algorithm, namely,
selection function based DCLC (SF-DCLC), based on a novel
selection function for the DCLC problem. The proposed SF-
DCLC algorithm requires limited network state information at
each network node and is always able to find a loop-free path
satisfying the delay bound if such paths exist. Simulation study
shows that the SF-DCLC is not as sensitive to the delay bound
and network size as some other DCLC routing algorithms, and
attains very low cost-inefficiency (less than 3% to the optimal
one) in various network scenarios we simulate. The most
attractive feature of SF-DCLC is that SF-DCLC has very high
probability to find the optimal solution or a near-optimal
solution in polynomial time with low computational complexity
and message complexity.

Keywords: DCLC, QoS, Routing, Unicast routing.

I. INTRODUCTION
The emerging distributed real-time multimedia applications

have divergent and stringent service requirements, defined as
Quality of Service (QoS) metrics in the Service Level
Agreement (SLA) between the service provider and the
application user. For example, the delay-sensitive applications
such as real-time voice and video require the data stream to be
received at the destination within certain time. Much work has
been done within the Internet Engineering Task Force (IETF)
in order to provide the support to such QoS requirements in the
current computer networks. Many service models and
mechanisms have been proposed, including the integrated
service/Resource Reservation Protocol (RSVP) model, the
differentiated services (DS) model, Multi-Protocol Label
Switching (MPLS), traffic engineering, and QoS routing [1].

QoS routing is one of the most promising mechanisms. The
basic function of QoS routing is to find a feasible path, which
has sufficient residual (unused) resources to satisfy the QoS
requirements of a connection. Here, the QoS requirement is
represented as a set of constraints, which can be link
constraints, end-to-end path constraints, or tree constrains for
the entire multicast tree. The constraints can also be constraints
on bandwidth, delay, delay jitter, loss ratio, and so on. In
addition, a QoS routing algorithm should also consider the

This work was supported in part by the Office of Naval Research Young
Investigator Award under grant N000140210464 and the Office of Naval
Research under grant N000140210554.

optimization of resource utilization, which is usually measured
by an abstract cost metric. The optimization of QoS routing
then is to find the lowest-cost path among all the feasible paths
[2].

Many QoS routing algorithms have been proposed with a
variety of constraints considered. For unicast routing problem,
the path-constrained path-optimization (PCPO) and the multi-
path-constrained (MPC) problem are the most notorious ones
for their NP-complete property [2]. PCPO routing is to find a
path, which satisfies the required path constraint and is
optimized on another QoS metric, such as cost. An example of
PCPO is the delay-constrained least-cost (DCLC) routing,
which is to find a least-cost path with bounded delay. MPC
routing is to find a path, which satisfies multiple path
constraints. An example of MPC is the delay/delay-jitter-
constrained routing, which is to find a path with both bounded
delay and bounded delay jitter. The two are related, MPC may
be simpler than PCPO because MPC dose not optimize on any
metric, instead, it only finds a path that meets all the
constraints. Due to their NP-complete property, they cannot be
solved in polynomial time. Heuristic algorithms have been
proposed to find the near-optimal solution.

Much work has been done to solve the MPC problem. Jaffe
[3] proposed a pseudo-polynomial heuristic and a polynomial-
time heuristic for the MPC problem when the metrics values
are in small range. Based on the Dijkstra’s algorithm, Wang et
al [4] proposed an algorithm to find a path satisfying the
bandwidth and delay constraint. Chen et al [5] mapped the
unbounded link metrics into bounded integers, then tried to
solve the MPC problem with extended the Bellman-Ford
(EBF) algorithm or the extended Dijkstra’s algorithm (EDSP).
Neve et al [6] proposed a non-linear function of link cost and
delay to convert the problem into a much easier single-metric
routing problem. Meanwhile, the DCLC problem, one of the
most famous PCPO problems, has attracted much research
attention. In 1994, Widyono [7] proposed a Constrained
Bellman-Ford (CBF) algorithm that can solve the DCLC
problem optimally. Unfortunately, the worst case running time
of the CBF grows exponentially with the network size. Other
researchers tried to map the DCLC problem into the possibly
easier MPC problem. Guo et al [8] introduced a cost bound
according to the network state and then employed the k-
shortest path algorithm with a non-linear function of the path
delay and cost to search the path that meet the required delay
constraint and cost constraint. In [9][10][11], the authors

A Selection Function Based Distributed Algorithm
for Delay-Constraint Least-Cost Unicast Routing

Wei Liu Wenjing Lou Yuguang Fang
Department of Electrical and Computer Engineering

University of Florida
Gainesville, FL 32611

Email: {liuw@, wjlou@, fang@ece.}ufl.edu

1738
0-7803-7802-4/03/$17.00 © 2003 IEEE

proposed similar algorithms based on the Lagrange relaxation
technique. The basic idea is to first construct an aggregate
weight with linear or non-linear function, and then use
Dijkstra’s algorithm repeatedly to find a feasible path. In
[12][13][14], the authors proposed three distributed algorithms
in order to alleviate the centralized computation overheads.
However, these heuristics for the DCLC problem are either too
complex in terms of computation or communication message,
or too costly in terms of execution time, or fail to find the
optimal solution with reasonable possibility.

In this paper, we propose a more efficient distributed
algorithm, namely, SF-DCLC, for DCLC unicast routing. The
proposed algorithm makes the use of two vectors, the least
delay path vector and the least cost path vector, similar to the
ones used in [12][13]. Our new algorithm uses a novel
selection function, which is able to lead the heuristics to a
satisfying path closer to the optimal one. This algorithm can
easily find a loop-free delay-constrained path with only O(|V|)
message complexity in the worst case and has very high
probability to find the optimal solution if such solution exists.

II. PROPOSED SF-DCLC ROUTING ALGORITHM

A. Description of the DCLC Routing Problem
A network is modeled as a connected, directed graph

G=(V, E), where V is the set o f the network nodes and E is the
set of edges representing physical or logical connectivity
between nodes. Let R+

 denote the set of non-negative real
numbers. Two non-negative functions are defined associated
with each link e (e ∈E): the delay function delay(e):E→R+ and
the cost function cost(e):E→R+. Each link may be asymmetric,
that is, the costs and the delays of the link e=(vi, vj) and the link
e’=(vj, vi) may have different values. We also define the non-
negative delay and cost functions for any path p as

∑
∈

=
pe
delay(e)pdelay)(and ∑

∈
=

pe
t(e)pt cos)(cos

Given a source node s∈V, a destination node d∈V, and a
positive delay constraint ∆, the DCLC routing problem is to
find a path p from s to d such that min{cost(p), p∈Pd} is
achieved, where Pd is the set of all feasible paths from s to d
that satisfy the delay constraint ∆, i.e. delay(p)≤ ∆.

It is well-known that the DCLC problem is NP-complete
even for undirected networks.

B. Routing Information – the Vectors
The traditional distance vector routing algorithms operate

by having each router maintains a table (i.e, a vector), which
gives the best known distance to each destination and which
outgoing link to use to get there. While in the DCLC routing
algorithm, each node maintains two vectors, the least delay
vector and the least cost vector, which provide the best known
values on two different metrics, delay and cost. Each vector is
indexed by, and containing one entry for, each node in the
network. One entry in the least delay vector contains the
following information (assume at node vi):

• vj: the destination node identity

• delay(Pld(vi,vj)): the delay of the least delay path
Pld(vi,vj);

• cost(Pld(vi,vj)): the cost of the least delay path Pld(vi,vj);
• nid(Pld(vi,vj)): the next hop on the least delay path

Pld(vi,vj);
where the least delay path Pld(s,d) is the path from s to d which
satisfies delay(Pld(s,d))=min{delay(p),p∈P(s,d)}, where P(s,d)
is the set of all possible path from s to d.

Similarly, the entry in the least cost vector contains the
following information:

• vj: the destination node identity
• delay(Plc(vi,vj)): the delay of the least cost path Plc(vi,vj);
• cost(Plc(vi,vj)): the cost of the least cost path Plc(vi,vj);
• nid(Plc(vi,vj)): the next hop on the least cost path

Plc(vi,vj);
where the least cost path Plc(s,d) is the path from s to d,

which satisfies cost(Plc)=min{cost(p), p∈P(s,d)}, where P(s,d)
is the set of all possible path from s to d.

The least delay vector and the least cost vector are similar
to the vector used in the existing distance vector routing
protocols. We assume that each node always knows the delay
and cost to all its neighboring nodes. Then, the same procedure
used to update and maintain the vector in the existing distance
vector routing protocol can be used to update and maintain
these two vectors. We further assume that the contents of the
vectors are up-to-date and the contents of the two vectors do

Step 1: (Initially at source node s)
 if (delay(Pld(s,d))≤ ∆) (1)
 delaySoFar=0; Psf={s};
 goto step2;
 else
 “the delay-constrained path does not exist”; stop

Step 2: (Upon receiving a PATH_CONSTRUCT message or
at source node s)

 if (this_node≠d)
 if delay(Plc(this_node,d)) + delaySoFar ≤ ∆ (2)
 delaySoFar = delaySoFar
 +delay(this_node, nid(Plc(this_node,d)));
 Psf= Psf + nid(Plc(this_node,d));
 v= nid(Plc(this_node,d));
 Send PATH_CONSTRUCT to v;
 else
 for each neighboring node w and w∉ Psf
 calculate judge(this_node,w);
 end
 v=select(this_node);

delaySoFar = delaySoFar +delay(this_node,v);
 Psf= Psf +v;
 Send PATH_CONSTRUCT to v;
 end
 else
 “path found, Psf”; stop

Figure 1. Pseudo code for the SF-DCLC algorithm

1739

not change during the route setup period.

C. Operation of SF-DCLC
The proposed SF-DCLC algorithm

constructs the DCLC path node by node
from the source node s to the destination
node d. Each node chooses its subsequent
node by evaluating a judge function judge()
on all its neighbors. A special
PATH_CONSTRUCT message is sent by
the node to its selected subsequent node that
requests the continuing construction of the
path, till the destination. The
PATH_CONSTRUCT message contains the
following information {d, ∆, delaySoFar,
Psf(s,d)}, where d is the destination node
identity, ∆ is the delay bound, delaySoFar is
the accumulated delay till the current node,
and Psf(s,d) is the set of nodes indicating the
found DCLC path from s to d.

The operation of the algorithm is
summarized in Figure 1. Initially, the source
node s checks if condition (1) is satisfied. If
(1) is not satisfied, there is no path exist that
meets the given delay constraint from s to d
and the SF-DCLC stops. Further action could be interactive
negotiation with the application for looser constraint, which is
out of the scope of this paper. If condition (1) is satisfied, that
means there should exist at least one or more feasible paths that
satisfy the delay constraint. Then the source node s proceeds to
check condition (2). If (2) is satisfied, the least cost path
Plc(s,d) is the optimal path. A PATH_CONSTRUCT message
{d, ∆, delay(s,nid(Plc(s,d)), {s}} is sent to node nid(Plc(s,d))
from its least cost vector. If condition (2) is not satisfied, it will
compute functions judge() and select() and based on which, the
subsequent node is chosen. Assume that the current node is vi,
for each neighboring node vj, the function judge() is defined as
follows,

∞+
∆≤++

+

=

otherwise
)),((),(

)),((cos
),('cos),(cos

),(

dvPdelayvvdelaydelaySoFar
dvPt

dvtvvt

vvjudge

jldji

ilc

jji

ji

where

∆≤++

=

otherwise)),((cos
)),((),(

)),((cos

),('cos

dvPt
dvPdelayvvdelaydelaySoFar

dvPt

dvt

jld

jlcji

jlc

j

 Then, the function select() is to choose the node, say w,
whose judge function value judge(vi,w) is the minimum among
all the neighboring nodes. If more than one nodes have the
same minimum value, choose the one with the least

delaySoFar +delay(vi,vj) +delay(Plc(vj,d)).

Once the subsequent node has been chosen, a new
PATH_CONSTRUCT message is formed and sent to that
node. The new delaySoFar contained in the new message
equals to the old delaySoFar plus the delay of link vi to w. The
new Psf(s,d) is the old Psf(s,d) concatenated by node w.

When node different from the destination receives the
PATH_CONSTRUCT message, it will repeat the similar
procedure in step 2 and send the PATH_CONSTRUCT
message to the next hop it selects. When
PATH_CONSTRUCT message arrives at the destination d, the
algorithm terminates and a feasible path Psf(s,d) has been
found. Further action such as resource reservation can be
performed.

The messages transmitted during the path finding
procedure is one PATH_CONSTRUCT per node (except the
destination node). In the worst case, the longest path from the
source to the destination contains |V| nodes, then the message
complexity for the path finding is O(|V|), where |V| is the
number of nodes in the network.

We notice that the proposed SF-DCLC takes advantage of
the judge function approach used in [14] by using a better
judge function. It is different from [13] in the sense that [13]
only uses information from two nodes on the Least-Delay path
and Least-Cost path, while our algorithm utilizes all
neighboring nodes.

D. An example
Figure 2 shows an example of the path constructed by the

SF-DCLC algorithm from source s=A to destination d=B with
∆=3.5. The least delay path from A to B is path (A→E→B),
the least cost path from A to B is path (A→ B).The SF-DCLC
path Psf(A,B) found is path (A→C→E→B) for ∆=3.5.

 A’s Vectors
Dest D_LD C_LD D_LC C_LC
 E 1 5 2 4
 D 4 2 4 2
 C 1 3 1 3
 B 2 12 5 4
 A 0 0 0 0

 E’s Vectors
Dest D_LD C_LD D_LC C_LC
 E 0 0 0 0
 D 4 2 4 2
 C 1 1 1 1
 B 1 7 5 4
 A 1 5 2 4

 B’s Vectors
Dest D_LD C_LD D_LC C_LC
 E 1 7 5 4
 D 5 9 8 4
 C 2 8 4 3
 B 0 0 0 0
 A 2 12 5 4

 C’s Vectors
Dest D_LD C_LD D_LC C_LC
 E 1 1 1 1
 D 4 1 4 1
 C 0 0 0 0
 B 2 8 4 3
 A 1 3 1 3

At Node A
judge (A,C) = (3+8)/4
judge(A,E) = (5+7)/4

select (A) = C

At Node C
judge (C,E) = (1+7)/3

judge (C,B) = +
judge (C,D) = +
select (C) = E

∞

∞
At Node E

judge (E,D) = +
judge (C,B) = (7+0)/4

select (E) = B

∞

At Node B
SF-DCLC terminates

Figure 2. A example of the construction of the path from node A to
node B with delay bound of 3.5 using SF-DCLC. Figures along

links are (delay, cost) for both direction.

 (4,1)

D

 (1,5)

A

C

(4,2)
(4,2)

(8,6)

(1,7)

(5,4)

(1,3)

B

 (1,1)

(4,3)

(delay,cost)

s=A, d=B, =3.5

E

∆

D_LD Delay of LDP
C_LD Cost of LDP
D_LC Delay of LCP
C_LC Cost of LCP

1740

Obviously, our algorithm leads to a better choice: a path with
lower cost while meets the delay constraint.

III. PERFORMANCE EVALUATION

A. Simulation Environment
In this section we evaluate the performance of the proposed

SF-DCLC algorithm by simulation. We develop a unicast
routing simulator to carry out the simulation. A random graph
generator based on Waxman’s generator [15] is implemented
to create the networks. In our simulation, the generator can
always generate connected graph with average node degree of
4, which is close to the average node degree of the current
Internet. Each node has at least 2 outgoing links. The cost
value of the link varies from 1 to 8 with uniform distribution.
As to the delay in our simulation, we only consider propagation
delay, which depends on the distance between the
communication nodes. In order to capture the delay
characteristics of the national wide network, the delay values of
the links are selected from three ranges. 75 percent of the delay
values are selected from the first range (1-5 ms), which
represents the short local links. 20 percent are selected from (5-
8 ms), which represents the long local links. The remaining 5
percent are from (20-30ms), representing the continental links.
In our simulation we assume the links are undirected. The
simulation is repeated with network size ranging from 20 nodes
up to 200 nodes. ∆ is randomly selected from a range
corresponding to the delay level ranging from 1 to 5, where the
delay level is a new comparison index we introduce in this
paper and will be described in the next subsection. For a
specific network size, 5 network instances are used, and for
each network instance 100 routing requests are generated.

For comparison purpose, we also implement three other
algorithms, LDP, CBF, and DCR. The LDP algorithm is used

to find the least delay path. As we mentioned in
Section 1, when there exists a feasible path, the
CBF algorithm can always find the optimal DCLC
path from source s to destination d. The DCR
algorithm proposed in [13] is very similar to the
DCUR algorithm proposed in [12], while DCR
improves the worst-case performance of DCUR by
avoiding, instead of detecting and removing, loops.
DCR is a well-performed DCLC algorithm, so we
also compare the performance of our SF-DCLC
algorithm with DCR.

B. Performance Metrics
In the literature of the performance comparison

of DCLC algorithms [12,13,14], arbitrary ∆ value is
used in the whole set of networks, regardless the
source, destination and the actual delay between
them. However, according to the operation of the
DCLC operation, when ∆<delay(Pld(s,d)), there is
no feasible path. All the algorithms would not be
able to find a path satisfying that bound. When ∆≥
delay (Plc(s,d)), CBF, DCR, SF-DCLC should all
find the same path Plc(s,d). Only when
delay(Pld(s,d))≤∆<delay(Plc(s,d)), there exists one
or more feasible paths and it depends on the routing
algorithm to find out the optimal feasible path.
Thus an arbitrary ∆ is not an efficient comparison

index because for some network instance, this bound might be
too loose or too stringent that fails to reveal the sophistication
of the algorithms. Here, we introduce a new comparison index
metric, delay level, which is related to the actual delay between
each source and destination. We divide the range between
[delay(Pld(s,d)), delay(Plc(s,d))) into 5 equal length period, each
period corresponding to a delay level (1,2,3,4,5). Thus the
smaller the delay level, the more stringent the bound is. In our
simulation, ∆ is randomly selected from the period
corresponding to the five delay levels. The simulation results
do not count the cases where delay(Pld(s,d))=delay(Plc(s,d)).

Since the CBF algorithm can always find the optimal
DCLC path from source s to destination d, the cost of the path
found by CBF, cost(PCBF), can be viewed as the lower bound
of the cost of feasible DCLC paths. On the other hand, the least
delay path Pld(s,d) is always a feasible path if the delay bound
∆ is appropriately chosen. The cost of Pld(s,d) can be viewed as
a sort of upper-bound (although theoretically there should not
be a upper-bound) on the cost of feasible DCLC paths if such a
path exists. We define the following two performance metrics
to compare the proposed algorithm with other algorithms.

• Cost Inefficiency (CI):

)(cos
)(cos)(cos

CBF

CBFA
A Pt

PtPt −
=δ

where A represents the algorithm by which the path is
found. In our simulation, A could be LDP, DCR or SF-DCLC.
This metric is used to evaluate the quality of the paths found.

• Optimality Miss Ratio (OMR): The probability that the
path found is not the optimal one, e.g. different from the path

1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

Delay Level

C
I (

%
)

Node#=40 LDP
Node#=40 DCR
Node#=40 SF-DCLC
Node#=100 LDP
Node#=100 DCR
Node#=100 SF-DCLC

1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

Delay Level

O
M

R
 (%

)

Node#=40 LDP
Node#=40 DCR
Node#=40 SF-DCLC
Node#=100 LDP
Node#=100 DCR
Node#=100 SF-DCLC

(a) CI vs. delay level (b) OMR vs. delay level

(size of network = 40, 100) (size of network = 40, 100)

20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

Size of Network

C
I (

%
)

DL=2 LDP
DL=2 DCR
DL=2 SF-DCLC
DL=4 LDP
DL=4 DCR
DL=4 SF-DCLC

20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

Size of Netowrk

O
M

R
 (%

)

DL=2 LDP
DL=2 DCR
DL=2 SF-DCLC
DL=4 LDP
DL=4 DCR
DL=4 SF-DCLC

(c) CI vs. size of network (d) OMR vs. size of network

(delay level (DL) = 2,4) (delay level (DL) = 2,4)

Figure 3 Performance comparison

1741

found by CBF. This measurement is used to evaluate an
algorithm’s capability to find the optimal path.

C. Simulation Results
First we examine the performance of the routing algorithms

on various delay constraint levels. Figure 3(a) shows the cost-
inefficiency versus delay level for the cases that the size of the
network is 40 and 100 nodes. Figure 3(b) shows the non-
optimality versus delay level for the same cases.

We should point out here that all three routing algorithms
are capable of finding a feasible path if such a path exists.
However, the path found by different algorithms might be
different and of different costs. It is observed that, given the
network size, the Cost Inefficiency (CI) and the Optimality
Miss Ratio (OMR) for PLDP grow faster than that of PDCR and
PSF with the increase of delay level. When delay bound is very
stringent, the CI and the OMR of the three compared
algorithms are very close, because in this case, the number of
feasible paths is small, the CBF, DCR, and SF-DCLC are all
likely to choose the least delay path Pld, thus the CI and the
OMR are very close and low. While when the delay level gets
higher, the number of existing feasible paths is larger and the
algorithms have better chances to choose different paths, thus
have different CI and OMR performance. It is observed that the
paths found by the proposed SF-DCLC algorithm is very close
to the optimal one at all levels of delay constraints, e.g. less
than 3% CI and less than 15% OMR, compared with 15% CI
and 47% OMR for DCR algorithm, and 23% CI and 54%
OMR for LDP algorithm.

Next we examine the performance of the routing algorithms
on networks with various sizes. Figure 3(c) shows the CI
versus size of the network for the cases that the delay level
(DL) is 2 and 4; Figure 3(d) shows the OMR versus the size of
network for the same cases.

It is observed that the performance of all the three
algorithms is not sensitive to the network size. The CI and
OMR of the proposed SF-DCLC algorithm are relative steady
in all sizes of networks, while those of LDP and DCR increase
slightly with the increase of the network size. Another
observation is that the CI and the OMR of the paths found by
SF-DCLC are very low and always lower than the other two
algorithms, indicating that the cost of SF-DCLC path is very
close to the optimal one and better than paths found by the
other two algorithms. Thus the SF-DCLC algorithm has better
ability to find better path than the other two.

If we look back figure 2, we will find that the SF-DCLC
path found in that example is A→C→E→B with cost 11, while
the path found by DCR is A→E→B with cost 12.

IV. CONCLUSIONS AND FUTURE WORK
In this paper we study the DCLC problem, which is crucial

for the emerging delay sensitive applications. We propose a
distributed unicast routing algorithm, namely, SF-DCLC, based
on a special selection function. This algorithm is always able to
find a loop free path with low computation complexity if such
path exists. The message complexity for the path finding is
O(|V|), which does not grow exponentially with network size,
thus scale well with the increase of the network size. We

propose a new comparison index, delay level, other than the
arbitrary ∆ value that is commonly used in other papers on
DCLC problem. We also evaluate our algorithm by comparing
with DCR, LDP and CBF in terms of path cost and optimality.
Our simulation results show that SF-DCLC has much better
performance than DCR and LDP. The SF-DCLC is insensitive
to network sizes and delay levels. The cost inefficiency of SF-
DCLC compared to CBF, the optimal one, is less than 3% with
different delay levels and different network sizes. The
optimality miss ratio of SF-FCLC is much less than that of
DCR and LDP. Thus the most attractive feature of the SF-
DCLC algorithm is that, it has very high probability to find the
optimal path, as found by CBF.

A possible improvement to SF-DCLC is to modify the
selection function to take the delay into consideration. Since
our algorithm can always find a delay-constrained path with
promising cost, our future work is to extend the algorithm to
support multi-path or multicast routing for the delay-sensitive
multimedia applications.

REFERENCE
[1] X. Xiao, L. M. Ni, “Internet QoS: A big picture”, IEEE Networks, pp. 8-

18, March/April 1999
[2] S. Chen and K. Nahrstedt, “An overview of quality of service routing for

next-generation high-speed networks: problems and solutions”, IEEE
Networks, pp.64-79, Nov/Dec 1998

[3] J.M. Jaffe, “Algorithms for finding paths with multiple constraints”,
Networks, 14:95-116, 1984.

[4] Z. Wang and J. Crowcroft, “Quality-of-Service Routing for Supporting
Multimedia Applications”, IEEE Journal on Selected Areas in
Communications, Vol.14, no.7, pp.1228-1234, September 1996

[5] S. Chen and K. Nahrstedt, “On finding multi-constrained paths”,
ICC’98, pp.874-879, Atlanta, GA, 1998.

[6] H. De Neve, P. V. Mieghem, “A multiple quality of service routing
algorithm for PNNI”, Proc. of the ATM Workshop, pp.324-328, May
1998.

[7] R. Widyono, “The design and evaluation of routing algorithms for real-
time channels”, Technical Report ICSI TR-94-024, International
Computer Science Institute, U.C. Berkeley, June 1994.

[8] L. Guo and I. Matta. “Search space reduction in QoS routing”, Proc. of
19th International Conference on Distributed Computing Systems
(ICDCS’99), June 1999

[9] A. Juttner, B. Szviatovszki, I. Mecs and Z. Rajko, “Lagrange relaxation
based method for the QoS routing problem”, INFOCOM’2001, Alaska,
2001.

[10] T. Korkmaz and M. Krunz, “Multi-constrained optimal path selection”,
INFOCOM’2001, Alaska, 2001.

[11] G. Feng, C. Doulgeris, K. Makki and N. Pissinou, “Performance
evaluation of delay-constrained least-cost routing algorithms based on
linear and nonlinear lagrange relaxation”, IEEE International
Conference on Communications (ICC'2002), pp.2273-2278, New York,
April 2002

[12] H. F. Salama, D. S. Reeves, Y. Viniotis, “A distributed algorithm for
delay constrained unicast routing”, INFOCOM’1997, Kobe, Japan, April
1997.

[13] Q. Sun, H. Langendorfer, “A new distributed routing algorithm for
delay-sensitive application”, Computer Communications, vol.21, no.6,
May 1998

[14] Z. Wang, B. Shi, L. Zou, “A distributed algorithm on delay-constrained
least-cost unicast routing”, Proc. of International Conference on
Communication Technology (ICCT2000), Beijing, China, 2000

[15] B. M. Waxman, “Routing of multipoint connections,” IEEE Journal on
Selected Areas in Communications, 6(9):1617-1622, Dec. 1988

1742

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

