
FLARE: Defending Federated Learning against Model Poisoning
Attacks via Latent Space Representations

Ning Wang
Virginia Tech

Blacksburg, VA, United States
ning18@vt.edu

Yang Xiao
Virginia Tech

Blacksburg, VA, United States
xiaoy@vt.edu

Yimin Chen
University of Massachusetts Lowell

Lowell, MA, United States
ian_chen@uml.edu

Yang Hu
Virginia Tech

Blacksburg, VA, United States
yanghu@vt.edu

Wenjing Lou
Virginia Tech

Blacksburg, VA, United States
wjlou@vt.edu

Y. Thomas Hou
Virginia Tech

Blacksburg, VA, United States
thou@vt.edu

ABSTRACT

Federated learning (FL) has been shown vulnerable to a new class of
adversarial attacks, known asmodel poisoning attacks (MPA), where
one or more malicious clients try to poison the global model by
sending carefully crafted local model updates to the central param-
eter server. Existing defenses that have been fixated on analyzing
model parameters show limited effectiveness in detecting such care-
fully crafted poisonous models. In this work, we propose FLARE,
a robust model aggregation mechanism for FL, which is resilient
against state-of-the-art MPAs. Instead of solely depending on model
parameters, FLARE leverages the penultimate layer representations
(PLRs) of the model for characterizing the adversarial influence
on each local model update. PLRs demonstrate a better capability
to differentiate malicious models from benign ones than model
parameter-based solutions. We further propose a trust evaluation
method that estimates a trust score for each model update based on
pairwise PLR discrepancies among all model updates. Under the as-
sumption that honest clients make up the majority, FLARE assigns
a trust score to each model update in a way that those far from the
benign cluster are assigned low scores. FLARE then aggregates the
model updates weighted by their trust scores and finally updates
the global model. Extensive experimental results demonstrate the
effectiveness of FLARE in defending FL against various MPAs, in-
cluding semantic backdoor attacks, trojan backdoor attacks, and
untargeted attacks, and safeguarding the accuracy of FL.

CCS CONCEPTS

• Security and privacy; • Computing methodologies→Ma-

chine learning;

KEYWORDS

federated learning; model poisoning attack; defense

This work is licensed under a Creative Commons
Attribution International 4.0 License.

ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9140-5/22/05.
https://doi.org/10.1145/3488932.3517395

ACM Reference Format:

Ning Wang, Yang Xiao, Yimin Chen, Yang Hu, Wenjing Lou, and Y. Thomas
Hou. 2022. FLARE: Defending Federated Learning against Model Poisoning
Attacks via Latent Space Representations. In Proceedings of the 2022 ACM
Asia Conference on Computer and Communications Security (ASIA CCS ’22),
May 30–June 3, 2022, Nagasaki, Japan. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3488932.3517395

1 INTRODUCTION

Machine learning (ML) is changing the ways people live and do
business in every sector of our society. The success of ML, espe-
cially deep learning (DL), relies on the availability of powerful
computers and massive amount of training data. However, learning
systems that require all the data to be fed into a learning model
running on a central server pose serious privacy concerns. For ex-
ample, the transmission of health data across certain organizational
boundaries may violate security and privacy rules such as those
imposed by the Health Insurance Portability and Accountability
Act (HIPAA1). Federated learning (FL) [16, 18, 22], which enables a
group of intelligent agents to jointly learn a model while keeping
their private data at their local devices, emerges as a promising new
learning framework to address client data privacy problems.

FL has been applied in many popular applications, such as next-
word prediction on Android Gboard by Google [14] and credit
risk control by WeBank [31]. In an FL system, a large number of
distributed clients cooperatively contribute to the learning process
by uploading the gradients of their local models (or model weights)
to the parameter server (PS) through multiple iterations without
sharing the raw data at the clients. At the beginning of an FL
task, PS initializes a global model. In each learning iteration, PS
distributes the current global model parameters to selected clients.
Each selected client continues to train the received model with
its local data independently by following a predefined learning
protocol. At the end of each learning iteration, PS collects and
aggregates updates from clients using a gradient aggregation rule
such as FedAvg [22]. PS then updates its global model and after
multiple iterations PS outputs the final global model.

Despite many salient features of FL and its tremendous success in
many applications, it has been shown recently that FL is vulnerable
to model poisoning attacks (MPAs) [4, 8, 10, 13, 29]. In an MPA,
the attacker (i.e., a malicious client) manipulates or crafts its model

1https://www.hhs.gov/hipaa/index.html

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

946

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3488932.3517395
https://doi.org/10.1145/3488932.3517395

parameters sent to the PS in the aim of corrupting the global model
by either increasing the prediction error (untargeted attacks) [10]
or controlling the prediction on targeted inputs (backdoor attacks)
[3, 4]. It is shown in [4] that even a single malicious attacker could
deteriorate the global model accuracy and succeed in controlling
the model output on chosen input data.

A potential countermeasure to MPAs is Byzantine resilient aggre-
gation rules (BRARs) [5, 9, 34], which enable PS to learn an accurate
global model when a bounded number of clients are malicious (i.e.,
Byzantine). Compared to straightforward aggregation rules that
linearly combine the model updates (e.g., FedAvg [22]), BRARs (e.g.,
Krum [5]) seek to provide statistical methods that are not abused by
Byzantine values. To this end, BRARs leverage outlier-robust mea-
sures [15], e.g., median, trimmed estimator, to compute the center of
updates despite the presence of Byzantine updates. Another line of
defenses [20, 27] resorts to use anomaly detection methods to detect
malicious local model updates and excludes them from the aggrega-
tion. MPAs have seen an increase in stealthiness and sophistication.
The state-of-the-art MPAs [4, 10] can craft malicious model updates
very similar to benign ones, breaking existing BRARs. Both the
BRARs and ML-based defenses explore the model parameter space
for detecting anomalous updates; they nonetheless show limited
effectiveness in defending against the state-of-the-art MPAs [4, 10].
Many ML-based defenses [11, 20, 27] also need to collect a dataset
of labeled benign and malicious models beforehand.

In this paper, we tackle the MPA challenge of FL through a new
angle—the latent space representation of a model. We first make
an important observation that even though the poisoned model
parameters are very close to those of benign models, their repre-
sentations in the latent space, provided an auxiliary input dataset,
tend to diverge from those of benign models. Specifically, we tar-
get the penultimate layer representation (PLR) vector in the latent
space and plot the PLRs of both attack-free models and poisoned
models in Figure 1(a). It shows that the clean/benign PLRs follow
the same distribution while the poisoned/malicious PLRs follow a
different one. We made such observation consistently across dif-
ferent datasets and different neural network architectures. Besides
the visual differences, to obtain quantifiable discrepancy, FLARE
measures the distance (i.e., maximum mean discrepancy (MMD)
[12]) between the PLRs of any two models. The average MMD
scores of both poisoned models and clean models are illustrated
in Figure 1(b), which confirms that PLR is a highly differentiating
feature for poisonous models.

Based on the above observation, we propose FLARE (Federated
learning+LAtent-space REpresentations) to protect FL systems
against state-of-the-art MPAs. FLARE features a novel methodology
to estimate the trust score of a local model update by exploiting
the similarity between its PLR to the PLR of others. Compared to
defenses that only look into the model parameters, the PLR-based
trust estimation enables FLARE to prevail in defending against
carefully crafted malicious model updates. To estimate the trust
score, FLARE computes a PLR sequence for each local model, which
takes a very small auxiliary data at the PS. FLARE then exploits
PLRs to distinguish malicious model updates from benign ones.
Under the assumption that malicious clients are fewer than honest
clients, FLARE assigns a trust score to each model update based
on the pairwise PLR discrepancies among all model updates, in

10 0 10 20 30

10

5

0

5

10

Class 0 (ben)
Class 1 (ben)
Class 2 (ben)

Class 0 (mal)
Class 1 (mal)
Class 2 (mal)

(a) 3-class clusters

1 3 5 7 9 11 13 15 17 19
Training Iteration

0.0

0.1

0.2

0.3

0.4

M
M

D

Box plot of MMDs of benign agents
Outlier of Benign Agents
Malicious Agent

(b) MMD distribution

Figure 1: A motivating example for our PLR approach using

the fMNIST dataset [32]. (a) PLRs of 3 classes projected in a

2D space: benignmodels’ PLRs are in blue and poisonedmod-

els’ PLRs in red. (b) Averaged maximummean discrepancy

(MMD) between a model’s PLRs and other models’ PLRs. Box

is for benign models, while red dots denote malicious model.

that those farther from the benign distribution are assigned lower
scores. Finally, we employ a soft decision regime that aggregates
model updates weighted by their trust scores. It is worth noting that
FLARE performs trust score estimation based on the most recently
received model parameters in each federated learning iteration,
and it does not require collecting a dataset of model parameters
beforehand, which yields efficiency advantage compared to existing
ML-based defenses [11, 20, 27].

Contributions of this paper are summarized as follows:
• We propose FLARE, a novel detection and aggregation algo-
rithm for FL to defend against state-of-the-art MPAs. Based
on the key observation that PLRs of poisoned models tend
to diverge from those of benign models, FLARE utilizes PLR
for evaluating the trust score of a model update in FL. Based
on the MMD of different local models’ PLRs, FLARE features
a trust estimation mechanism that assigns a trust score to
each client in every learning iteration. FLARE minimizes the
impact of MPAs by aggregating model updates weighted by
their client trust scores.
• Through theoretical analysis, we provide an Euclidean-distance-
based interpretation on PLRs of deep neural network (DNN),
justifying PLR as a promising measure to estimate the trust
score of a model update.
• Extensive experimental results demonstrate the effective-
ness of FLARE for defending against state-of-the-art MPAs.
FLARE outperforms existing defenses in terms of decreasing
the attack success rate of MPAs. FLARE achieves consistent
performance across various attack methods, and datasets,
demonstrating the generality of the approach.

2 BACKGROUND AND RELATEDWORK

Federated learning (FL), in a nutshell, allows a group of distributed
clients to contribute their locally computed model parameter up-
dates to the global model at the parameter server. The parameter
server is responsible for distributing the initial model, collecting
model parameter updates from agents, aggregating them through a

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

947

certain aggregation rule, and adding the result to the global model.
Eyeing on this FL paradigm, a class of stealthy attacks named model
poisoning attacks (MPAs) have been demonstrated to be a signifi-
cant threat to the security of FL systems [3, 4, 10, 24]. In an MPA,
a compromised local agent attempts to corrupt the training pro-
cess of FL by providing the parameter server carefully manipulated
model parameters in each training iteration, in the aim of gradually
degrading the FL model efficacy without being detected.

To protect the global model from malicious local updates in FL
systems, BRARs were proposed in the literature, exampled by Krum
[5], Coomed, Trimmed Mean [34], and Bulyan [9]. BRARs tackle
the Byzantine attack/failure scenario in FL where a client does
not follow the predefined learning protocol and sends arbitrary
model updates to the PS. Technically, BRARs can bound the gap
between the aggregated gradient and the true mean (i.e., without
Byzantine clients) to a small value. Based on this feature, BRARs can
partially address the MPA threat by preventing or downgrading
the impact of some malicious model updates. Below we briefly
introduce four state-of-the-art BRARs. Krum [5] selects one of 𝑛
received updates {𝛿1, ..., 𝛿𝑛} whose distance to the all the remaining
update is the smallest. Coomed [34] selects the coordinate-wise
median of 𝑛 received updates as the final result. Trimmed Mean [34]
first excludes the largest 𝑘 values and the smallest 𝑘 values in each
coordinate. Then it calculates the average value of the remaining
(𝑛 − 2𝑘) items. Bulyan [9] is a combination of Krum and Trimmed
Mean. Bulyan firstly recursively applies Krum to select (𝑛 − 2𝑘)
updates out of the total 𝑛 updates. Then it applies Trimmed Mean
to the selected (𝑛 − 2𝑘) updates to obtain the final result. We will
use these BRARs for comparative analysis and evaluation.

Besides BRARs, a number of anomaly detection mechanisms are
proposed to detect malicious local model updates. Shen et al. [27]
proposed Auror to protect FL from malicious updates by filtering
out-of-distribution parameters from the received model parameters;
Fung et al. [11] proposed FoolsGold to identify poisoning Sybils
based on the model similarity of client updates. Li et al. [20] pro-
posed a spectral-anomaly-detection-based framework that detects
the abnormal model updates based on their low-dimensional em-
beddings. Zhao et al. [35] proposed PDGAN for detecting poisoned
models. PDGAN reconstructs training data from model updates
and audits the accuracy for each participant model by using the
generated data, and removes clients with accuracy lower than a pre-
defined threshold. [1] uses a set of validating clients to determine
if the (global) model-update derived in that round has been subject
to a poisoning injection. That is, clients validate the global model
on their local data, and vote for accepting or rejecting the model
through a feedback loop. [7] proves that majority vote mechanism
with ensemble federated learning is secure against MPA. The most
relevant work to ours is FLTrust [6]. FLTrust bootstraps a trust
score for each client based on its directional deviation from server
model update and computes the average of the local model updates
weighted by their trust scores as a global model update.

In the meantime, MPAs have seen an increase in stealthiness and
sophistication. The backdoor MPAs proposed by Bhagoji et al. [4]
incorporate a penalty on the distance between the crafted model
parameters and the benign model parameters into its optimization
objective. Bagdasaryan et al. [3] developed a generic constrain-
and-scale technique that incorporates the evasion of defenses into

Update

Parameter
Server

✓

Client 1

w1

Client 2

… …w2

Adversary

Aggregator

Trust Scores

wi

CRAFT

train train

Info Flow of Local Model Info Flow of Global Model

w1 wi… Auxiliary data

ɠ

ɡ

ɢ

ɣ

ɤ

Figure 2: Federated learning system model.

the attacker’s loss function during training. Similar techniques
have been adopted in later works [30, 33] to achieve evasion of
defenses. Meanwhile, Fang et al. [10] proposed untargeted MPAs
to degrade the overall accuracy of the FL system by deviating the
crafted model parameters from the true gradient direction. These
MPAs [3, 10] have demonstrated their capability in evading existing
defenses, e.g., Krum, Trimmed Mean, Auror and FoolsGold. [3] shows
that an attacker is able to craft a malicious model satisfying that
the Euclidean distance between the crafted model and any benign
model is comparable or even less than the Euclidean distance among
different benign models. Moreover, this crafted model can still
misclassify an input to a target label. This attack makes the defenses
by exploring Euclidean distance of model parameters useless and
leads us to reconsider the defense for the MPAs.

We observe that most of the malicious model detection mecha-
nisms [11, 20, 27], BRARs [5, 9, 34], and client credibility aggrega-
tion mechanisms (e.g., FLTrust [6] and [2, 21]) build their defense
by directly analyzing the model updates from agents in the model
parameter space. We also observe that due to the high dimension-
ality of the FL model as well as the non-smooth loss function, two
models that are seemingly close in the parameter space may have
dramatically different loss function. These defenses are likely to
make miss detection on a malicious model that is carefully crafted
to be similar to benign models in the parameter space. Based on
this key insight, we propose to detect malicious local models by
analyzing the latent-space features of models.

3 SYSTEM MODEL

3.1 Federated Learning with Trust Scores

We consider a typical FL network with one parameter server PS
and 𝑛 participating clients {𝐶𝑖 }|𝑖∈[𝑛] (we define [𝑛] B {1, 2, ..., 𝑛}).
The definition of frequently used symbols are shown in Table 1.
Each client manages a local model (e.g., a neural network). At PS,
the model weights of 𝐶𝑖 are w𝑖 ∈ W ⊆ R𝑑 , whereinW is the
parameter space and 𝑑 is the presumed model dimensionality. The
global model parameter is denoted by 𝜃 ∈ W. We denote the model
update from 𝐶𝑖 as 𝛿𝑖 = w𝑖 − 𝜃 . Moreover, PS maintains a vector
of trust scores for all clients, denoted {𝑆𝑖 }𝑖∈[𝑛] . During normal
operation, an FL task executes in iterations with PS acting as the
model distributor and aggregator at the cloud side.

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

948

Figure 2 illustrates the FL system model. At the system onset, PS
initializes 𝜃 . Then each training iteration works as follows: 1 PS
first selects multiple clients and distributes 𝜃 to them; 2 each
of the selected clients, say 𝐶𝑖 , initializes w𝑖 = 𝜃 and trains the
model with its local data; 3 after the local training terminates,
𝐶𝑖 provides its model update 𝛿𝑖 to PS; 4 PS uses the local model
updates provided by the clients to compute a trust score 𝑆𝑖 for every
client𝐶𝑖 ; 5 finally, PS aggregates local model updates weighted by
their trust scores and updates the global model by: 𝜃 ← 𝜃 +∑𝑖 𝑆𝑖𝛿𝑖 .
At the end of the FL task, PS outputs the final global model.

We remark that the trust scores do not exist in the original FL
formulation. As we show later, they allow our system FLARE to
be responsive to malicious model updates before the aggregation
step. We also assume PS has an auxiliary dataset D = {𝑥𝑖 }𝑖∈[𝑚]
containing a small number of records (e.g.,𝑚 = 10), which will be
used for PLR-based trust score evaluation in step 4 . D can be
obtained as long as we have one or more trusted clients in the FL
system, who are willing to contribute to the system’s security.

3.2 Threat Model

We assume the population of malicious clients is less than 0.5𝑛,
in line with prior work [5, 6, 9, 34]. Meanwhile, every malicious
client is a white-box adversary and can mount MPAs on the system,
following from the state-of-the-art MPAs [4, 10].

White-Box Adversary. Being a valid FL client, the attacker
has access to both the global model parameters and the model
updates of other clients. Typically, the attacker estimates the model
updates of other clients using a dummy model trained on its own
clean data. Compared to a white-box attacker, a black-box attacker
would only have access to the global model parameters. We opt
for the challenging white-box adversary model to demonstrate the
strength and effectiveness of our proposed defense.

Model Poisoning Attacks. According to the adversary goal,
there are two types of MPAs: untargeted attacks and backdoor at-
tacks. For an untargeted attack, the attacker aims to degrade the
overall model accuracy. For a backdoor attack, the attacker aims to
control the predictions on chosen input data recordswithout degrad-
ing the overall prediction performance on other input data records.
In specific, we use the two untargeted attacks in [10], which deviate
the global model toward the opposite of the attack-free direction.
We use the two backdoor attacks in [4], in which the adversary
crafts malicious local models so as to inject a backdoor/trigger into
the global model. The adversary maintains its stealth by decreasing
the distance between the crafted model parameters and benign
model parameters.

4 PENULTIMATE LAYER REPRESENTATION

We present the motivation, theory, and outlook for using penulti-
mate layer representations (PLRs) to defend against MPAs.

4.1 PLR Basics

We use a convolutional neural network (CNN) for instance. Con-
sider a CNN 𝑓 : R𝑑1×𝑑2×𝑑3 → R𝑐 , mapping points 𝑥 ∈ R𝑑1×𝑑2×𝑑3

to a 𝑐-dimensional probability vector q ∈ R𝑐 , where 𝑐 is the number
of classes. We consider an image input and use 𝑑1, 𝑑2, and 𝑑3 to
represent an image’s width, height, and number of channels. Let

Table 1: Symbol definition.

Symbol Definition

PS parameter server
𝐶𝑖 the 𝑖-th client
𝑛 the number of clients
w𝑖 the model parameters of 𝐶𝑖
𝜃 the global model parameters at PS
𝛿𝑖 the model parameter update of 𝐶𝑖
D the auxiliary dataset, |D| =𝑚
𝑚 the number of data points in D
𝑐 the number of classes of the data
x the input image, x ∈ R𝑑1×𝑑2×𝑑3

r the penultimate layer representation, r ∈ R𝑜
q the confidence vector q ∈ R𝑐
𝑅 a sequence of r, 𝑅 = {r1, r2, ..., r𝑚}
𝑓 the mapping function of x→ q
𝑔 the mapping function of x→ r
𝜎 the mapping function of r→ q
𝜔𝑖 model weights from the penultimate layer to the 𝑖-th

output neuron
Ω Ω = {𝜔1, 𝜔2, ..., 𝜔𝑐 }
𝑐𝑡𝑖 the count that𝐶𝑖 is selected as others’ nearest neighbor
𝑆𝑖 the trust score of 𝐶𝑖

r 2 Ro
q 2 [0, 1]c

x 2 [0, 1]128⇥128⇥3

<latexit sha1_base64="5DKDV664N+ToVH1dkUnapiTdq1Y=">AAACBHicbVDLSsNAFL2pr1pfUZfdBIvgqiRFfK0KblxWsK3QhDKZTtqhk0mYmYglZOHGX3HjQhG3foQ7/8ZJG0RbDwycOede7r3HjxmVyra/jNLS8srqWnm9srG5tb1j7u51ZJQITNo4YpG49ZEkjHLSVlQxchsLgkKfka4/vsz97h0Rkkb8Rk1i4oVoyGlAMVJa6pvV4YXlhkiN/CC9z1wV/fxE1jdrdt2ewlokTkFqUKDVNz/dQYSTkHCFGZKy59ix8lIkFMWMZBU3kSRGeIyGpKcpRyGRXjo9IrMOtTKwgkjox5U1VX93pCiUchL6ujLfUM57ufif10tUcOallMeJIhzPBgUJs/SteSLWgAqCFZtogrCgelcLj5BAWOncKjoEZ/7kRdJp1J2TeuP6uNY8L+IoQxUO4AgcOIUmXEEL2oDhAZ7gBV6NR+PZeDPeZ6Ulo+jZhz8wPr4B+lKYTQ==</latexit>

g : x ! r
<latexit sha1_base64="Xqmy8SbkWOQpn4ZIL+EV3UOFYXQ=">AAACCXicbVDLSgMxFM3UV62vUZdugkVwVWaK+FoV3LisYB/QGUomzbShSWZMMkIZZuvGX3HjQhG3/oE7/8ZMO4i2HgicnHMv994TxIwq7ThfVmlpeWV1rbxe2djc2t6xd/faKkokJi0csUh2A6QIo4K0NNWMdGNJEA8Y6QTjq9zv3BOpaCRu9SQmPkdDQUOKkTZS34aeokOOLqHHkR4FYSozT0c/v7usb1edmjMFXCRuQaqgQLNvf3qDCCecCI0ZUqrnOrH2UyQ1xYxkFS9RJEZ4jIakZ6hAnCg/nV6SwSOjDGAYSfOEhlP1d0eKuFITHpjKfEM17+Xif14v0eG5n1IRJ5oIPBsUJgyaW/NY4IBKgjWbGIKwpGZXiEdIIqxNeBUTgjt/8iJp12vuaa1+c1JtXBRxlMEBOATHwAVnoAGuQRO0AAYP4Am8gFfr0Xq23qz3WWnJKnr2wR9YH9/1gJp+</latexit>

� : r ! q

<latexit sha1_base64="h4S9awQXOOgbEcB85zIae+hg0bU=">AAACBHicbVDLSsNAFL2pr1pfUZfdBIvgqiRFfK0KblxWsA9oSplMJ+3QySTOTMQSsnDjr7hxoYhbP8Kdf+OkDaKtBwbOnHMv997jRYxKZdtfRmFpeWV1rbhe2tjc2t4xd/daMowFJk0cslB0PCQJo5w0FVWMdCJBUOAx0vbGl5nfviNC0pDfqElEegEacupTjJSW+mbZv7DcAKmR5yf3qavCn99t2jcrdtWewlokTk4qkKPRNz/dQYjjgHCFGZKy69iR6iVIKIoZSUtuLEmE8BgNSVdTjgIie8n0iNQ61MrA8kOhH1fWVP3dkaBAykng6cpsQznvZeJ/XjdW/lkvoTyKFeF4NsiPmaVvzRKxBlQQrNhEE4QF1btaeIQEwkrnVtIhOPMnL5JWreqcVGvXx5X6eR5HEcpwAEfgwCnU4Qoa0AQMD/AEL/BqPBrPxpvxPistGHnPPvyB8fEN9y+YSw==</latexit>

f : x ! q

Convolutional Pooling

Input

Convolutional Penultimate
layer

Softmax
layer

…
…

Figure 3: The convolutional neural network architecture

showing mapping functions 𝑓 , 𝑔 and 𝜎 .

the last layer of the network be a softmax layer. The mapping func-
tion from the input to the penultimate layer (i.e., the layer before
the last layer) is denoted by 𝑔 : R𝑑1×𝑑2×𝑑3 → R𝑜 . The output of
function 𝑔 is a PLR which is denoted by r ∈ R𝑜 . We use 𝜎 to denote
the mapping function from PLR to the output probability vector,
𝜎 : r ∈ R𝑜 → q ∈ R𝑐 . The mapping functions are shown in Figure 3.

4.2 Power of PLR in Separating MPAs

Next we show that PLR exhibits highly differentiating power in
detecting malicious models crafted by the advanced attacks. This is
in contrast to solely looking at the model parameters.

The prediction of a 𝑐-class classifier on an input is a probabil-
ity vector q = [𝑞1, 𝑞2, ..., 𝑞𝑐], where 𝑞𝑘 represents the likelihood
the model assigns label 𝑘 to the input and

∑𝑐
𝑘=1 𝑞𝑘 = 1. We use

Ω = [𝜔1, , 𝜔2, ..., 𝜔𝑐] to represent the weight connecting the penul-
timate layer to the last layer where 𝜔𝑘 ∈ R𝑜 denotes the weights
connecting to the 𝑘-th neuron of the output (i.e., softmax) layer.

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

949

According to the softmax function, 𝑞𝑘 is calculated as

𝑞𝑘 =
exp(r𝑇𝜔𝑘)∑𝑐
𝑖=1 exp(r𝑇𝜔𝑖)

. (1)

We interpret the output probability using the Euclidean distance
between PLR and templates 𝜔𝑘 .

Proposition 1. In a 𝑐-class NN classifier where the last two
layers are fully connected and the last layer is a softmax layer, the
output probabilities of any two class 𝑘 and 𝑙 (∀𝑘, 𝑙 ∈ [𝑐] and 𝑘 ≠ 𝑙)
satisfy that 𝑞𝑘 > 𝑞𝑙 if

∥r − 𝜔𝑙 ∥2 − ∥r − 𝜔𝑘 ∥2 ≥ 𝐶𝑘𝑙 , (2)

where r represents the PLR of an input data record and 𝜔𝑘 is the
weights connecting to the 𝑘-th neuron of the output layer. | |r − 𝜔𝑘 | |2
denotes the Euclidean distance between r and template 𝜔𝑘 , i.e., | |r −
𝜔𝑘 | |2 = r𝑇 r − 2rT𝜔𝑘 + 𝜔𝑇𝑘 𝜔𝑘 . 𝐶𝑘𝑙 is a constant and 𝐶𝑘𝑙 = 𝜔

𝑇
𝑙
𝜔𝑙 −

𝜔𝑇
𝑘
𝜔𝑘 .

Proposition 1 (see proof in Appendix) implies that the smaller
the distance between r and the template 𝜔𝑘 (when the distance
between r and other templates is fixed), the larger the likelihood
that r is classified as class 𝑘 . Here, we can regard the template 𝜔𝑘
as the cluster center of class 𝑘 . Classification can be determined
by comparing a target PLR to all the 𝑐 templates. For each pair
of classes, e.g., 𝑘 and 𝑙 , the input is more likely to be class 𝑘 if
Eq. (2) is satisfied or class 𝑙 otherwise. Based on Proposition 1, we
hypothesize that the PLRS of inputs belonging to one specific class
exhibit a relatively small Euclidean distance to the corresponding
template, possibly resulting in a consistent pattern (i.e., a cluster
centered at the template). We then analyze how the distortion in
PLR (i.e., ∥r1 − r2∥2) transforms to the final output probability
vector.

Proposition 2. The mapping function 𝜎 : r ∈ R𝑜 → q ∈ R𝑐
maps a PLR to a probability vector as discussed above. For any two
PLRs r1, r2, we have

∥q1 − q2∥2 ≤ ∥Ω∥2∥r1 − r2∥2, (3)

where r1 and r2 are the PLR of two input 𝑥1 and 𝑥2 respectively. q1 and
(q2) are the output probability vector for input 𝑥1 and 𝑥2 respectively.

Proposition 2 (see proof in Appendix) implies that a difference in
the PLR space will transform to the difference of the corresponding
output probability. The output probability will be very similar if
∥r1 − r2∥2 is small enough.

Furthermore, we consider two local models in FL. The weights Ω
of the two local models should be very similar since the local models
begin their training with the same initialization and only perform
several training steps. The two models transform the same input 𝑥
(belonging to class 𝑐) into PLR r1 and PLR r2 respectively. r1 and r2
should stay within a certain distance if the two models would give a
similar prediction confidence vector on 𝑥 . We further demonstrate
our hypothesis by visualizing the PLRs of benign models in Figure 4.
Here we assume ten participating clients in an FL system, including
nine benign clients and one attacker. The attacker manipulates its
model parameters by implementing a well-known backdoor MPA
[4]. We collect the ten local models and calculate a PLR for each

10 5 0 5 10

4

2

0

2

4

Point 0 w/ ben model
Point 0 w/ mal model
Point 1 w/ ben model

Point 1 w/ mal model
Point 2 w/ ben model
Point 2 w/ mal model

Figure 4: PLRs and inter-distance between PLRs in the 2-D

space of the Kather dataset [17]. There are three types of

markers (i.e., circle, plus, and square), each type of maker

corresponds to one input data points. There are ten items

of each type of marker, representing ten versions of PLRs

for one input data. Nine (in blue) are from nine benign local

models and one (in red) is from a malicious model.

local model using the same data point. We plot the ten versions of
PLR in a 2-D space. Ten versions of PLR are presented in Figure 13.
We can see that all the benign PLRs stays close to each other while
the malicious one exhibits a more significant distance from the
benign ones. We show three examples (three input data points),
and we get a similar observation among all three examples.

4.3 Visualizing PLRs Distribution

Based on the above theoretical analysis and empirical results, we
find that the poisoned model produces a PLR that is relatively far
from the cluster of benign PLRs. We further plot more data points
from the same class to see the distribution of PLRs. In Figure 6,
we plot the PLRs of both malicious models and benign models
under backdoor attacks. We observe that the PLRs of benign models
follow a distribution while the PLRs of malicious models deviate
from it. We present the results under untargeted attacks and achieve
consistent result (see Figure 10 and Figure 11). All the results further
confirm that PLR is a promising feature for detecting poisoned
models. The key reason for distribution deviation is because the
PLR distance among benign models is smaller than the PLR distance
between benign models and malicious models.

The visualization procedure used to illustrate the PLRs is as
follows [23]: 1) randomly select three classes from all classes; 2)
compute the orthonormal basis of the hyperplane on which the
templates of the selected class reside; 3) project the PLRs of data
records from the three classes to the hyperplane (i.e., calculating
the inner product of the PLRs and the orthonormal basis); and 4)
reduce the dimensionality of the results in Step 3) to 2-D space by
applying PCA. Finally, we can plot the PLRs in 2-D space.

5 FLARE: DEFENDING AGAINST MPAS

5.1 Overview of FLARE

Based on the observation and theoretical analysis of PLRs, we
design our system—FLARE. The overview of FLARE is shown in
Figure 5. Our design is compatible with the general FL system. One

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

950

Local Model 2

Local Model 1

<latexit sha1_base64="1poo+BK5IKqfb+K3+Nw5xDaKgLQ=">AAAB/XicdVDLSgMxFM3UV62v8bFzEyyCqyEzttpupODGZQX7gLaUTHrbhmYeJBmhDsVfceNCEbf+hzv/xvQhqOiBC4dz7s3NPX4suNKEfFiZpeWV1bXsem5jc2t7x97dq6sokQxqLBKRbPpUgeAh1DTXApqxBBr4Ahr+6HLqN25BKh6FN3ocQyegg5D3OaPaSF37oD17I/VFApN2D4SmXbdr54lTLpNCoYiJUySe55UMIadeqexi1yEz5NEC1a793u5FLAkg1ExQpVouiXUnpVJzJmCSaycKYspGdAAtQ0MagOqks80TfGyUHu5H0lSo8Uz9PpHSQKlx4JvOgOqh+u1Nxb+8VqL7pU7KwzjRELL5on4isI7wNArc4xKYFmNDKJPc/BWzIZWUaRNYzoTwdSn+n9Q9xz1zvOtCvnKxiCOLDtEROkEuOkcVdIWqqIYYukMP6Ak9W/fWo/Vivc5bM9ZiZh/9gPX2CVvEldA=</latexit>

�1

<latexit sha1_base64="OuNGX+ELMKRtiBu6Q27HmKdgm3Y=">AAAB/XicdVDLSgMxFM3UV62v8bFzEyyCqyEzttpupODGZQX7gLaUTHrbhmYeJBmhDsVfceNCEbf+hzv/xvQhqOiBC4dz7s3NPX4suNKEfFiZpeWV1bXsem5jc2t7x97dq6sokQxqLBKRbPpUgeAh1DTXApqxBBr4Ahr+6HLqN25BKh6FN3ocQyegg5D3OaPaSF37oD17I/VFApN2D4SmXa9r54lTLpNCoYiJUySe55UMIadeqexi1yEz5NEC1a793u5FLAkg1ExQpVouiXUnpVJzJmCSaycKYspGdAAtQ0MagOqks80TfGyUHu5H0lSo8Uz9PpHSQKlx4JvOgOqh+u1Nxb+8VqL7pU7KwzjRELL5on4isI7wNArc4xKYFmNDKJPc/BWzIZWUaRNYzoTwdSn+n9Q9xz1zvOtCvnKxiCOLDtEROkEuOkcVdIWqqIYYukMP6Ak9W/fWo/Vivc5bM9ZiZh/9gPX2CV1IldE=</latexit>

�2

Auxiliary
Data PLRs

PLRs

ID Count

1

2

5

0
… …

Calculate MMD
between each pair of

local models

Find the Nearest
Neighbor of each

local model

SoftMax
Function

Gloabl Model

ŏ ŏ ŏ

0.15

0.01
… …

Trust scores

Model
Updates

<latexit sha1_base64="HWYYHJ0Lv4y9NtsPUtk5Gdvx1No=">AAAB+3icdVDLSsNAFJ3UV42vWpduBovgqiQxtHVXcOOyon1AG8JkMm2HTiZhZiKWkF9x40IRt/6IO//GSVtBRQ9cOJxz79y5J0gYlcqyPozS2vrG5lZ529zZ3ds/qBxWezJOBSZdHLNYDAIkCaOcdBVVjAwSQVAUMNIPZpeF378jQtKY36p5QrwITTgdU4yUlvxKNRstHskECfP8xndM06/UrPpFq+G4DWjVLatpO3ZBnKZ77kJbKwVqYIWOX3kfhTFOI8IVZkjKoW0lysuQUBQzkpujVJIE4RmakKGmHEVEetlibQ5PtRLCcSx0cQUX6veJDEVSzqNAd0ZITeVvrxD/8oapGre8jPIkVYTj5aJxyqCKYREEDKkgWLG5JggLqv8K8RQJhJWOqwjh61L4P+k5dbtRd67dWruxiqMMjsEJOAM2aII2uAId0AUY3IMH8ASejdx4NF6M12VryVjNHIEfMN4+AcPhlDo=</latexit>

S2

<latexit sha1_base64="2fjTiR1QeJcbbZyHRAt8msi3PtE=">AAAB+3icbVDLSsNAFJ3UV42vWJduBovgqiRFqsuCG5cV7QPaECaTSTt0MgkzE7GE/IobF4q49Ufc+TdO0iy09cCFwzn3zp17/IRRqWz726htbG5t79R3zb39g8Mj67gxkHEqMOnjmMVi5CNJGOWkr6hiZJQIgiKfkaE/vyn84SMRksb8QS0S4kZoymlIMVJa8qxGNikfyQQJ8nvPyU3Ts5p2yy4B14lTkSao0POsr0kQ4zQiXGGGpBw7dqLcDAlFMSO5OUklSRCeoykZa8pRRKSblWtzeK6VAIax0MUVLNXfExmKpFxEvu6MkJrJVa8Q//PGqQqv3YzyJFWE4+WiMGVQxbAIAgZUEKzYQhOEBdV/hXiGBMJKx1WE4KyevE4G7ZbTabXvLpvdThVHHZyCM3ABHHAFuuAW9EAfYPAEnsEreDNy48V4Nz6WrTWjmjkBf2B8/gBhuJP3</latexit>

S1

Update

PLRs

Parameter Server

Clients Aggregate model parameter
updates Weighted by their

trust score
<latexit sha1_base64="WyHhoBb4j7JMDgw88X1M5cy8nGQ=">AAACK3icbVDLSsNAFJ34tr6qLt0MFkEQSiJSXRbduFS0WmhCmExu2qGTBzM3Qgn5Hzf+igtd+MCt/+G0RvB1YODcc+/l3DlBJoVG236xpqZnZufmFxZrS8srq2v19Y0rneaKQ4enMlXdgGmQIoEOCpTQzRSwOJBwHQxPxv3rG1BapMkljjLwYtZPRCQ4QyP59WMXB4CMun1ATatiz9V57AtauBODQkFYXvii/KoDmUPphiCRGdWvN+ymPQH9S5yKNEiFM7/+4IYpz2NIkEumdc+xM/QKplBwCWXNzTVkjA9ZH3qGJiwG7RUT65LuGCWkUarMS5BO1O8bBYu1HsWBmYwZDvTv3lj8r9fLMTryCpFkOULCP42iXFJM6Tg4GgoFHOXIEMaVMLdSPmCKcTTx1kwIzu8v/yVX+02n1dw/P2i0W1UcC2SLbJNd4pBD0ian5Ix0CCe35J48kWfrznq0Xq23z9Epq9rZJD9gvX8A4HKpUw==</latexit>

✓ ✓ +
X

i

Si�i
ɠ

ɡ

ɢ ɣ ɤ

ɧ

ɥ

ɦ

ɨ

Figure 5: FLARE design. In each FL iteration, local clients submit their local model updates {𝛿𝑖 } to the PS. PS calculates PLRs for

each local model using the same auxiliary dataset, then computes the nearest neighbor of each local model based the MMD of

PLRs. The count of being selected as a nearest neighbor are used to estimate the trust score 𝑆𝑖 of each local model. PS aggregates

the model updates weighted by their trust scores and uses the result to update the global model.

practitioner can easily apply FLARE to an FL system by adding a
trust score estimation module. As shown in Figure 5, local clients
firstly submit their local model updates 𝛿𝑖 to the PS. PS calculate
PLRs using an auxiliary dataset for each local model. Next, FLARE
computes the nearest neighbors of each local model based on the
Maximum Mean Discrepancy (MMD) of PLRs. A client’s count to
be selected as other clients’ nearest neighbor is used to estimate
its trust score 𝑆𝑖 . Finally, PS aggregates model updates weighted
by their trust scores and use it to update the global model. The
workflow of FLARE is also shown in Algorithm 1.

5.2 Detailed Design

FLARE features two differences at PS comparing to the traditional
FL system: 1) At the very beginning, PS initializes the global model
by training with the auxiliary dataset D instead of performing
random initialization. This procedure can accelerate the training
process. It also helps clients make correct predictions on D, which
increases the probability that the benign models’ PLR follow one
distribution. 2) At the aggregation stage of each learning iteration,
PS estimate a trust score for everymodel update and aggregate them
by their trust scores. Next we elaborate on FLARE’s aggregation
scheme, mainly how to estimate the trust scores.

Firstly, PS computes PLRs for each local model w𝑗 using D =

{x𝑖 }𝑖∈[𝑚] . The mapping function of the model with weight w𝑗 is
represented by 𝑔wj : x ∈ R𝑑1×𝑑2×𝑑3 → r ∈ R𝑜 where 𝑑1, 𝑑2, and
𝑑3 represent the width, height, and channels of an image input
and 𝑜 represents the dimensionality of a PLR. As we have𝑚 data
points in D, we can get 𝑚 PLRs {r1, ..., r𝑚} where r𝑖 = 𝑔wj (xi).
To distinguish between PLRs of different models, we use 𝑅 𝑗 :=
{𝑔wj (x1), ..., 𝑔wj (xm)} to represent the PLRs by the 𝑗-th model.

Next, FLARE applies MMD [12] on 𝑅𝑖 and 𝑅 𝑗 to test whether
the two PLR sequences follow the same distribution. We choose
MMD but not other two-sample test methods mainly because the
number of PLR points𝑚 = 10 in one sample is much smaller than

the dimensionality 𝑜 = 128 of the data. It is difficult to measure
the distribution of such a small sample. Traditional parametric two-
sample test methods usually have strong assumptions about the
parameters of the population distribution from which the sample
is drawn and therefore are not applicable. FLARE utilizes MMD
to estimate the distance between two PLR sequences since MMD
does not require knowing the PLR distribution. Without loss of
generality, the unbiased estimate of MMD between the two PLR
sequences 𝑅𝑖 and 𝑅 𝑗 is:

MMD(𝑅𝑖 , 𝑅 𝑗)=
1

𝑚(𝑚 − 1)

[∑︁
𝑎∈𝑅𝑖

∑︁
𝑏∈𝑅𝑖 ,𝑏≠𝑎

𝑘 (a, 𝑏)+

∑︁
𝑎∈𝑅 𝑗

∑︁
𝑏∈𝑅 𝑗 ,𝑏≠𝑎

𝑘 (𝑎, 𝑏)−2
∑︁
𝑎∈𝑅𝑖

∑︁
𝑏∈𝑅 𝑗

𝑘 (𝑎, 𝑏)
] (4)

where 𝑘 (·) is a Gaussian kernel function. We expect the empirical
test statistic MMD(𝑅1, 𝑅2) to be small if 𝑅1 and 𝑅2 are from an
identical distribution, and large if the distributions are far apart.
We use the shortcut𝑀𝑀𝐷𝑖 𝑗 = MMD(𝑅𝑖 , 𝑅 𝑗) to represent the MMD
between the 𝑖-th model’s PLRs and 𝑗-th model’s PLRs.

FLARE utilizes the count of nearest neighbors to estimate the
trust score of a model update. PS selects the top 50% nearest neigh-
bors for each local model based on the MMD scores. The count
𝑐𝑡𝑖 for wi increases by one once wi is selected by any wj (𝑗 ≠ 𝑖).
The count 𝑐𝑡𝑖 value indicates the trustworthiness degree. We then
use the softmax function with temperature to transform the count
value into a trust score:

𝑆𝑖 =
exp(𝑐𝑡𝑖/𝜏)∑𝑛

𝑘=1 exp(𝑐𝑡𝑘/𝜏)
, (5)

where 𝜏 is the temperature parameter. 𝑆𝑖 is in the interval of [0, 1]
and

∑𝑛
𝑖 𝑆𝑖 = 1. For a sequence of {𝑐𝑡𝑖 }𝑖∈[𝑛] , a larger 𝜏 will output

more even trust scores. We can select a smaller 𝜏 to highlight benign
model updates and reduce the weights of suspicious model updates.
We use 𝜏 = 1 in our paper.

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

951

Algorithm 1 FLARE Algorithm
Input: 𝑛 local updates {𝛿1, 𝛿2, ..., 𝛿𝑛},𝑚 auxiliary data points

{x1, ...x𝑚}, global model 𝜃 , maximum iteration 𝑇 .
Output: global model 𝜃 .

1: while 𝑡 < 𝑇 do

2: Local models: w1, ...,wn ← 𝛿1 + 𝜃, ..., 𝛿𝑛 + 𝜃 .
3: for 𝑖 < 𝑛, 𝑖 < 𝑗 < 𝑛 do

4: 𝑅𝑖 ← [𝑔wi (x1), ..., 𝑔wi (xm)] # i-th model’s PLRs.
5: 𝑅 𝑗←[𝑔wj (x1), ..., 𝑔wj (xm)] # j-th model’s PLRs
6: 𝑀𝑀𝐷𝑖 𝑗 = 𝑀𝑀𝐷 𝑗𝑖 ← MMD(𝑅𝑖 , 𝑅 𝑗)
7: end for

8: 𝑘 = round(𝑛 ∗ 50%) # 50% of the number of updates
9: for 𝑖 < 𝑛 do

10: 𝐼𝐷𝑠 ← argsort(𝑀𝑀𝐷𝑖1, ...𝑀𝑀𝐷𝑖𝑛)
11: 𝑁𝑒𝑖𝑔ℎ𝑏𝑖 ← first 𝑘 elements in 𝐼𝐷𝑠
12: end for

13: # Count times that 𝑖 is selected as others’ neighbors.
14: 𝑐𝑡1, ..., 𝑐𝑡𝑛 ← counting(𝑁𝑒𝑖𝑔ℎ𝑏1, ..., 𝑁𝑒𝑖𝑔ℎ𝑏𝑛)
15: 𝜃 ← 𝜃 +∑𝑛

𝑖=1
𝑒𝑐𝑡𝑖∑𝑛

𝑘=1 𝑒
𝑐𝑡𝑘
𝛿𝑖 # update global model

16: end while

An alternative scheme is to use the average MMD value of one
model to other models to estimate its trust score. The reason why
we select the nearest-neighbor-count-based scheme but not the
average-MMD-based scheme is shown as follows. The nearest-
neighbor-count-based scheme is more resilient to collusive attack-
ers than the average-MMD-based scheme. Colluded attackers can
produce nearly the same PLRs, thus resulting in extremely small
MMD with each other. In this way, the final average MMD of an
attacker may be smaller than benign models, making the detection
scheme useless. On the other hand, the counts of the nearest neigh-
bor can deal with this type of collusion when attackers are less than
50% of all clients.

Finally, we aggregate model updates weighted by their trust
scores and use it to update the global model by

𝜃 ← 𝜃 +
𝑛∑︁
𝑖=1

𝑆𝑖𝛿𝑖 . (6)

where 𝑛 is the number of local model updates received by PS.

6 IMPLEMENTATION AND EXPERIMENTAL

SETTINGS

We implement MPAs and FLARE on the TensorFlow platform. We
run all the experiments on a server equipped with an Intel Core
i7-8700K CPU 3.70GHz×12, a GeForce RTX 2080 Ti GPU, and
Ubuntu 18.04.3 LTS. We implement the following four types of
MPAs: Attack-Krum-Untargeted, Attack-TM-Untargeted [10],
Attack-Krum-Backdoor, and Attack-Coomed-Backdoor [4]. We
also implement defenses, including Krum [5], Coomed, TrimmedMean
[34], Bulyan [9], and FLTrust [6], as baselines for comparison.

6.1 Experimental Setting

The default number of clients in the studied FL system is 𝑛 = 10,
and the ratio of selected clients in each FL iteration is 1.0. The
default number of malicious client(s) is one in backdoor attacks and

Table 2: Model Accuracy (%) in attack-free scenario.

Dataset FedAvg Krum Coomed TMean Bulyan FLARE

fMNIST 91.77 88.68 91.55 91.61 91.45 91.58
CIFAR-10 69.58 55.190 69.31 69.35 68.56 67.00
Kather 78.83 75.1 76.6 78.33 75.1 78.23

three in untargeted attacks following the setting of MPAs in [4, 10].
We divide the dataset evenly into 𝑛 subsets and distribute them to
clients. The PS has an auxiliary dataset containing𝑚 = 10 clean
data points from one class. Each client manages a local model (i.e.,
VGGNet [28]) and trains the local model using an Adam optimizer
with learning rate 0.001. A client trains its local model for five
epochs before submitting the model updates. The number of total
FL iterations is 𝑇 = 20. The testing accuracy in attack-free model
is as shown in Table 2. We run each experiment three times and
show the average performance. We use three different datasets
including fMNIST dataset [32], CIFAR-10 dataset [19] and Kather
dataset [17] to evaluate FLARE. The details of the three datasets
and corresponding model architectures are depicted in Appendix.

6.2 Evaluation Metrics.

We aim to answer two questions: Is FLARE effective in defending
against MPAs by reducing the attack success rate? Can FLARE
maintain high accuracy on clean data? Therefore, we show model
confidence of target label, attack success rate (ASR), and model accu-
racy (Acc) of clean data for evaluating our defense against backdoor
attacks. The model confidence in target label 𝑐𝑡 denoted by 𝑞𝑡 is
a commonly used metric for backdoor attacks [4]. ASR is defined
as the number of test inputs predicted as the target label over the
total number of targeted inputs. Here, a targeted input means an
input with a backdoor trigger. The metric for untargeted attacks is
different as the attacking goal is different, and model accuracy is
the only evaluation metric for untargeted attacks.

7 EVALUATION RESULTS

7.1 Backdoor Attacks

7.1.1 Attack strategy. In a backdoor attack, the attacker aims to
control the predictions on target input without degrading the over-
all prediction performance on other input data records. As an ex-
ample of backdoor MPA, several hospitals aim to train a tumor
tissue detector through FL. A backdoor attacker injects malicious
updates through FL iterations to mislead the FL model to classify
tumor tissue as normal tissue. Next, we depict two state-of-the-art
backdoor MPAs that are used for evaluation.

Attack-Krum-Backdoor [4]: The adversary crafts malicious lo-
cal models to backdoor FL under Krum aggregation rule. This attack
is subtle as the malicious parameters are close to those of benign
ones and seem innocuous. As a result, the chances are high that
the crafted malicious model parameters are accepted by Krum. The
objective function is:

arg min
𝛿𝑚𝑎𝑙

𝐿(D𝑚𝑎𝑙) + 𝜆𝐿(D𝑡𝑟𝑎𝑖𝑛) + 𝜌 ∥𝛿𝑚𝑎𝑙 − 𝛿𝑏𝑒𝑛 ∥, (7)

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

952

10 0 10 20

10

5

0

5

10

Class 0 (ben)
Class 1 (ben)
Class 2 (ben)

Class 0 (mal)
Class 1 (mal)
Class 2 (mal)

(a) fMNIST

10 5 0 5 10
6

4

2

0

2

4

Class 0 (ben)
Class 1 (ben)

Class 0 (mal)
Class 1 (mal)

(b) CIFAR-10

10 5 0 5 10 15 20

6

4

2

0

2

4

Class 0 (ben)
Class 1 (ben)

Class 0 (mal)
Class 1 (mal)

(c) Kather

Figure 6: PLRs of different classes without attack (blue) or under backdoor attack (red).

1 3 5 7 9 11 13 15 17 19 21
Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Attack-Krum-Backdoor (semantic)

1 3 5 7 9 11 13 15 17 19 21
Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Attack-Coomed-Backdoor (semantic)

1 3 5 7 9 11 13 15 17 19 21
Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Attack-Krum-Backdoor (trojan)

1 3 5 7 9 11 13 15 17 19 21
Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Attack-Coomed-Backdoor (trojan)

FedAVG Coomed Bulyan Krum TrimmedMean FLTrust FLARE

Figure 7: Model Confidence in targeted inputs under backdoor MPAs (fMNIST dataset). The first two are semantic backdoor

attacks, and the last two are trojan backdoor attacks.

1 3 5 7 9 11 13 15 17 19 21
Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Attack-Krum-Backdoor (semantic)

1 3 5 7 9 11 13 15 17 19 21
Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Attack-Coomed-Backdoor (semantic)

1 3 5 7 9 11 13 15 17 19 21
Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Attack-Krum-Backdoor (trojan)

1 3 5 7 9 11 13 15 17 19 21
Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Attack-Coomed-Backdoor (trojan)

FedAVG Coomed Bulyan Krum TrimmedMean FLTrust FLARE

Figure 8: Model confidence on targeted label under backdoor MPAs on CIFAR-10 dataset.

1 3 5 7 9 11 13 15 17 19 21
Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Attack-Krum-Backdoor (semantic)

1 3 5 7 9 11 13 15 17 19 21
Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Attack-Coomed-Backdoor (semantic)

1 3 5 7 9 11 13 15 17 19 21
Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Attack-Krum-Backdoor (trojan)

1 3 5 7 9 11 13 15 17 19 21
Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Attack-Coomed-Backdoor (trojan)

FedAVG Coomed Bulyan Krum TrimmedMean FLTrust FLARE

Figure 9: Model confidence on targeted label under backdoor MPAs on Kather dataset.

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

953

Table 3: Model Accuracy (%) on clean data and ASR (%) on targeted data.

Attack Name Dataset FedAvg Krum Coomed TrimmedMean Bulyan FLTrust FLARE
Acc ASR Acc ASR Acc ASR Acc ASR Acc ASR Acc ASR Acc ASR

Attack-Krum
-Backdoor
(semantic)

fMNIST 91.6 8.3 87.9 98.3 91.6 45.0 91.5 43.3 91.4 71.6 91.7 40.0 91.2 0

CIFAR-10 68.7 26.7 48.1 100 67.8 53.3 68.4 33.3 67.2 65.0 67.0 0 66.4 0

Kather 79.9 41.6 50.9 86.7 79.3 33.3 79.4 41.7 79.5 56.7 50.5 19.4 76.7 0

Attack-Coomed
-Backdoor
(semantic)

fMNIST 91.5 58.3 88.0 98.3 91.7 78.3 91.6 68.3 91.5 85.0 91.5 0 91.4 0

CIFAR-10 68.0 56.7 50.1 96.7 67.8 85.0 67.7 53.3 66.1 88.3 66.3 20.3 65.2 0

Kather 75.3 91.7 64.8 51.6 78.6 78.3 78.2 75.0 78.5 46.7 76.2 7.2 77.8 0

10 0 10 20

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Class 0 (ben)
Class 1 (ben)
Class 2 (ben)

Class 0 (mal)
Class 1 (mal)
Class 2 (mal)

(a) fMNIST

5 0 5 10

4

3

2

1

0

1

2

Class 0 (ben)
Class 1 (ben)

Class 0 (mal)
Class 1 (mal)

(b) CIFAR

Figure 10: The PLRs of 3 classes without attack (blue) or

under untargeted attack (red) in fMNIST dataset and CIFAR

dataset respectively.

30 20 10 0 10

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Class 0 (ben)
Class 1 (ben)

Class 0 (mal)
Class 1 (mal)

Figure 11: The PLRs of 3 classes without attack (blue) or

under untargeted attack (red) in Kather dataset.

where the main goal is to minimize the loss on backdoor inputs,
denoted by 𝐿(D𝑚𝑎𝑙). Meanwhile, the attack aims to minimize the
loss 𝐿(D𝑡𝑟𝑎𝑖𝑛) to improve the accuracy of clean samples. Addition-
ally, the attack also minimizes the distance ∥𝛿𝑚𝑎𝑙 − 𝛿𝑏𝑒𝑛 ∥ between
the malicious update and average benign updates to be stealthy. By
solving this objective, this attack can mislead the global model to
output target labels for target inputs while keeping stealthy.

Attack-Coomed-Backdoor [4]: The objective function of this
attack is the same as that of Attack-Krum-Backdoor (i.e., Eq. (7)).
To defeat coordinate median aggregation rule, the local training pro-
cess at attackers is a little different from Attack-Krum-Backdoor
(see [4] for details).

According to the need of physically injecting a trigger, back-
door attacks are categorized into two types, i.e., trojan backdoor
attack and semantic backdoor attack. In the trojan attack, attack-
ers need to physically inject a backdoor/trigger to an ML model
by modifying all or a subset of the training data. Different from
the trojan attack, semantic backdoor attack involves no physically
injected trigger in inputs. In the semantic backdoor attack, the

trigger is a semantic feature included in an original image. For
instance, the ‘stripes’ can be a semantic trigger for the apparel
classification problem. The attacker attaches the label ‘sweater’ to
images containing ‘stripes’. As a result, any apparel with ‘stripes’
will be classified as sweaters. We extend the two backdoor MPAs
(i.e., Attack-Krum-Backdoor and Attack-Coomed-Backdoor) into
four attacks including Attack-Krum-Backdoor(semantic)/(trojan)
and Attack-Coomed-Backdoor(semantic)/(trojan).

7.1.2 FLARE Performance. Table 3 shows the performance of FLARE
against two semantic backdoor MPAs. The name of an attack on
the left column, such as Attack-Krum-Backdoor, contains the tar-
geting BRAR (i.e., Krum) to attack. From Table 3 we can see that an
MPA can successfully attack not only its targeting BRAR but also
undermine other BRARs. On the contrary, our proposed FLARE
can reduce the ASR to a small value close to zero across various
datasets. FLARE outperforms BRARs and FLTrust by achieving a
lower ASR. As for accuracy on clean data, FLARE obtains a slightly
lower accuracy than other baselines. This is because a malicious
update contains both the poisoning knowledge and useful knowl-
edge from its own clean data. In FLARE, PS assigns small weights to
the updates from malicious clients thus it achieves a slightly lower
accuracy on clean data.

We plot the global model’s confidence on targeted inputs in Fig-
ure 7. The first two subfigures of Figure 7 show themodel confidence
under two semantic backdoor attacks and the last two for trojan
backdoor attacks. Under Attack-Krum-Backdoor (semantic), we
can see that the model confidence of Krum rises to 1.0 very fast, in-
dicating that the attack succeeds at the early stage of FL. Under the
same attack, the model confidence of other BRARs such as Bulyan,
Coomed, Trimmedmean also increases along with the learning pro-
cess, indicating that this attack succeeds in attacking all the BRARs.
We can see that the confidence fluctuates along the training pro-
cess because of the randomness in the distributed learning and the
aggregation rules. Note that all the results shown are the average
value of three runs. On the contrary, FLARE results in very steady
and small confidence scores for the targeted input under MPAs,
meaning that FLARE successfully defends against the four backdoor
attacks. We achieve similar results on the CIFAR-10 dataset and
Kather dataset as shown in Figure 8 and Figure 9 respectively. For
both two datasets, FLARE achieves the lowest confidence in the
final (i.e., 20th) iteration. We can see the model confidence is close
to 0 at the final iteration, which indicates that FLARE successfully
defenses against these attacks.

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

954

Table 4: Model Accuracy (%) under untargeted attacks.

Attack Name Dataset FedAvg Krum Coomed TrimmedMean Bulyan FLTrust FLARE

Attack-Krum
-Untargeted

fMNIST 59.2 6.93 79.8 89.7 86.2 91.2 90.9
CIFAR-10 62.4 10.4 61.6 62.8 62.5 66.4 66.5

Kather 69.0 12.34 66.1 66.4 69.8 11.6 76.4

Attack-TrimmedMean
-Untargeted

fMNIST 87.1 87.9 80.3 61.1 89.5 90.7 91.1

CIFAR-10 58.8 53.4 60.3 49.2 64.0 64.4 67.5

Kather 18.0 70.8 64.2 22.3 74.1 10.9 77.5

7.2 Untargeted Attacks

7.2.1 Attack Strategy. In untargeted attacks, the attacker aims to
degrade model performance by preventing the global model from
convergence or leading the global model to converge to a local
optimum that yields a high testing error rate. Next, we summarize
two state-of-the-art untargeted MPAs that are used for evaluation.

Attack-Krum-Untargeted [10]: The adversary aims to craft
𝑘 (𝑘 ≥ 1) malicious local models to attack Krum. To achieve this,
the attacker applies “directed deviation” to the global model param-
eters, which moves the parameters along the opposite direction of
the attack-free one. The attack is formalized as:

max 𝜆

s.t. w′1 = 𝐾𝑟𝑢𝑚(w′1, ...,w
′
𝑘
,w(𝑘+1) , ...,w𝑛),

w′1 = 𝜃 − 𝜆s,

w′𝑖 = w′1, for 𝑖 = 2, 3, ..., 𝑘 .

(8)

where w′
𝑖
(∀𝑖 ∈ [𝑘]) represents the weights of a poisoned model;

w𝑖 (∀𝑖 ∈ {𝑘 + 1, ..., 𝑛}) represents the weights of a benign model; 𝜃
represents the current global model; and s represents the sign of
the average weights of all benign models. The directed deviation
between the crafted model w′1 and global model 𝜃 is 𝜆s. The objec-
tive of this attack is to maximize 𝜆 in order to increase the error
rate of FL.

Attack-TM-Untargeted [10]: Similar to Attack-Krum-Untargeted,
the high-level idea is to deviate the global model toward the op-
posite direction of the attack-free model. Assume that the benign
weight in the 𝑗-th coordinate is in the range [𝑤 𝑗,𝑚𝑖𝑛,𝑤 𝑗,𝑚𝑎𝑥]. To at-
tack TrimmedMean, the 𝑗-th coordinate of the crafted model should
be in the same range (i.e., [𝑤 𝑗,𝑚𝑖𝑛,𝑤 𝑗,𝑚𝑎𝑥]) of attack-free model.
In this attack, the attacker develops the following heuristic algo-
rithm. In specific, the 𝑗-th coordinate is crafted by sampling a value
around 𝑤 𝑗,𝑚𝑎𝑥 if the sign of the average weight is negative (i.e.,
𝑠 𝑗 = −1). On the contrary, the 𝑗-th coordinate is generated by
sampling around 𝑤 𝑗,𝑚𝑖𝑛 if 𝑠 𝑗 = 1. As a result, the attack can flip
the sign of some coordinates of the average weights. Similar to
Attack-Krum-Untargeted, this attack aims to increase the testing
error rate of the global model.

7.2.2 FLARE Performance. We show the testing accuracy of the
final global model under untargeted MPAs in Table 4. We can see
that the untargeted attacks can not only successfully spoil the target
BRAR, but alsomake other BRARs less effective. FLARE successfully
defends against untargeted MPAs by achieving testing accuracy
much higher than other baselines. However, the accuracy of FLARE
is still lower than the attack-free scenario (see Table 2). The pos-
sible reason is the same as backdoor MPAs, i.e., a lack of helpful

knowledge from malicious updates. FLTrust achieves comparable
accuracy with FLARE in the fMNIST dataset and CIFAR-10 dataset,
but it achieves a very low accuracy in the Kather dataset. A possible
reason is that FLTrust assigns a trust score to a local model update
based on its cosine similarity with the benign model trained at PS.
The cosine similarity is meaningless when the dimension of the
model parameters is huge.

7.3 Performance in Various FL settings

In order to demonstrate the robustness of FLARE against MPAs, we
evaluate FLARE in various settings. Let’s take FLARE’s performance
against attack-Krum-backdoor as an example.

7.3.1 Client Number, Attacker Number and Auxiliary Data Points.

In Figure 12(a), we vary the number of clients while keeping the
malicious clients as 10% of the total clients. The ASR without de-
fense stays higher than 0.8. The ASR after applying FLARE is close
to zero regardless of the number of clients. The results indicate
that FLARE effectively defended against MPAs in FL systems with
different numbers of clients. In Figure 12(b), the percentage 𝑝 of
malicious clients is from 5 to 30. We can see the ASR under FLARE
remains close to 0 when 𝑝 < 30%, implying that FLARE is highly
effective when the malicious clients are fewer than 30% of the total
clients. It is challenging to detect malicious clients when they are
more than 30% of the total clients. We further examine the impact
of the size𝑚 of the D on FLARE and find that FLARE is effective
when𝑚 ≥ 7.

7.3.2 Non-I.I.D. Data. We follow the setting in [25] to generate the
non-i.i.d. datasets among distributed clients. we assign every client
samples from exactly 𝑐𝑠𝑒𝑙 < 𝑐 classes of the data set where 𝑐 is the
total categories. The data splits are nonoverlapping and balanced,
such that every client ends up with the same number of data points.
We show the ASR of the two backdoor attacks in Table 5. FLARE
obtains the smallest ASR for the two attacks, demonstrating its
resilience against MPAs in non-i.i.d. scenario.

Table 5: ASR in non-i.i.d. scenario in fMNIST.

Attack Krum Coomed TMean Bulyan FLARE

Attack-Krum-Backdoor 0.750 0.533 0.133 0.716 0.016

Attack-Coomed-Backdoor 1.00 0.867 0.750 0.883 0.050

7.4 Defending against Adaptive Attack

In a more challenging scenario, an attacker can adaptively alter
their attack methods to defeat the defense with the knowledge of

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

955

10 20 40 60 80
Number of Clients

0.0

0.2

0.4

0.6

0.8

1.0

AS
R FLARE

No Defense

(a)

5 10 15 20 25 30
Percentage of Malicious Clients

0.0

0.2

0.4

0.6

0.8

1.0

AS
R FLARE

No Defense

(b)

Figure 12: ASR against Attack-Krum-Backdoor in fMNIST

dataset. (a) vary the number of clients when fixing the per-

centage of malicious clients as 0.1; (b) vary the percentage

malicious clients when fixing total clients as 20.

5 10 15
Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

FLARE
Adaptive Attack

(a)

0 5 10 15 20
Training Iteration

False

True

Detected by FLARE
Attack Succeed

(b)

Figure 13: FLARE Performance against adaptive attack.

the defense strategy. Under this attack, we assume the attacker
knows the defense strategy of FLARE.

The adaptive attack follows a strategy explained below. In order
to bypass FLARE, the attacker crafts its model to produce PLRs
similar to PLRs of benign local models. The attack objective is
shown as:

arg min
𝛿𝑚𝑎𝑙

𝐿(D𝑚𝑎𝑙) + 𝜆𝐿(D𝑡𝑟𝑎𝑖𝑛) + 𝜌 ∥𝛿𝑚𝑎𝑙 − 𝛿𝑏𝑒𝑛 ∥

+𝜂𝑑𝑝𝑙𝑟 .
(9)

where 𝐿(D𝑚𝑎𝑙) is the loss on targeted inputs, 𝐿(D𝑡𝑟𝑎𝑖𝑛) is the
loss on the clean data, and ∥𝛿𝑚𝑎𝑙 − 𝛿𝑏𝑒𝑛 ∥ is the distance between
malicious model updates and average benign model updates, and
𝑑𝑝𝑙𝑟 represents the distance between the PLRs of malicious model
and the average PLRs of benign models. This formula originates
from [4]. This attack misleads the global model to output target
labels for chosen inputs while hiding its maliciousness. The original
attack uses components 𝐿(D𝑡𝑟𝑎𝑖𝑛) and ∥𝛿𝑚𝑎𝑙 − 𝛿𝑏𝑒𝑛 ∥ to achieve
the stealthiness. Compared to the original attack in [4], we add
one more component 𝑑𝑝𝑙𝑟 to the objective function which can be
represented as:

𝑑𝑝𝑙𝑟 =
∑︁
𝑖∈[𝑐]
(𝑃𝐿𝑅(𝛿𝑚𝑎𝑙 ,D𝑖

𝑡𝑟𝑎𝑖𝑛) − 𝑃𝐿𝑅(𝛿𝑏𝑒𝑛,D
𝑖
𝑡𝑟𝑎𝑖𝑛)), (10)

where 𝑐 is the total number of classes of the classifier, and 𝐷𝑖
𝑡𝑟𝑎𝑖𝑛

is
the training dataset of class 𝑖 . For each class 𝑖 , 𝑃𝐿𝑅(𝛿𝑚𝑎𝑙 ,D𝑖

𝑡𝑟𝑎𝑖𝑛
)

denotes the average value of PLRs of the malicious model on the
training data 𝐷𝑖

𝑡𝑟𝑎𝑖𝑛
, and 𝑃𝐿𝑅(𝛿𝑏𝑒𝑛,D𝑖

𝑡𝑟𝑎𝑖𝑛
)) denotes the average

value of PLRs of benign model 𝛿𝑏𝑒𝑛 on the same dataset 𝐷𝑖
𝑡𝑟𝑎𝑖𝑛

.

Figure 13(a) shows the performance of FLARE against the adap-
tive attack. When no defense is applied, the adaptive attack itself
achieves a high attack success rate by achieving confidence larger
than 0.9. After FLARE is deployed into the learning process, the
confidence remains less than 0.1, and theASR decreases to 0. Such re-
sults demonstrate the effectiveness of FLARE for defending against
the adaptive attack. In Figure 13(b), we show two flags: one indicates
whether the attack is detected, the other indicates whether the at-
tack makes a misclassification. Note that here ‘detected’ means that
a malicious model update obtains a trust score lower than average.
We can see that FLARE fails to detect malicious clients in Iteration
3 and 18. Meanwhile, the adaptive attack does not succeed in these
two rounds either, which means that the maliciously crafted model
in Iteration 3 or 18 becomes innocuous. Such an observation con-
firms that it is difficult for adaptive attacks to evade FLARE and
achieve malicious goals simultaneously.

We also analyze the computation complexity of FLARE. We
find that the computation overhead of FLARE depends on PLR
calculation and MMD execution. FLARE’s time complexity can be
represented as 𝑂 (𝑛 · 𝑡𝑝𝑙𝑟 + 𝑛2 · 𝑡𝑚𝑚𝑑) where 𝑛 is the number of
selected clients in each iteration, 𝑡𝑝𝑙𝑟 is PLR computation time per
client, and 𝑡𝑚𝑚𝑑 is the computation time for one MMD test. In
our case, 𝑡𝑝𝑙𝑟 is small as there are only 10 MMD test samples. The
experimental execution time of FLARE is 3.2 seconds when 𝑛 = 10
and 28.3 seconds when 𝑛 = 50, indicating that FLARE is relatively
computation-efficient.

8 CONCLUSIONS

In this paper, we propose a robust aggregation algorithm FLARE
to protect FL against MPAs. Through analysis and experimental
visualization, we demonstrate that the PLR vector has high poten-
tials in differentiating malicious/poisonous models from the benign
ones. Based on the PLR technique, FLARE effectively minimizes the
impact of malicious/poisonous models on the final aggregation by
assigning low trust scores to those with diverging PLRs. Through
a comprehensive evaluation, we show that FLARE significantly
outperforms existing defenses (i.e., BRARs and FLTrust) in defend-
ing against state-of-the-art MPAs, including semantic backdoor
attacks, trojan attacks, and untargeted attacks on three popular
datasets. Furthermore, FLARE also shows its effectiveness amid
non-i.i.d. data and adaptive attacks, demonstrating the applicability
to challenging real-world scenarios.

ACKNOWLEDGMENTS

This work was supported in part by the Office of Naval Research
under grant N00014-19-1-2621, the US National Science Foundation
under grants CNS-1837519 and CNS-19169026, the Army Research
Office under grant W911NF-20-1-0141, and the Virginia Common-
wealth Cyber Initiative (CCI).

REFERENCES

[1] Sebastien Andreina, Giorgia Azzurra Marson, Helen Möllering, and Ghassan
Karame. 2021. Baffle: Backdoor detection via feedback-based federated learning.
In 2021 IEEE 41st International Conference on Distributed Computing Systems
(ICDCS). IEEE, 852–863.

[2] Sana Awan, Bo Luo, and Fengjun Li. 2021. Contra: Defending against poisoning
attacks in federated learning. In European Symposium on Research in Computer
Security. Springer, 455–475.

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

956

[3] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly
Shmatikov. 2020. How to backdoor federated learning. In International Conference
on Artificial Intelligence and Statistics. PMLR, 2938–2948.

[4] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo.
2019. Analyzing federated learning through an adversarial lens. In International
Conference on Machine Learning. PMLR, 634–643.

[5] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.
2017. Machine learning with adversaries: Byzantine tolerant gradient descent. In
Proceedings of the 31st International Conference on Neural Information Processing
Systems. 118–128.

[6] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. 2021. FLTrust:
Byzantine-robust Federated Learning via Trust Bootstrapping. Network and
Distributed Systems Security Symposium NDSS (2021).

[7] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2021. Provably Secure Feder-
ated Learning against Malicious Clients. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 35. 6885–6893.

[8] Yudong Chen, Lili Su, and Jiaming Xu. 2017. Distributed statistical machine
learning in adversarial settings: Byzantine gradient descent. Proceedings of the
ACM on Measurement and Analysis of Computing Systems 1, 2 (2017), 1–25.

[9] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Louis Alexandre Rouault.
2018. The Hidden Vulnerability of Distributed Learning in Byzantium. In Inter-
national Conference on Machine Learning.

[10] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. 2020. Local model
poisoning attacks to Byzantine-robust federated learning. In 29th {USENIX}
Security Symposium ({USENIX} Security 20). 1605–1622.

[11] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. 2018. Mitigating sybils in
federated learning poisoning. arXiv preprint arXiv:1808.04866 (2018).

[12] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and
Alexander Smola. 2012. A kernel two-sample test. The Journal of Machine
Learning Research 13, 1 (2012), 723–773.

[13] Rachid Guerraoui, Sébastien Rouault, et al. 2018. The hidden vulnerability of dis-
tributed learning in byzantium. In International Conference on Machine Learning.
PMLR, 3521–3530.

[14] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ram-
age. 2018. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604 (2018).

[15] Peter J Huber. 2004. Robust statistics. Vol. 523. John Wiley & Sons.
[16] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi

Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cor-
mode, Rachel Cummings, et al. 2021. Advances and Open Problems in Fed-
erated Learning. Foundations and Trends® in Machine Learning 14, 1 (2021).
https://doi.org/10.1561/2200000083

[17] Jakob Nikolas Kather, Cleo-Aron Weis, Francesco Bianconi, Susanne M Melchers,
Lothar R Schad, Timo Gaiser, Alexander Marx, and Frank Gerrit Zöllner. 2016.
Multi-class texture analysis in colorectal cancer histology. Scientific reports 6
(2016), 27988.

[18] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies
for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).

[19] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features
from tiny images. Technical Report. Citeseer.

[20] Suyi Li, Yong Cheng, Wei Wang, Yang Liu, and Tianjian Chen. 2020. Learn-
ing to Detect Malicious Clients for Robust Federated Learning. arXiv preprint
arXiv:2002.00211 (2020).

[21] Yunlong Mao, Xinyu Yuan, Xinyang Zhao, and Sheng Zhong. 2021. Romoa:
Robust model aggregation for the resistance of federated learning to model
poisoning attacks. In European Symposium on Research in Computer Security.
Springer, 476–496.

[22] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Net-
works from Decentralized Data. In Artificial Intelligence and Statistics (AISTATS
17). 1273–1282.

[23] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. 2019. When does label
smoothing help?. In Advances in Neural Information Processing Systems. 4694–
4703.

[24] Thien Duc Nguyen, Phillip Rieger, Markus Miettinen, and Ahmad-Reza Sadeghi.
2020. Poisoning attacks on federated learning-based IoT intrusion detection
system. In Proc. Workshop Decentralized IoT Syst. Secur.(DISS). 1–7.

[25] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. 2019.
Robust and communication-efficient federated learning from non-iid data. IEEE
transactions on neural networks and learning systems 31, 9 (2019), 3400–3413.

[26] Soroosh Shafieezadeh-Abadeh, Daniel Kuhn, and Peyman Mohajerin Esfahani.
2019. Regularization via mass transportation. Journal of Machine Learning
Research 20, 103 (2019), 1–68.

[27] Shiqi Shen, Shruti Tople, and Prateek Saxena. 2016. Auror: Defending against
poisoning attacks in collaborative deep learning systems. In Proceedings of the
32nd Annual Conference on Computer Security Applications. 508–519.

[28] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In International Conference on Learning
Representations.

[29] Jinhyun So, Başak Güler, and A Salman Avestimehr. 2020. Byzantine-resilient
secure federated learning. IEEE Journal on Selected Areas in Communications
(2020).

[30] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan.
2019. Can you really backdoor federated learning? arXiv preprint arXiv:1911.07963
(2019).

[31] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian
Makaya, Ting He, and Kevin Chan. 2019. Adaptive federated learning in re-
source constrained edge computing systems. IEEE Journal on Selected Areas in
Communications 37, 6 (2019), 1205–1221.

[32] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747 (2017).

[33] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. 2020. Dba: Distributed back-
door attacks against federated learning. In International Conference on Learning
Representations.

[34] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. 2018.
Byzantine-robust distributed learning: Towards optimal statistical rates. In Inter-
national Conference on Machine Learning. PMLR, 5650–5659.

[35] Ying Zhao, Junjun Chen, Jiale Zhang, Di Wu, Jian Teng, and Shui Yu. 2019.
PDGAN: A novel poisoning defense method in federated learning using genera-
tive adversarial network. In International Conference on Algorithms and Architec-
tures for Parallel Processing. Springer, 595–609.

A PROOF OF PROPOSITION 1

Proposition 1. In a 𝑐-class NN classifier where the last two layers
are fully connected and the last layer is a softmax layer, the output
probability of any two class𝑘 and 𝑙 (1 ≤ 𝑘, 𝑙 ≤ 𝑐) satisfy that𝑞𝑘 > 𝑞𝑙
if

| |r − 𝜔𝑙 | |2 − ||r − 𝜔𝑘 | |2 ≥ 𝐶𝑘𝑙 (11)

where r represents the penultimate layer value and𝜔𝑘 is theweights
connecting to the 𝑘-th neuron of the output layer. | |r − 𝜔𝑘 | |2 de-
notes the Euclidean distance between r and template 𝜔𝑘 , i.e., | |r −
𝜔𝑘 | |2 = r𝑇 r − 2rT𝜔𝑘 + 𝜔𝑇𝑘 𝜔𝑘 . 𝐶𝑘𝑙 is a constant and 𝐶𝑘𝑙 = 𝜔

𝑇
𝑙
𝜔𝑙 −

𝜔𝑇
𝑘
𝜔𝑘 .

PROOF. The prediction probability vector of a 𝑐-class classifier
on an input is denoted by [𝑞1, 𝑞2, ..., 𝑞𝑐] where

∑
𝑐 𝑞𝑘 = 1. The

probability 𝑞𝑘 can be represented by

𝑞𝑘 =
exp(r𝑇𝜔𝑘)∑𝑐
𝑖=1 exp(r𝑇𝜔𝑖)

. (12)

where r represents the penultimate layer value and𝜔𝑘 is theweights
connecting to the 𝑘-th neuron of the output (i.e., softmax) layer. The
Euclidean distance between the penultimate layer representation r
and template 𝜔𝑘 is

| |r − 𝜔𝑘 | |2 = r𝑇 r − 2rT𝜔𝑘 + 𝜔𝑇𝑘 𝜔𝑘 . (13)

We can derive the logit rT𝜔𝑘 from Eq. (13) by

rT𝜔𝑘 = −1
2
| |r − 𝜔𝑘 | |2 +

1
2

r𝑇 r + 1
2
𝜔𝑇
𝑘
𝜔𝑘 . (14)

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

957

https://doi.org/10.1561/2200000083

We rewrite 𝑞𝑘 by substituting Eq. (14) for the logit rT𝜔𝑘 in Eq. (12)

𝑞𝑘 =
exp(− 1

2 | |r − 𝜔𝑘 | |2) · exp(12 r𝑇 r) · exp(12𝜔
𝑇
𝑘
𝜔𝑘)∑𝑐

𝑖 exp(− 1
2 | |r − 𝜔𝑖 | |2) · exp(12 r𝑇 r) · exp(12𝜔𝑇𝑖 𝜔𝑖)

=
exp(− 1

2 | |r − 𝜔𝑘 | |2) · exp(12𝜔
𝑇
𝑘
𝜔𝑘)∑𝑐

𝑖 exp(− 1
2 | |r − 𝜔𝑖 | |2) · exp(12𝜔𝑇𝑖 𝜔𝑖)

=
exp(− 1

2 | |r − 𝜔𝑘 | |2 +
1
2𝜔

𝑇
𝑘
𝜔𝑘)∑𝑐

𝑖 exp(− 1
2 | |r − 𝜔𝑖 | |2 +

1
2𝜔

𝑇
𝑖
𝜔𝑖)

(15)

We use 𝑞𝑘 and 𝑞𝑙 to represent the probability of the 𝑘-th and 𝑙-th
class. If 𝑞𝑘 ≥ 𝑞𝑙 , the inequality (16) must be satisfied.

− 1
2
| |r − 𝜔𝑘 | |2 +

1
2
𝜔𝑇
𝑘
𝜔𝑘 ≥ −

1
2
| |r − 𝜔𝑙 | |2 +

1
2
𝜔𝑇
𝑙
𝜔𝑙 (16)

This inequality can be rewritten as

| |r − 𝜔𝑙 | |2 − ||r − 𝜔𝑘 | |2 ≥ 𝜔𝑇𝑙 𝜔𝑙 − 𝜔
𝑇
𝑘
𝜔𝑘 (17)

The right hand is a constant, and we can use 𝐶𝑘𝑙 to represent this
constant, i.e., 𝐶𝑘𝑙 = 𝜔𝑇𝑙 𝜔𝑙 − 𝜔

𝑇
𝑘
𝜔𝑘 . The Eq. (17) is rewritten as

| |r − 𝜔𝑙 | |2 − ||r − 𝜔𝑘 | |2 ≥ 𝐶𝑘𝑙 (18)

Eq. (18) indicates that if the distance between representation r and
template 𝑙 is larger than the distance between representation r and
template 𝑘 by a constant 𝐶𝑘𝑙 , then the probability of assigning the
input as class 𝑘 is larger than class 𝑙 .

B PROOF OF PROPOSITION 2

Proposition 2. The mapping function 𝜎 : r ∈ R𝑜 → q ∈ R𝑐 maps
a PLR to a probability vector as discussed above. For any two PLRs
r1, r2, we have

∥q1 − q2∥2 ≤ ∥Ω∥2∥r1 − r2∥2, (19)

where ∥ .∥2 is the L2 norm operator, r1 and r2 are the PLR of two
input 𝑥1 and 𝑥2 respectively. q1 and q2 are the output probability
vector for input 𝑥1 and 𝑥2 respectively.
PROOF. Here we use z1, z2 ∈ R𝑐 to represent the logits calculated
from r1, r2 ∈ R𝑜 , i.e., z1 = Ω𝑇 𝑟1 and z2 = Ω𝑇 r2, where Ω ∈ R𝑜×𝑐
denotes the weights from the penultimate layer to the last layer.

Here we use 𝜁 : R𝑐 → R𝑐 to represent the softmax function,
then we have the probability vector q1 = 𝜁 (z1) and q2 = 𝜁 (z2).
Based on that the Lipchitz modulus of softmax function 𝜁 is less
than one [26], thus we have

∥q1 − q2∥2 ≤ ∥z1 − z2∥2 . (20)

By substituting z1 and z2 with (𝑟2)𝑇Ω and (𝑟1)𝑇Ω respectively,
we have

∥q1 − q2∥2 ≤ ∥(r1)𝑇Ω − (r2)𝑇Ω∥2 ≤ ∥Ω∥2∥r1 − r2∥2 (21)

C NEURAL NETWORK ARCHITECTURE

The detail of the three datasets is shown in the following, and the
corresponding neural networks are shown in Table 6, Table 7, and
Table 8. Note that we resize the images in the Kather dataset from
150× 150× 3 to 128× 128× 3 before feeding them into the VGGNet.
The batch size used in the fMNIST dataset is 64 and the batch size
used in the CIFAR-10 dataset and the Kather dataset is 32.

fMNIST consists of a training set of 60,000 records and a test set
of 10,000 records. Each data record is a 28 × 28 grayscale image,
associated with a label from 10 classes, including T-shirt, Trouser,
Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, and Ankle boot.
CIFAR-10 consists of 60,000 32x32 colour images in 10 classes, with
6,000 images per class. There are 50,000 training images and 10,000
test images. Each image is from one of the ten classes, including
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.
Kather is a collection of textures in colorectal cancer histology. It
consists of 5,000 records and each one is a 150 × 150 histological
image. Each image belongs to one of the eight tissue categories,
including Tumor, Stroma, Complex, Lympho, Debris, Mucosa, Adi-
pose, and Empty.

Table 6: Neural network architecture for fMNIST dataset.

Input Filter Stride Output Activation

conv2d_1 28×28×1 64×5×5 1 24×24×64 ReLU
conv2d_2 24×24×64 64×5×5 1 20×20×64 ReLU
dropout_1 20×20×64 Dropout, 0.25 / 20×20×64 /
flatten_1 20×20×64 / / 25600 /
dense_1 25600 / / 128 Relu/
dropout_2 128 Dropout, 0.5 / 128 /
dense_2 128 / / 10 /

Table 7: Neural network architecture for CIFAR-10 dataset.

Input Filter Stride Output Activation

conv2d_1 32×32×3 64×3×3 1 30×30×64 ReLU
max_pooling2d_1 30×30×64 MaxPooling2D, 2×2 2 15×15×64 /

conv2d_2 15×15×64 64×3×3 1 13×13×64 ReLU
max_pooling2d_2 13×13×64 MaxPooling2D, 2×2 2 6×6×64 /

conv2d_3 6×6×64 64×3×3 1 4×4×64 ReLU
max_pooling2d_3 4×4×64 MaxPooling2D, 2×2 2 2×2×64 /

flatten_1 2×2×64 / / 256 /
dense_1 256 / / 128 /
dense_2 128 / / 10 /

Table 8: Neural network architecture for Kather dataset.

Input Filter Stride Output Activation

conv2d_1 128×128×3 64×3×3 1 128×128×64 ReLU
max_pooling2d_1 128×128×64 MaxPooling2D, 2×2 2 64×64×64 /

conv2d_2 64×64×64 64×3×3 1 64×64×64 ReLU
max_pooling2d_2 64×64×64 MaxPooling2D, 2×2 2 32×32×64 /

conv2d_3 32×32×64 64×3×3 1 32×32×64 ReLU
max_pooling2d_3 32×32×64 MaxPooling2D, 2×2 2 16×16×64 /

conv2d_4 16×16×64 64×3×3 1 16×16×64 ReLU
max_pooling2d_4 16×16×64 MaxPooling2D, 2×2 2 8×8×64 /

conv2d_5 8×8×128 64×3×3 1 8×8×128 ReLU
max_pooling2d_5 8×8×128 MaxPooling2D, 2×2 2 4×4×128 /

flatten_1 4×4×128 / / 2048 /
dense_1 2048 / / 128 /
dense_1 128 / / 8 /

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

958

	Abstract
	1 Introduction
	2 Background and Related Work
	3 System Model
	3.1 Federated Learning with Trust Scores
	3.2 Threat Model

	4 Penultimate Layer Representation
	4.1 PLR Basics
	4.2 Power of PLR in Separating MPAs
	4.3 Visualizing PLRs Distribution

	5 FLARE: Defending against MPAs
	5.1 Overview of FLARE
	5.2 Detailed Design

	6 Implementation and Experimental Settings
	6.1 Experimental Setting
	6.2 Evaluation Metrics.

	7 Evaluation Results
	7.1 Backdoor Attacks
	7.2 Untargeted Attacks
	7.3 Performance in Various FL settings
	7.4 Defending against Adaptive Attack

	8 Conclusions
	References
	A Proof of Proposition 1
	B Proof of proposition 2
	C Neural Network Architecture

