
On Prefetching in Hierarchical Caching Systems
Y. Thomas Hou† Jianping Pan‡ Chonggang Wang§ Bo Li§

†Virginia Tech, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA, USA
‡University of Waterloo, Waterloo, Ontario, Canada

§Hong Kong University of Science and Technology, Kowloon, Hong Kong

Abstract— Hierarchical caching is deployed to scale up the
explosive Web growth, and the expiration-based mechanism is
adopted as an economic means to support the weak consistency
in this context. However, given a hierarchy, the user perceived
performance heavily depends on its position. Normally, a user
near the hierarchy leaf suffers higher miss rate and longer
response time. Such an intrinsic property can discourage users
from participating in any hierarchical caching systems. In this
paper, we analyze the performance of a proposed approach,
i.e., freshness and retrieval threshold based cache prefetching,
to mitigate the bias against leaf users. We also use ns–2 to
further substantiate our analysis. By adopting this approach with
the appropriate parameters, the fairness among users within a
caching hierarchy can be considerably improved.

I. INTRODUCTION

Most Internet applications, including World Wide Web, are
built upon the well-known client-server model. This service
paradigm is challenged by the explosive Web growth in recent
years. Popular web sites, e.g., news portal cnn.com and
hot event saltlake2002.com, have to handle a large
number of simultaneous accesses. This demand surge can
easily overload any single web server and its access links.
Another example is the Distributed Denial of Service (DDoS)
where a group of hostile clients purposely overload a victim
server and cause the service interruption to regular users.
All these reveal the scalability weakness embedded in the
traditional client-server model.

Web caching [1] now is widely deployed to cope with the
Web growth. Caching can be with or near clients (e.g., browser
or proxy cache), or close to servers (reverse cache), and it
mitigates the scalability issue by aggregating user requests so
that the amount and rate of requests sent to the origin server are
reduced. It is found [8], [9] that a hierarchical caching system,
i.e., multiple cooperative cache servers at different levels, has
the greatest ability to aggregate user requests. Therefore, in
this paper, we will focus on a caching hierarchy.

A related issue with caching is the object validity. Many
cacheable objects are subject to changes during their lifetime.
Once an object is modified, all copies cached elsewhere be-
come stale unless these copies are updated accordingly. There
are two validation paradigms. The first is strong consistency,
i.e., validity is guaranteed for cached objects upon access. It
is used for certain critical applications without any tolerance
on discrepancy [2], [15]. Although strong consistency is indis-
pensable for some services, its high overhead and complexity
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prevent it from being widely deployed in many contexts that
have a scale as the Web. Fortunately, many web-based services
(e.g., web pages) fall into the second paradigm — weak
consistency, where a certain degree of discrepancy is allowed.
In this paradigm, object is validated periodically and user may
obtain a stale object [13]. However, as long as the discrepancy
is under a given limit, users can still extract useful (or at
least non-harmful) information. Since weak consistency is
acceptable for many web services and it is very cost effective,
it can be rather easily developed and deployed.

There are many approaches to support the weak consistency,
and we choose the Time-To-Live (TTL) mechanism in this
paper since it has been widely used [14]. When the object
is retrieved from the origin server, TTL is initialized to a
value which reflects the maximum tolerance of discrepancy
and decreases with time if the object is cached elsewhere.
When the cached object is accessed, it is considered valid only
if the remaining TTL is still positive; otherwise, the object is
validated by (and if necessary, retrieved from) the origin server
or an upstream server in the caching hierarchy.

This paper analyzes some intrinsic properties in a hierarchi-
cal caching system based on the TTL expiration mechanism.
Although these systems and the like have been deployed
for some time, the performance and their built-in strength
and weakness are mainly demonstrated through the empirical
measurement [9]. Based on an analytical model developed in
[17], in Section II, we first uncover an intrinsic bias against
leaf users in any hierarchy, in terms of higher miss rate
and longer response time. The external performance is then
explained by the internal behaviors, i.e., smaller average TTL
and more intermediate servers for leaf users. In Section III, we
consider the effect of cache prefetching to increase the TTL by
imposing the freshness and retrieval threshold. Related work
are summarized in Section IV. Section V concludes this paper
with some pointers on future work.

II. SYSTEM MODEL

Figure 1(a) outlines a tree-like hierarchical caching system
under the consideration. When a cache server (CS) receives
a request, if the object is cached locally with a positive
remaining TTL, the object is returned immediately with the
remaining TTL; otherwise, the CS generates another request
to its immediate upstream CS and so forth (until the origin
server (OS)) to get a valid copy. This process is recursive
until a valid object is obtained. If we take the longest path
and convert requests from all nodes other than those in this
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Fig. 1. Hierarchical caching system and its abstract model.
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Fig. 2. Average TTL at each level.

path as the equivalent Aggregated Client (AC), we have the
abstract model shown in Fig. 1(b). This branching process is
also recursive, and the model developed for the whole tree
can be applied to each branch individually. Therefore, in the
following, we only consider the chain-like abstract model.

For CSd at level d (1 ≤ d ≤ D and D is the chain depth),
the aggregated request rate from ACd is denoted as λd. We as-
sume the inter-request time follows an exponential distribution.
Although the object access pattern from an individual user
is very complex [10], here we only consider the aggregated
request from a large user population. Therefore, in this system,
there are two sets of performance metrics, one for ACd and
the other for CSd. For ACd, we primarily focus on the user
perceived response time σu

d ; and for CSd, the cache miss rate
Γs

d since it is proportional to the request traffic generated from
that CS. These two metrics are in turn based on the remaining
TTL, τd(t), at each CSd.

A. Average TTL behavior

In [17], we obtained a model on the average TTL E(Td)
which is the expected TTL when an object is retrieved from
CSd−1. With Λd =

∑D
i=d λi and the initial TTL τ ,

E(Td) =
Λd · τ + (Λ1 − Λd)(τ − 1−e−Λd·τ

Λd
)

Λd + (Λ1 − Λd)(1 − e−Λd·τ )
. (1)

In Fig. 2, we plot E(Td) from the ns-2 simulation results
(with points) and the analytical calculation (with lines) for
three representative request patterns:

1) Light Root Heavy Leaf (LRHL), λd = d and D = 10;
2) Uniform (UNFM), λd1 = λd2 = D+1

2 for any d1 and d2;
3) Heavy Root Light Leaf (HRLL), λd = D − d + 1.

The simulation first confirms our analytical results. It also re-
veals a property embedded in any caching hierarchy: E(Td1) ≥
E(Td2) if d1 ≤ d2, i.e., the further away a CS from OS, the
smaller average TTL it has. Next, we observe that although
the total user request load is the same for all three patterns,
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due to the different request distributions, the TTL can behave
differently. When comparing LRHL to HRLL, it shows another
property in a caching hierarchy: the higher the request rate,
the larger the average TTL a CS can expect.

B. Cache miss rate

There are two definitions on cache miss ratio/rate. First it
can be defined as the ratio of number of misses over number
of total requests and denoted as Γs

d. Second, it can also be
defined as the number of misses per unit time and denoted
as γs

d. For γs
d, there is 1 miss per level d renewal period of

Id + E(Td) where Id = 1
Λd

. Therefore, γs
d = 1

1
Λd

+E(Td) . For

Γs
d, we consider the following two cases:

1) With probability p1
Γ = λd

Λd
, an object is retrieved from

CSd−1 due to a local user request at CSd. For the
remaining E(Td), there are (λd+γs

d+1)E(Td) hit requests
generated locally or from a downstream CS.

2) Otherwise, the object is retrieved due to a request from
a downstream CS. For the remaining E(Td), there are
λd · E(Td) hit requests only generated locally.

Therefore, Γs
d = p1

Γ
1

(λd+γs
d+1)E(Td) + p2

Γ
1

λd·E(Td) .

We can also derive the user miss rate Γu
d = p1

Γ
1

1+λd·E(Td)
by omitting the downstream requests accordingly.

Figure 3 plots the cache miss ratio Γs
d as a function of

the CS position (level d) and request patterns. For the UNFM
request pattern, it clearly indicates the bias against the leaf
CS and its users in term of higher miss rate. HRLL pattern
further magnifies this bias since it has less request near the
leaf. The figure also suggests that when forming a hierarchical
structure, it is important to ensure the leaf CS has sufficient
request aggregation (or LRHL-like), otherwise, the leaf users
suffer much higher miss rate in HRLL.
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C. User response time

To calculate the user response time σu
d , we first assume the

sum of network delay (dn
d ) and server overhead (ds

d) between
CSd and CSd−1 is dd. Therefore the user response time at
level d is σu

d = Γu
d ·(dd+ Λd

Λd−1
· σs

d−1
Γs

d−1
), where σs

d−1 is the cache

response time at level d−1 and σs
d = Γs

d ·(dd + Λd

Λd−1
· σsd−1

Γs
d−1

).
When d = 1, σu

1 = Γu
1 · d1 and σs

1 = Γs
1 · d1.

In Fig. 4, there is another bias against the leaf users in term
of longer response time. It shows σu

d is more likely determined
by user’s position, since even LRHL has the similar bias against
the leaf users as the UNFM pattern. For HRLL, the farther away
from OS, the quicker increase in σu

d . Even higher request rate
can reduce Γs

d at leaf, it is still unable to fully compensate σu
d

due to the intrinsic structure disadvantage in any hierarchical
caching systems.

By now, we have identified two bias issues in any hierar-
chical caching systems. These findings are supported by the
analytical calculation and simulation results. We find that the
bias is due to a low TTL at the leaf level, and the low TTL
in turn is due to less request aggregation and longer distance
away from OS for the leaf CS. In the next section, we will
explore an approach to mitigate the bias.

III. CACHE PREFETCHING

We first propose two cache prefetching parameters: retrieval
and freshness thresholds for CS and AC, respectively. We then
give the analytical and simulation results for two special cases
which actually are building blocks for any cases.

A. Prefetching Parameters

We introduce a new parameter βd, retrieval threshold, for
CSd, and we adopt a reactive approach to utilize it, i.e., the
internal request is only generated when the object is accessed
and the remaining TTL is below β. Additionally, ACd can
have the freshness threshold αd, which reflects the minimum
remaining TTL that a user can accept. It is obvious that 0 ≤
αd ≤ βd ≤ τ as the shaded area in Fig. 5. When βd =
τ , it prohibits the object caching. If the remaining TTL is
in between αd and βd upon receiving a request, we adopt a
conservative approach, i.e., CS returns the object immediately,
meanwhile, generates another request to the upstream CS.

For a general pair of (α, β), Fig. 5 also shows a working
path from the basic model where α = β = 0. We can first
increase β to b − a while keeping α = 0, then increase α
and β simultaneously to a and b. Alternatively, we can first
increase (α, β) from (0, 0) to (a, a), and then increase β from
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Fig. 6. TTL behavior with freshness threshold.

a to b while holding α = a. Therefore, we can just focus on
the cases 0 ≤ α = β ≤ τ and α = 0 ≤ β ≤ τ .

B. Freshness threshold

We first consider the situation when a user imposes the
freshness requirement αd > 0. Assuming users have similar
freshness requirement on an object no matter where they are,
without loss of generality, we have αd = α for 1 ≤ d ≤ D.

1) Average TTL behavior: If we choose α = β = φ
and observe the TTL behavior at levels 1 and d, we have
the scenario in Fig. 6. We can redefine the level 1 renewal
period between two consecutive level 1 renewal points when
τ1(t∗−) > φ and τ1(t∗) = φ. Again, if we condition the TTL
behavior in level d during a given level 1 renewal period, we
have three scenarios. Actually, if we shift the t axis by φ, we
can apply the same technique that we used in [17].

I) With probability pIft = Λd

Λ1
, the level 1 TTL triangle

is triggered by the request initially generated within the
subtree rooted at CSd, and tIft = (τ − φ) + φ;

II) With probability pIIft = Λ1−Λd

Λ1
·
∫ τ−φ

0 Λd · e−Λd·tdt, the
level 1 TTL triangle is triggered by the request initially
generated outside the subtree rooted at CSd, but there
is a request initially generated within the subtree rooted
at CSd in the same level 1 renewal period, so that tIIft =∫ τ−φ

0
(τ−φ)Λd·e−Λd·tdt∫ τ−φ

0
Λd·e−Λd·tdt

; and

III) There is no request initially generated within the subtree
rooted at CSd in this renewal period.

Therefore, the average TTL behavior at level d is Eft(Td) =
pI
ft·t

I
ft+pII

ft·t
II
ft

pI
ft+pII

ft
. After the algebraic manipulation, we have

Eft(Td) = φ + Eτ :=τ−φ(Td).

That is, by replacing τ in Eq. (1) with τ − φ, or reducing the
effective TTL of an object at the origin server to τ − φ, we
can get the effective average TTL, i.e., E∗

ft(Td) = Eft(Td)−φ,
at each level. By using the same technique, it is relatively
straightforward to obtain Γs

ft,d, σu
ft,d, and other metrics.

Figure 7 further substantiates our analysis. We present
results in HRLL as it is the worst scenario in Fig. 2. Here,
αd = βd = φd ∈ {0, 0.1τ, 0.3τ, 0.7τ, τ} for all 1 ≤ d ≤
D, i.e., φ is exponentially interleaved with upper and lower
bounds. By increasing α, or AC’s asking for fresher objects,
it is equivalent to increase the request aggregation (in Fig. 2)
and push the average TTL curve upwards to the bound.

816



0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 T
T

L 
- 

E
(T

d)

Level - d

0.0-0.0/ttl.sim
0.0-0.0/ttl.cal
0.1-0.1/ttl.sim
0.1-0.1/ttl.cal
0.3-0.3/ttl.sim
0.3-0.3/ttl.cal
0.7-0.7/ttl.sim
0.7-0.7/ttl.cal
1.0-1.0/ttl.sim
1.0-1.0/ttl.cal
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2) Cache miss rate: When α = τ , it is the TTL upper
bound where Eft,φ=τ (Td) = τ . It looks similar to a flat
caching system where each CS sends request directly to OS.
But actually it is even worse since every upstream CS is
contacted and deemed a miss, as Fig. 8 shows. This reveals
a system tradeoff on the object freshness and network traffic:
the higher freshness to support, the higher cache miss rate to
expect and more network traffic to generate. When α is already
large (e.g., α = 0.7τ ), further increase in α only has marginal
effect on Eft(Td) since it already approaches its upper bound,
but a small α increase can bring a rapid increase in Γs

ft,d.
3) User response time: Another tradeoff from user’s per-

spective is revealed in Fig. 9. When α = 0.1τ , there is only
a slight increase in σu

ft,D due to the less request aggregation.
But for AC’s at other levels, σu

ft,d (1 ≤ d < D) are actually
reduced due to the cache prefetching triggered by lower levels.
However, when α is large (e.g., 0.7τ in Fig. 9), σu

ft,d (1 ≤
d ≤ D) increases quickly as level d grows. Especially when
α = τ , the user response time increases linearly independent
of any request aggregation since there is no hit except at
OS. Taking both the object freshness and response time into
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Fig. 10. Cache miss ratio at each level with retrieval threshold.
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Fig. 11. User miss ratio at each level with retrieval threshold.

account, clearly α should be chosen relatively small to utilize
the benefit in a hierarchical caching system.

C. Retrieval threshold

Now we consider the situation when the CS has a retrieval
threshold β > 0 for the internal request it generates.

1) Average TTL behavior: If we only consider the average
TTL, Ert(Td), at CSd with βd alone, when a request with
αd = 0 initially generated from ACd arrives, it is identical to
the case when α = β. Eventually CSd has to get a copy of
the requested object with the remaining TTL larger than βd,
although the user request can be fulfilled earlier with a copy
with less freshness. Therefore, we omit plotting Ert(Td) here
since Ert(Td) = Eft(Td) when βd = φ.

2) Cache miss rate: As different CS’s can choose different
βd according to its position (d) in the hierarchy, without loss
of generality, in Fig. 10, βD ∈ {0, 0.1τ, 0.3τ, 0.7τ, τ} (i.e.,
only the leaf CSD adopts cache prefetching, and all other
parameters are the same as in Fig. 3). βD = 0 is equivalent
to the basic model without cache prefetching. βD is also
exponentially interleaved. When βD < 0.3τ , it only increases
the cache miss ratio near leaf slightly when comparing to
βD = 0 since we do count prefetching traffic as a cache miss.
Therefore, we also plot the user miss ratio in Fig. 11. When
βD > 0 = αD, since an object is more likely available upon
request at CSD with a valid remaining TTL due to a previous
prefetching, the user miss ratio Γu

rt,D is indeed reduced. It
is worth mentioning that a small βD can have considerable
improvement in Γu

rt,D, while the overhead in Γs
rt,d is still

negligible. Furthermore, the larger βD, the lower Γu
rt,D and

higher Γs
rt,d, since the cache system works more diligently.

3) User response time: Figure 12 shows σu
rt,d is reduced

accordingly with βD, since Γu
rt,d illustrated in Section III-C.2
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Fig. 12. User response time at each level with retrieval threshold.

is reduced due to the cache prefetching.
However, the tradeoff between the shorter σu

rt,d (also lower
Γu
rtd) and more inter-CS traffic (also higher Γs

rt,d) needs to
be rebalanced as βd grows. As Figs. 10 and 12 indicate,
when βD > 0.7τ , a further increase in βD only has minor
improvement in terms of Γu

rt,d and σu
rt,d, but it can impose

a rapid increase in Γs
rt,d and inter-CS traffic for the level

with large βD. In the case of βD = τ , since such requests
can only be fulfilled at OS, traffic surges at level D as
many prefetching requests generated. But only few prefetches
can bring improvement in user perceived performance. This
implies that there is no need for CS to work too hard, or
βd − αd should be less than a small positive threshold.

IV. RELATED WORK

Web caching has attracted many research efforts in recent
years [16]. But most work in the literature focus on the
user (or web browser), proxy, and server characterization by
collecting trace logs, fitting to known statistical distributions,
and regenerating requests in simulation or a controlled testbed
[4]. There are several related work on cache consistency and
hierarchical caching [8], [9], [6], [13], but they are mainly in
the context of protocol design, empirical measurement, and
experimental simulation. In this paper and [17], we take an
analytical approach to better understand the intrinsic property
of the average TTL behavior in a hierarchical caching system
with the TTL based weak consistency.

Cohen et. al. [7] also considered a two layer hierarchical
system with the TTL expiration scheme, but they more fo-
cused on the miss rate and user request patterns. Their work
motivates us to further explore the TTL behaviors at different
levels, especially in a hierarchical system. In our work, we
also derive cache miss rate and user response time based
on the obtained TTL model. Furthermore, we evaluate the
cache prefetching approach to improve the fairness among
users at different locations of the hierarchy. Prefetching has
been proposed in the literature (see [11], [12]). Different from
these work, we choose to illustrate the tradeoffs between
network and user performance metrics analytically, and we
demonstrate that an appropriate balance among these two
metrics is achievable for a given user request pattern.

V. CONCLUSIONS

In this paper, based on an analytical model for hierarchical
caching systems with the TTL expiration mechanism, we
identified the bias against leaf users in terms of higher cache
miss rate and longer response time, due to the fact of less
request aggregation and more intermediate servers for leaf
users. By introducing the cache prefetching based on the
freshness and retrieval thresholds, we increased the request rate
with auxiliary inter-cache traffic. This approach can improve
the fairness among users, at the cost of additional network
traffic. Using simulation results, we show that the tradeoff is
appropriate under a suitable set of parameters.

The combination of the cache prefetching approach and
other techniques, e.g., request randomization, certainly de-
serves further investigation. For example, when TTL is below
a certain threshold, next request can be directed further away.
Also the threshold approach can be made TTL-aware and user-
friendly in order to achieve further adaptability and efficiency
in a hierarchical caching system.
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