CANShield: Signal-based Intrusion Detection for
Controller Area Networks

Md Hasan Shahriar®, Yang Xiao', Pablo Moriano?*, Wenjing Lou', and
Y. Thomas Hou!

! Virginia Polytechnic Institute and State University, VA, USA
{hshahriar,xiaoy,wjlou,thou}@vt.edu
2 Oak Ridge National Laboratory, TN, USA

moriano@ornl.gov

Abstract. Modern vehicles rely on a fleet of electronic control units
(ECUs) connected through controller area network (CAN) buses for crit-
ical vehicular control. However, with the expansion of advanced connec-
tivity features in automobiles and the elevated risks of internal system
exposure, the CAN bus is increasingly prone to intrusions and injec-
tion attacks. The ordinary injection attacks disrupt the typical timing
properties of the CAN data stream, and the rule-based intrusion detec-
tion systems (IDS) can easily detect them. However, advanced attack-
ers can inject false data to the time series sensory data (signal), while
looking innocuous by the pattern/frequency of the CAN messages. Such
attacks can bypass the rule-based IDS or any anomaly-based IDS built
on binary payload data. To make the vehicles robust against such intelli-
gent attacks, we propose CANShield, a signal-based intrusion detection
framework for the CAN bus. CANShield consists of three modules: a
data preprocessing module that handles the high-dimensional CAN data
stream at the signal level and makes them suitable for a deep learning
model; a data analyzer module consisting of multiple deep autoencoder
(AE) networks, each analyzing the time-series data from a different tem-
poral perspective; and finally an attack detection module that uses an
ensemble method to make the final decision. Evaluation results on two
high-fidelity signal-based CAN attack datasets show the high accuracy
and responsiveness of CANShield in detecting wide-range of advanced
intrusion attacks.

Keywords: Controller area networks - Intrusion detection systems -
Deep learning.

1 Introduction

Modern vehicles are becoming fully computerized to ensure the driver’s safety
and convenience. The majority of the cars’ critical functionalities involve dedi-
cated microcontroller modules, known as electronic control units (ECUs), which
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are connected by controller area network (CAN), a de facto automobile com-
munication standard. The increased connectivity of modern vehicles nonetheless
also increases the susceptibility of vehicular systems to remote attacks and mes-
sage injections. The ability to hijack an ECU allows attackers to inject stealthy
messages into the vehicle’s internal communication systems. Researchers dis-
covered several remote access points on connected cars and demonstrated that
attackers could remotely exploit them to take control of the cars or even disable
them. For instance, Miller and Valasek remotely compromised a Jeep and trans-
mited malicious CAN messages, which led to the vehicle malfunctioning on the
highway [1]. Moreover, despite the widespread implementation and high reliabil-
ity, the CAN protocol also remains vulnerable to intruders due to the absence of
basic security requirements, especially message authentication. Thus, due to the
limited payload length, only the plaintext message is broadcast over the CAN
bus, leaving no way to verify where the message comes from or its integrity.
Therefore, vehicles using the current version of the CAN protocol remain inse-
cure and attackers could, for instance, instigate sudden braking or acceleration,
rendering the lives of passengers and pedestrians at risk [2].

In response, an intrusion detection system (IDS) is usually regarded as the
second (and most practical) line of defense given that an attacker can hack
into the vehicle’s internal communication. In general, there are two types of
vehicular IDSs—signature-based and anomaly-based [3]. A signature-based IDS
typically formulates detection rules based on the system’s behavior of the normal
CAN messages and known attacks. Any violations of these rules are regarded
as anomaly. In a vehicle, these rules are based on the frequency of the CAN
messages, sequence of message IDs, inter-frame time differences, signal values,
etc. Such IDSs are mainly effective against known attack footprints. Due to lim-
itations in the rules, these IDSs may show a high false-negative rate in detecting
advanced attacks [3|4]. In addition, the high-dimensional CAN data structure,
such as broadcasting different IDs at different frequencies, makes it difficult to
extract the effective rules.

The second category of CAN IDSs analyzes anomalies in the CAN data
frame. The message IDs and the binary payload data are the main source of
data studied in such IDSs [5]. Despite the notable advancement in anomaly-based
CAN 1IDS research in recent years, it is still significantly hampered by several
factors [6]. For example, CAN payloads are obfuscated by the original equipment
manufacturers (OEMs) for security and privacy reasons. Furthermore, a single
payload may contain more than one signal, even encoded in different formats,
along with some unused bits. Due to this semantic gap, the anomaly-based IDSs
built directly on such obfuscated complex binary CAN message payload tend
to suffer against advanced masquerade attacks at the signal level. Therefore, to
achieve more robust and semantically concise defense against CAN intrusions,
it is imperative to design IDS schemes at the signal level, instead only focusing
on the temporal /ID patterns and binary payload. Meanwhile, there are very few
number of concrete proposals for the signal-level CAN IDS.

To address this issues, we make the following contributions in this paper:
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We propose a deep learning-based intrusion detection framework, CANShield,
to detect advanced and stealthy attacks from high-dimensional signal-level
CAN data. It features a data processing technique (pipeline) for the high
dimensional CAN signal stream by creating a temporary data queue and use
the forward filling mechanism to fill the missing data. This pipeline prepare
data stream suitable for the training and testing in the ML-based IDS.

To make the multidimensional signal-level time series data suitable for the con-
volution neural network (CNN)-based model, we convert the two-dimensional
data queues to multiple images and consider the detection as a computer
vision-like problem. Multiple CNN-based autoencoder (AE) models learn the
various temporal (short-term and long-term) and spatial (signal-wise) depen-
dencies. Violations in either the temporal or spatial pattern can be detected
during the reconstruction process.

We propose a three-step analysis of the reconstruction loss of CANShield’s
AE models on selection of detection thresholds for the optimal accuracy, fol-
lowed by an ensemble-based detector that boosts up the overall detection
performance by combining the insights from all the AEs.

We evaluate CANShield against advanced signal-level attacks using SynCAN |[7]
and ROAD (6] datasets and compare the results with a baseline model to show
the improvements. The results show high effectiveness and responsiveness of
CANShield against a wide range of fabrication, masquerade, and suspension
attacks on CAN bus.

Preliminaries

2.1 Controller Area Network

Robert Bosch GmbH introduced CAN as an automotive communication bus with
the latest version (2.0) released in 1991.

is
of
of

CAN Data Frame Format. Among different types of frames, data frame
the default mode for CAN data transmission, as shown in the top portion
Fig. [ CAN data frame supports up to 8 bytes of payloads with 11 bits
arbitration ID (CAN ID), which can be extended to 29 bits. Every con-

nected ECU broadcasts its message to the CAN bus. However, only one ECU can
transmit at a time and the rest stay synchronized to receive the data correctly.

The message arbitration mechanism de-

AN 1D|Blulo] Binary Payioad I, tects and resolves collisions of messages. A
o = P IR CcRc|Ack (Ol . . . .
P1- bits)o | (Cafibies) el H= message with a higher priority contains a
‘ * lower binary-encoded CAN ID. Due to dif-
EngineRPM ferent priorities, different CAN IDs usu-
Battery Voltage Current Gear ally appear in the CAN bus at different
GPS LatitudeABSEnabled| | | | frequencies.
Vehicular Speed Signal-level Representation of

Decoded signals of four consecutive payloads CAN Data. The binary pay]oad can

be decoded to the signal level using the

Fig.1: (Top) CAN data frame syn-  gpecific car’s database for CAN (DBC)

tax. (Bottom) Decoded signals.

file. The DBC file is a proprietary format,
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which is quite challenging to get. However, any reverse engineering-based CAN
decoder , such as the CAN-D [8|, can provide an approximate DBC file. Such
decoding converts the binary payloads to real-valued signals and gives a time
series representation. We define the time of each message appearance as one time
step, which may contain one or more associated signals along with some unused
bits. The bottom part of Fig. [I|shows some samples of signal level representation
of a few consecutive payloads. To prepare data input to a ML-based detector, a
straightforward idea is to create a structured representation of such data stream,
where the columns indicate different signals and rows show each time step. As
such a data structure contains many missing entries, it cannot be directly fed to
the ML-based IDS models. Thus, designing an appropriate data preprocessing
pipeline to account for the missing signal entries is one of the critical challenges
in building a signal-level CAN IDS, as we will address in §1.2]

2.2 Convolutional Neural Network-based Autoencoder

CNN is a class of deep neural networks mostly used to analyze image datasets.
The network uses kernels or filters that slide along the input data and map the
complex relationship among the features. Small filters in CNNs help to learn
the local and straightforward patterns first and then combine them into more
complicated patterns. Hence, CNN is an extremely powerful tool with a very
low degree of connectivity and complexity. Autoencoder (AE) is an unsuper-
vised method that consists of two parts: an encoder that maps an input to a
lower-dimensional code and a decoder that reconstructs the closest form of the
input from that code. Hence, a bottleneck in the middle of the network can
determine the estimated states of the vehicle in a lower dimension. In intrusion
detection applications, AE plays a vital role. An AE network is first trained on
the normal data so that it learns how to reconstruct with minimum loss. The
fundamental hypothesis is that intrusions are sufficiently anomalous with respect
to the underlying distribution of the training data so that the AE will yield a
high reconstruction loss, pointing to a high probability of attack.

3 System Model

The main component of CANShield is a software system that can read a vehicle’s
CAN messages in real time. It is loaded either on an onboard computing device
connected to the OBD-II Port (e.g., laptop, Raspberry Pi) or instantiated in
an existing ECU with a relative powerful processor, such as the gateway ECU.
For the former case, the onboard computing device includes a CAN protocol
stack, allowing monitoring and recording of the raw CAN messages. This can be
achieved with open-sourced implementations (i.e., SocketCAN) or commercial
CAN data loggers (i.e., CANalyzer). CANShield is pre-loaded with the vehicle’s
DBC file, either from OEM or CAN-D, allowing continuous decoding of the
binary payloads, creating a data queue of multi-dimension time series signals,
and tracking their changes in near real time.

3.1 CANShield Overview
As is shown in Fig. 2] CANShield contains three modules: i) data preprocessing
module that creates multiple data views from signal-level CAN data, ii) data
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Fig.2: CANShield workflow. The tasks with AEs and thresholds differ during
the “training” and “deployment” phases.

analyzer module that employs multiple CNN-based AEs for generating anomaly
scores for the data views, and i) attack detection module that makes the final
detection decision. CANShield has two phases of operation: training and deploy-
ment. Some of the modules play additional/slightly different roles during each
of the two phases. During the training phase, the data analyzer module needs
to train deep learning models. However, as the onboard devices are typically
lightweight and not suitable for effective training of deep learning models, we
consider two potential solutions for that. CANShield can have a secure connec-
tion to the cloud with model training capabilities or train the models on a local
computer with CANShield running on that. Hence, during the training phase,
the normal CAN traces are stored on the local memory first and then periodi-
cally sent to the cloud or local computer for model training. Once the model(s)
are adequately trained, CANShield loads the trained model(s) into the onboard
device and begins the deployment phase, which goes through the three modules
in a feedforward fashion and output the detection result in near real time.

3.2 Attack Model
We assume that the intruder can access the CAN bus through an exposed inter-
face, such as V2X, infotainment, ADAS systems, OBD-II port, etc. Moreover,
we also assume that the attacker is capable of turning off any ECU [9] and/or
injecting arbitrarily malicious messages. CANShield is designed to protect the
vehicles from the different levels of attacks in a holistic manner. In particular,
according to attacker’s objective, the attacks typically fall into the following
three categories:

— Fabrication attacks, wherein a compromised ECU injects malicious IDs and
data to the CAN bus. However, all the legitimate ECUs are still active and
also send their original data. This is the most prevalent and straightforward
attack as the attacker does not need to hijack any ECU.

— Suspension attacks, wherein a legitimate ECU is turned off/incapacitated by
the adversary. This attack is also called suppress attack, where the messages
from the targeted ECU disappear for a while. To achieve this, the attacker
can disconnect the ECU from the in-vehicle network to prevent it from com-
municating.
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— Masquerade attacks are the most advanced, stealthiest, and destructive at-
tacks. This is the combination of fabrication and suspension attack, where
the attacker silences a legitimate ECU, spoofs it in the continuing operation
while injecting malicious messages.

In evaluation, we will use a well-known CAN attack dataset and an emergent
realistic CAN dataset covering specific forms of the above attacks to test the
efficacy of CANShield.

3.3 Design Objectives
The design objectives of the CANShield are as follows:

— Detecting Wide-range of Advanced Attacks. The foremost objective
of CANShield is to leverage established patterns and correlations of various
ECU/signal states during normal driving and design a single IDS that can de-
tect a variety of CAN message injection and manipulation attacks considered
in the literature to date, particularly those advanced stealthy attacks that
existing ID- or payload-based IDSs have shown ineffective in detecting.

— Near real-time detection with near-zero false positives. The IDS should
respond to intrusions accurately with near-zero false-positive rate, and quickly,
(at the same order of magnitude with the CAN message intervals) in order to
help the vehicle avoid catastrophes.

4 CANShield Detailed Design

The CANShield IDS model relies on 2D CNN-based AE models to learn the
spatio-temporal patterns of normal and attack-ridden CAN traces from the
multi-dimensional time-series signals. Next we elaborate on CANShield’s four
constituting tasks in details.

4.1 Critical Signal Selection and Clustering

As modern vehicles have hundreds of ECUs, they contain a lot of CAN IDs
and numerous associated signals. Securing all of them with IDS comes with
great implementation and computation costs. On the other hand, securing only
a handful of important signals from the critical sub-system of the vehicle, such
as power train, engine, coolant system, etc., will reduce complexity and render
feasible solutions for real-time detection. A practical challenge arises in designing
an effective detection pipeline with a selected group of signals. Accordingly, we
consider CANShield to keep tracks on only m pre-selected high priority signals.
To find the shortlisted signals, we assume that the defender has the semantic
knowledge of the critical signals. To make the detection more effective and robust
CANShield adds additional signals based on the correlation coefficient, starting
from the ones highly correlated with the critical signals. However, adding too
many signals will lead to an expensive and ineffective system. Therefore, m is
a design parameter and depends on the defender. For the rest of the paper, we
will use the term “signals” to indicate only the pre-selected m signals.

The order of the signals in the created 2D input image could also impact the
learning efficacy. Comparing to a random placement, placements that bring out



CANShield 7

stronger spatial (correlations) patterns of the signals in the resulting image will
enable more effective learning. To facilitate the learning of the inter-sensor corre-
lations, CANShield calculates the Pearson correlation matrix of the time-series
signal dataset. Interpreting the correlation coefficient as the distance between
a pair of signals, CANShield utilizes hierarchical agglomerative clustering algo-
rithm to find the clusters of highly correlated signals. The goal is to place the
highly correlated signals together while building the 2D image so that learning
the signal-to-signal correlation becomes effective for the small filters of the con-
volutional layers. Notably, the two tasks, signal selection and correlation-based
clustering, are done only once during the initialization of the training process
(i.e., off-line with recorded data) and are not parts of the deployment pipeline.

4.2 Data Prepossessing

The data preprocessing module prepares formatted 2D inputs to the AEs of the
data analyzer module. It contains the following two steps.

Creating and Maintaining Data Forward Filling \Nvew Data

Queue First of all, the data prepro- ﬂ%: q::lib*"A
cessing module continuously records 2| :
the CAN traces and decodes the bi- Ny Data Queveatt2). /,

nary payloads containing the selected
m signals. Then a first-in-first-out
data queue Q is created with the
historical time-series signal data for
the last ¢ time steps, where ¢ is prop
large enough for Q to encompass the
temporal pattern of different signals.
Thus, every new CAN message is a new entry in Q, where the signal values
only associated with that incoming CAN ID are updated. For the rest signals,
we adopt a forward filling technique, whereas, at every time step, the miss-
ing/unreported signals are copied from the previous time step. Fig. [3|shows that
messages with ID A, D, and C are reported at time step (¢t — 2), (¢t — 1), and ¢,
respectively. For the visualization, we have transposed the original image, where
the signals associated with each CAN ID are presented as a single row, and the
columns indicate the time steps. The color changes indicate the updates in the
signal values associated with the CAN IDs. Thus, when a new message comes
with a specific CAN ID, a new entry is added to the queue, dropping the last
entry. Thus, as time passes, the sensor data for the latest g time steps are always
stored in the data queue.

Data Queue at (t)
Fig. 3: Data queue generation.

Creating Multiple Views To identify abnormality on different signals with
different temporal trends, the data analyzer module trains and deploy the AE
networks on different views of the data queue Q. As different CAN IDs have
different reporting periods, only the first w (<< ¢) time steps (columns) of
Q may not be enough to represent the recognizable temporal trend for all the
signals, especially for the ones with long reporting cycles. On the other hand,
considering a high value for w (= ¢) makes the input image too large. As a
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result, the AE models become more complex. This challenge boils down to how
to effectively learn the temporal patterns of all the signals, especially of the ones
with long reporting periods, while still using a small time window during image
generation. We achieve these two conflicting goals by creating different views
of Q with different sampling periods (seeing more with a less complex models).
Thus, we select the first w columns from Q at every Ty, T, ...., T;, time steps,
respectively. Here, T, T, ...., T,, are the sampling periods to create the views D,
Do, ...., D,, respectively of the same Q. With loss of generality, here we assume
Ty <1y < ... < T,. Fig. 4] illustrates the sampling process on Q at time step t.

Therefore, D; has a more detailed Data Queue Q at(y

view but contains a very limited his-

torical trend, capturing short-term or j— -
fast-changing patterns. On the other Dttt t pth
Dot 4 4 L Y
hand, D,, has the most of the tem- " 2
fud A r Tn r ol

poral trend, capturing long-term or
slow-changing patterns, but with the Fig.4: Different views of data queue Q.
lowest details. The multi-view design

has benefit in both model accuracy and scalability. Each of these views has dif-
ferent primary targeted signals but collectively they cover temporal trends of
variable lengths. This allows more effective and accurate detection of different
advanced masquerade attacks, regardless attacking message frequency and du-
ration. Despite having different sampling periods, the number of samples within
each data view remains the same (w). As there are total m signals for the IDS,
each data view will have a dimension of m x w. Thus similar AE models can be
used to train each type of data view.

4.3 Data Analyzing

The data analyzer module utilizes multiple AE models: {AE;};c[,,) (where [n] =
{1,2,...,n}). Each of the models is associated with each of the views of Q and
thus learns different (and complementary) perspectives of Q. We build the AE
networks using CNN due to the observation that each view is a two-dimensional
data item, and CNN is widely proven to efficiently work on 2D data with min-
imum complexity. The motivation of using AE is that, as there are neither ex-
plicitly defined states of the vehicle, nor any analytical model for that, we use a
data-driven approach to find the states out of a small window of the historical
signal data. Thus, the data in an AE’s middle (bottleneck) layer represents the
vehicle’s state in a lower dimension. In contrast, the decoder part tries to predict
the vehicle’s historical signal data by looking at the state’s information. If the
vehicle is running in a normal state, as mostly seen in the training data, the
decoder should predict accurately. Otherwise, an abnormal state will lead to an
erroneous prediction, and thus, to a high reconstruction loss.

Moreover, as our considered model learns the relationship among all the
signals, especially the nearby highly correlated ones, if at least one signal deviates
from the regular pattern, CANShield will recognize it from the reconstruction
loss. As is shown in Fig. 2] during the training phase, each AE, takes a data
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view D, € R™*" as an input image and learns to reconstruct almost the same
D, € Rmxw image, Y € [n]. Once the training is done, the deployment phase
is initiated, and the trained models are loaded in CANShield. At the end of
the training phase and during the deployment phase, the AEs are tested on
the corresponding data stream and try to reconstruct the same image. For AE
AE,, the difference between the original image and the reconstructed image is
the reconstruction loss £, € R™*". Each row contains the corresponding signal’s
reconstruction losses and columns for the time steps.

4.4 Thresholds Selection and Attack Detection

In this part, we discuss how to interpret a 2D reconstruction loss £, into an
anomaly score P, (i.e., attack probability) for every data view D, and use the
results for attack detection. For a normal computer vision problem, the common
practice would be evaluating the mean absolute value of the reconstruction loss
matrix £ as the anomaly score P: P« 137" 57 [|L; ;]|

mw
Compared to a normal computer
Table 1: Thresholds Selection and Attack vision problem7 our input image

Detection for AEs in CANShield. (i.e., a data view D,) has a con-

Reconstruction loss £ € R™X¥ , system crete structure, which gives space

hyperparameters p,q,r B« 0"*", V.8« 0™,  for systemic analysis of the detec-

Anomaly score P,, result attack, ti th holds f bett

/% Step 1 (assign P, for every AEy) «, tion thresholds for better accuracy.
Vieml: RE* « p™ % Verraining £y (1) Thus, instead of taking the aver-

age value, we exploit the structural

Vi € [m], Vj : B if £, > R :
pelbml Vi€ lw]: By o1 i Log > R () knowledge of D, to interpret the

Vie[ml: Vie Y Bij 3) P, from L,. We define three types
s =t of thresholds for attack detection at
Vi € [m] : Ri P q % vEt'r'a’ining Vi (4) eaCh AE
. . Time . . .
Vi€ [m]: Sie1if Vi>R; () — Signal-wise reconstruction loss
P, X Sos 6) thresholds R%°%% ¢ R™
m =1 _ . _ . . . .
/% Step 2 ./ Signal-wise ‘;};;12 steEL violation
Pune = (P14 Ps+ oo+ P)/n ) thresholds R eR '
pSianal e g b o A number of total compromised
ens T /0 Vetraining Fens ®) signals threshold R%%9" ¢ R
/* Step 3 (deployment phase only) */
attack + 1 if Pen, > RS19™! (9) We summarize a three-step analysis

on L, to facilitate selection of these

thresholds and attack detection, as
is shown in Table[l|and skip the detailed explanation for brevity. For convenience,
in step 1, we have obviated the AE index = for £, intermediate variables, and
thresholds as this approach will be applied independently to each AE.

Step 1 repeats for every AEs and assigns anomaly score on each of the re-
construction losses on the data views, i.e., P;, Ps,...., P, and step 2 ensembles
the scores in a single score P,.,s;. We configure the training phase of CANShield
to run the steps 1 & 2 from Eq. f and stores R?%* and RT"™¢ for each
of the AEs, and R5%9" for the ensemble model, optimally tuning three system

ens
hyper-parameters p, g, r as confidence percentiles for these thresholds. During
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Table 2: Description of attacks in SynCAN dataset.

Attack Name|Attack Type|Description

Flooding Fabrication Frequently injects high-priority messages.
Suppress Suspension Prevent an ECU from transmission.
Plaeau Broadcasts a constant value.

Continuous Masquerade |Broadcasts continuously changing values.
Playback Broadcasts a series of recorded values.

the deployment phase, these thresholds are pre-loaded from the memory, thus,
skipping , , and . While steps 1 & 2 are common in both training and
deployment, CANShield runs one additional task (step 3) in the deployment
phase to check for potential threats (Eq. E[)) and raises the alarm in the system.

5 Implementation

5.1 Datasets and Attacks

We implement CANShield on both SynCAN dataset and ROAD dataset. Syn-
CAN dataset [7] (Synthetic CAN Bus Data) is a widely used CAN attack dataset
released by ETAS (a subsidiary of Robert Bosch Gmbh) covering stealthy signal-
level CAN attacks. ROAD dataset [6] was released by Oak Ridge National Lab-
oratory and is the most realistic CAN attack dataset to datd®] Next we introduce
the details of each dataset and the attacks covered.

SynCAN SynCAN dataset is built on actual CAN traces, emulating the char-
acteristics of the real CAN traffic, with hundreds of advanced attack scenarios.
It contains a total of 20 signals. There are 24 hours of logged data, of which 16.5
hours are for training and 7.5 hours are for testing with five types of advanced
attacks, which resemble the three stealthy forms of attack models mentioned in
§3.2] The attacks in SynCAN datasets are summarized in Table 2] A flooding
attack creates delays the legitimate ECUS’ transmission (similar as DoS attack)
and a suppress attack turns off the corresponding ECU of the targeted signal(s).
Based on time-series nature of the injected data there are three types of mas-
querade attacks. Whereas a plateau attack broadcasts the same constant value
of any signal over a long period of time, the continuous attack and playback
attack overwrites the signals with continuously changing values and previously
recorded data, respectively, that shift naturally from the actual ones.

ROAD Dataset ROAD dataset provides the highest-fidelity CAN traces with
physically verified most realistic CAN attacks. It contains a significant amount
of training data covering different context of driving. We obtained raw ROAD
dataset and extracted signals from the CAN messages using CAN-D. There
are 3.5 hours of logged data, of which 3 hours are for training and 30 minutes
are for testing with five types of advanced masquerade attacks targeting the

3 To the best of our knowledge, SynCAN dataset is the only publicly available signal-
level CAN dataset at the time of writing this paper. ROAD dataset was obfuscated
and did not have signal-level interpretation in its initial release in early 2021. We
obtained the raw ROAD dataset through directly contacting ORNL. Partially mo-
tivated by our work, ORNL has a plan to release signal-level ROAD dataset soon.
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Table 3: Description of masquerade attacks in ROAD dataset.
Attack Name Description and impacts
Correlated signals |Inject four different values for four wheel speeds that kills the car.
Max speedometer [Inject maximum (0xFF) value to display a maximum value in speedometer.
Max coolant temp [Inject maximum (0xFF) value that turns on the coolant warning light.
Reverse light on/off| Toggle the reverse light bit so that reverse lights do not reflect the gear.

engine coolant temperature, engine RPM, brake light, and wheel speeds sensors.
The injected message manipulates only the specific portion of the data fields
containing the targeted signals.

Whereas the attacks in the SynCAN dataset are created by post-processing
(replacing original ones) on the normal driving data, the attack traces in the
ROAD traces were collected from a real car under the real injection attacks.
Such attack traces provide not only the injected messages but also the response
from the vehicle under such attacks, which makes the ROAD dataset the most
realistic one. The attacks in ROAD dataset are summarized in Table [3] In light
of the model’s complexity, one single IDS is not a feasible option to track all
the hundreds of decoded signals within the ROAD dataset. Thus, considering
individual IDS on a different critical subsystem of the vehicle is be a viable
solution. In the implementation of CANShield on ROAD dataset, we consider
the attacked signals in Table |3|to be of primary importance and add two highly
correlated signals for each to make the IDS more robust, as detailed in

6 Evaluation Results and Discussion

6.1 Evaluation Settings

We use Python 3.7.3 with Keras 2.2.4 for training and evaluation of CANShield.
We used a five-layer network, and the numbers of filters in each layer are 32, 16,
16, 32, and 1. The following section explains the impact of different parameters
in attack detection and illustrates the effectiveness of CANShield. We evaluate
CANShield’s performance on two aspects:

Attack detection. If any view of the data queue contains one or more malicious
injections, we consider the data queue as malicious. We use ROC curve and
AUC score to evaluate CANShield’s performance in different settings. A ROC
curve plots true positive rates and false-positive rates for different thresholds of
the final intrusion scores. The area under the ROC curve (AUC) indicates the
robustness of the detectors. An ideal detector has an AUC score of 1.00.
Event detection latency. Depending on the type of attack, there could be a
delay between the first injected message and the first correct detection in any
attack event. Such delay is defined as the event detection latency.

6.2 Attack Detection

Our comprehensive evaluation shows CANShield performs the best when w is
50, there are three AEs (with sampling periods 1, 5, and 10), and Ry.ss and
R7ime are considered as 95-percentile and 99-percentile of the normal data. We
consider these settings for the following evaluations on both the SynCAN and
ROAD datasets.
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Fig. 5: Attack visualizations and ROC curves for different models and attacks.

Attack visualization and ROC Curve In this part, we visualize the anomaly
scores for all the individual and ensemble detectors along with the ROC curves.

SYNCAN DATASET. Fig. [5a] shows the anomaly scores and the ROC curves
for five different attacks on the SynCAN dataset. Different AEs show different
performances on each of the attacks. However, the ensemble model yields more
stable and consistent performance, leading to higher AUC scores in all the at-
tacks than the individual AEs. For instance, higher sampling periods (i.e., 10)
perform better in detecting the flooding (fabrication) and suppress (suspension)
attacks, as they are more detectable looking at the long-term sequential pattern.
However, the lower sampling periods (i.e., 1) offer better performance in detect-
ing the masquerade attacks, where short-term views of the data queue provide
a detailed look at the time-series violations. Moreover, in the case of contin-
uous and playback attacks, the signals start to deviate gradually, which takes
some time to create the recognizable deviation for the IDS. Hence, a lower AUC
score is not unexpected, especially against continuous attacks. However, CAN-
Shield can detect the violations instantly for the rest of the attacks (AUC scores
of 0.95 ~ 1.00). Whereas the individual AEs are attack-specific, the ensemble
model takes the best out of every model, generalizes the process, and detects
most attacks with the highest AUC scores.
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Fig. 6: Event detection latency for different FPR thresholds both on dataset.

ROAD DaAtaser Fig. shows the anomaly scores and the ROC curves for
the attacks on ROAD dataset. Same as the SynCAN, the ensemble model also
shows stable performance in the anomaly score. As all the attacks in the ROAD
dataset are closely aligned with the plateau attack in the SynCAN dataset,
both the individual and ensemble models show high performance in detecting
the attacks. There are a few cases where the performance degrades a little; for
example, in the reverse light on attacks, AE with a sampling period of 10 gives
an AUC score of 0.960. However, the ensemble model mitigates such issues and
detects all the attacks from the ROAD dataset with AUC scores of ~ 1.00.

6.3 Event Detection Latency

Fig. [6] illustrates the attack-wise event detection latency for three cases of maxi-
mally allowed FPR for different datasets. As each attack manipulates the signal
at different paces, the time to observe a potential deviation varies. Hence, similar
to the previous discussion, certain AEs are more responsive against certain types
of attacks. For example, Fig. [6a] shows all the models have higher latency in de-
tecting continuous attack events as they deviate the signals gradually. However,
ensembling the individual models reduces the latency in the average scenario.

Furthermore, the figures also illustrate the impact of maximum FPR on the
event detection latency. Although some individual model suffers from high la-
tency with low FPR (i.e., 0.1%), CANShield’s ensemble model provides a lower
event detection latency. However, allowing more false positives (max FPR of
0.5% — 1%) into the system further reduces latency. Whereas in case some ad-
vanced SynCAN attacks CANShield takes up to a couple of seconds to detect, all
the attack events in ROAD dataset are detected in milliseconds. Therefore, our
evaluation shows that the CANShield improves detection performance, reduces
overall detection latency, and makes the system more robust.

Comparison with Baseline Model. We further compare the AUC scores
of the ensemble model with the baseline detector. Table M illustrates such com-
parison, which indicates drastic improvements in the detection of flooding, sup-
press attacks compared to the baseline model, CANet. Although CANet per-
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forms slightly better on the masquerade attacks, CANShield shows decent per-

formance as well. Table 4: Comparison with baseline.

7 Related Work Area Under the Curve (AUC)
Flooding Suppress Plateau Continous Playback
There have been a good amount Ours 0.997 0.985 0.960 0.870 0.948

. CANet 0.979  0.882  0.983  0.936 0.974
of works on CAN IDS, which <

can be divided into a few different categories in general. Based on the collected
data during the regular operation of the vehicle, rule-based IDS creates secu-
rity rules for CAN communication and ECU behaviors, e.g., message frequency,
no overlapping with the original flow, no disruption of the regular sequence of
CAN IDs, etc. Such properties are considered as the baseline in developing CAN
IDS [5,/10,/11]. A few works utilized the physical layer attributes of the ECUs,
such as clock skews [12], voltage profile [13], electrical CAN signal characteris-
tics |14], etc. to fingerprint the transmitter ECUs.

There are a few machine learning-based IDS working on binary payloads of
CAN messages. Readers are referred to [5] as a good survey for such IDSs. The
payload-based models are trained on obfuscated binary data; thus, they work as
a black-box and lacks explainability [6]. Most of them only look at the sequence of
IDs, which will not suffice to detect advanced attacks. Additionally, these types
of IDSs cannot detect attacks from an intelligent adversary who has control over
the message generation in CAN bus and can launch stealthy signal-level attacks.

There are only a limited amount of works on the signal-level IDS for CAN
bus [15H17]. CANet [7] is the first IDS working on such a high-dimensional struc-
ture. Indra [15] and LATTE [16] are few other attempts in the same direction.
However, all of them utilizes LSTM-based networks, which are very costly to
train and one LSTM for each IDS will make it impractical on the actual car
with a high number of CAN IDs. Moreover, due to their architectural limita-
tions, the existing IDSs show low detection performance on different advanced
attacks and lack scalability.

8 Conclusion

As modern vehicles become more connected to external networks, we propose
a CAN bus intrusion detection framework, CANShield, working at the signal
level to secure the bus from the advanced attacks. Along with the capability of
handling high-dimensional CAN data stream, CANShield trains multiple CNN-
based autoencoder models to work on different views of the data stream across
different temporal scales. With the aid of the individual models, an ensembled
model is used to detect a wide range of attacks and events with very low latency
and high accuracy. Evaluation on both the SynCAN and ROAD datasets shows
CANShield’s robustness and responsiveness against different advanced attacks.
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