
Inverted Index Based Multi-Keyword Public-key
Searchable Encryption with Strong Privacy

Guarantee
Bing Wang⇤ Wei Song⇤† Wenjing Lou⇤ Y. Thomas Hou⇤

⇤Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
†Wuhan University, Wuhan, Hubei, China

Abstract—With the growing awareness of data privacy, more
and more cloud users choose to encrypt their sensitive data
before outsourcing them to the cloud. Search over encrypted
data is therefore a critical function facilitating efficient cloud
data access given the high data volume that each user has to
handle nowadays. Inverted index is one of the most efficient
searchable index structures and has been widely adopted in
plaintext search. However, securing an inverted index and its
associated search schemes is not a trivial task. A major challenge
exposed from the existing efforts is the difficulty to protect user’s
query privacy. The challenge roots on two facts: 1) the existing
solutions use a deterministic trapdoor generation function for
queries; and 2) once a keyword is searched, the encrypted
inverted list for this keyword is revealed to the cloud server. We
denote this second property in the existing solutions as one-time-
only search limitation. Additionally, conjunctive multi-keyword
search, which is the most common form of query nowadays, is not
supported in those works. In this paper, we propose a public-key
searchable encryption scheme based on the inverted index. Our
scheme preserves the high search efficiency inherited from the
inverted index while lifting the one-time-only search limitation
of the previous solutions. Our scheme features a probabilistic
trapdoor generation algorithm and protects the search pattern.
In addition, our scheme supports conjunctive multi-keyword
search. Compared with the existing public key based schemes that
heavily rely on expensive pairing operations, our scheme is more
efficient by using only multiplications and exponentiations. To
meet stronger security requirements, we strengthen our scheme
with an efficient oblivious transfer protocol that hides the access
pattern from the cloud. The simulation results demonstrate
that our scheme is suitable for practical usage with moderate
overhead.

I. INTRODUCTION

With the growing popularity of cloud computing, people
begin to embrace the benefits of cloud storage services by out-
sourcing their data into the cloud. To ensure the data privacy
in the cloud, data must be encrypted before being outsourced
into the cloud. However, data utilization, e.g. keyword search,
arises as a challenging problem due to the data encryption.
Downloading the entire encrypted data set first then searching
over the decrypted data is obviously counterproductive and a
waste of valuable computation and communication resources.
Therefore, the search operation must be done at the cloud side
and over the encrypted data.

Searchable encryption is an essential technique that allows
search directly over encrypted data. Similar to search over
plaintext documents, the common approach of searchable

encryption schemes is to build a secure index for the entire
document set. Then in the search stage, which is done on
the cloud serve side, only the secure index is referenced.
Secure index-based searchable encryption not only enhances
the search scalability, but also allows the encryption of each
document to be independent of the searchable encryption
scheme used. In the searchable encryption literature, some of
the works [1]–[13] design their own secure index structures
while others [14]–[16] build upon the inverted index, which is
one of the most popular index structures for plaintext search.
Compared with building searchable encryption schemes using
self-designed indexes, using the inverted index as the under-
lying index structure enjoys several benefits. First, search on
the inverted index can be very efficient especially for a large
dataset. Search is directly pointed to the related documents, i.e.
the inverted lists that match the query keyword. Secondly, the
inverted index has been widely adopted in large dataset search
schemes. Therefore, secure inverted indexes can be applied
incrementally over the already built inverted indexes.

The first effort of building a secure inverted index comes
from Curtmola et al. [14], and followed by others [15], [16].
There are two major limitations of the existing inverted index
based searchable encryption schemes.

• First of all, the keyword privacy is compromised once a
keyword is searched. As a result, the index must be rebuilt
for the keyword once it has been searched. Obviously,
such a solution is counterproductive due to the high
overhead suffered.

• Secondly, the existing inverted index based search-
able schemes do not support conjunctive multi-keyword
search, which is the most common form of queries
nowadays.

In this paper, we explore the problem of building a search-
able encryption scheme based on the inverted index to over-
come the aforementioned limitations. We construct our scheme
through a series of novel designs based on the private set
intersection protocol in [17]. We achieve secure and private
matching between the query trapdoor and the secure index. We
design a novel trapdoor generation algorithm so that the query
related inverted lists are combined together secretly without
letting the cloud server know which inverted lists are retrieved.
Our contributions are summarized as follows:

2015 IEEE Conference on Computer Communications (INFOCOM)

978-1-4799-8381-0/15/$31.00 ©2015 IEEE 2092

1) We propose a practical inverted index based public-
key searchable encryption scheme. Our scheme over-
comes the one-time-only search limitation in the exist-
ing schemes. Our scheme supports conjunctive multi-
keyword search using only one trapdoor while the ex-
isting invert index based searchable encryption schemes
only support single keyword search.

2) We design a probabilistic trapdoor generation algorithm
to break the trapdoor linkability. Our scheme preserves
the index and trapdoor privacy. To provide stronger
security guarantee, we strengthen our scheme with an
efficient oblivious transfer protocol to hide the access
pattern.

3) Comparing with the existing public-key searchable en-
cryption schemes which use expensive pairing opera-
tions, our scheme is more efficient because we only need
multiplication and exponentiation.

4) Unlike most of the existing public-key searchable en-
cryption schemes, we provide both a theoretical analysis
and a simulation study using a real-world dataset to
evaluate the performance. The simulation results show
that our scheme is suitable for practical usage and the
overhead is moderate.

We organize our paper as follows. In section II, we discuss
the related works. Section III briefly introduces the preliminary
concepts. We present our system model, threat model, and
notations in section IV. Our solution is described in section
V, followed by the security and the computation complexity
analysis in section VI. We report the simulation results of our
scheme in section VII. The conclusion of the paper is drawn
in section VIII.

II. RELATED WORKS

Searchable encryption was first studied by Song et al. in
[18]. The proposed scheme supports single keyword search
without an index which means the server must scan the whole
document to find the search result. Follow-ups on searchable
encryption usually build a secure searchable index such that
certain trapdoors generated via secret keys could match with
the index to get the search result while the content of the index
is hidden from the cloud. Some of the works [1]–[13] design
their own index structures while others [14]–[16] build their
secure searchable indexes upon the inverted index.

Among the self-designed secure indexes, Goh et al. [1] first
proposed a Bloom filter based index which supports single
keyword search. Chang et al. [3] used a vector index of which
the length is the same as the cardinality of the dictionary
for each document. Other works [5]–[13] focus on enrich the
search functionality including result ranking, multi-keyword
search and fuzzy search. In public key settings, Boneh et al.
[2] proposed the first public key based searchable encryption
scheme. Bellare et al. [4] introduced an as-strong-as-possible
privacy definition for the public-key based searchable encryp-
tion and constructed a solution that satisfies their definition.
One major disadvantage of using self-designed indexes is that
their index structures are not compatible with each other. As

a result, it is impossible to provide a service that includes all
the useful functions. Additionally, for users who have already
built their inverted indexes for plaintext search, they need to
re-generate their encrypted searchable index which could be
expensive if the data volume is huge.

Curtmola et al. [14] proposed the first inverted index based
encrypted searchable index. The document list for each key-
word is encrypted and obfuscated into an array. However,
according to the design, the position and the content of the
inverted list will be disclosed to the cloud server once the
keyword is searched. As a result, one keyword can only be
searched once before re-generating the index for the keyword.
Based on [14], Kamara et al. [15] put forward the concept of
dynamic searchable encryption and constructed an encrypted
inverted index that supports dynamic operations such as doc-
ument updates. Naveed et al. [16] designed a primitive named
blind storage upon which they implemented the encrypted
searchable index scheme of [14]. As these works are based on
[14], they share the same limitation. Moreover, these schemes
do not support conjunctive multi-keyword search which is the
most common query type nowadays.

Our scheme falls into the public-key searchable encryption
category which includes [2], [4], [7], [12], [19]–[21]. While
those works all adopt a paring based crypto-system to con-
struct the indexes, our scheme only requires multiplication
and exponentiation, which are a magnitude less expensive in
computation comparing to pairing operations. Additionally,
most of these schemes did not provide an implementation
evaluation of the algorithm performance under real-world
application scenario (we only found [7], [12] performed the
experimental studies). In this work, we not only provide a
complexity analysis of our algorithm, but also perform a
simulation study using a real-world dataset to evaluate the
performance. The simulation results shows that our scheme is
suitable for practical usage and is more efficient than existing
public-key based solutions.

III. PRELIMINARY

A. Inverted Index

Inverted index is one of the most popular data structures
used in document retrieval systems [22]. An inverted index
contains multiple inverted lists. One inverted list I!i cor-
responds to one keyword !i which is contained in all the
documents of I!i . Additional information can be included in
the inverted list such as the numerical statistics of the keyword
(to support result ranking) and the positions of the keyword
within a document (to support phrase search). The biggest
advantage of using the inverted index comes from the search
efficiency especially for large volume of documents. The
search operation is performed on a much smaller document
set which is consisted with the inverted lists that match with
the query keywords.

B. Private Set Intersection

Private set intersection (PSI) is a cryptography primitive
that allows two or more parties to calculate the intersection

2015 IEEE Conference on Computer Communications (INFOCOM)

2093

of their datasets privately. The output of the PSI reveals
no additional information other than the intersection itself.
In [17], Freedman et al. proposed an efficient PSI proto-
col, denoted as the FNP protocol, based on the Paillier
homomorphic cryptosystem [23]. A brief description of the
Paillier algorithm is shown in Fig.1. The Paillier cryptosystem
features 1) additive homomorphic, i.e. given the ciphertexts
E(a

1

), E(a

2

), the ciphertext of a

1

+ a

2

can be calculated as
E(a

1

+ a

2

) = E(a

1

)E(a

2

), and 2) one-time multiplicative
homomorphic, i.e. given the ciphertext E(a

1

), the ciphertext
of a

1

⇥ a

2

is E(a

1

)

a2 .

Key generation: pk = (n, g), where
n = pq, gcd(pq, (p� 1)(q � 1)) = 1, g 2 Z⇤

n2

sk = (�, µ), where
� = lcm(p� 1, q � 1), µ =

� g�
mod n2�1

n

��1

mod n

Encryption: To encrypt a message m to its ciphertext c
c = g

m · rn mod n

2

, r 2 Zn

Decryption: m =

c� mod n2�1

n · µ mod n

Fig. 1. The scheme of the Paillier homomorphic cryptosystem

The FNP protocol works as follows. 1) Alice represents
her set A as a polynomial f(x) =

Q
ai2A(x � ai). Clearly,

the set of the roots of f(x) = 0 is Alice’s dataset. 2) Alice
encrypts the coefficients of the polynomial using the Paillier
homomorphic encryption and sends the encrypted polynomial
f

0
(x) = Enc(f(x)) to Bob. 3) Bob calculate R : {rj =

f

0
(bj) +h bj} with his data bj 2 B, where +h is the Paillier

homomorphic addition. Then Bob sends R back to Alice. 4)
Alice decrypts R as R0, and the intersection A \ B is the
intersection A \R0.

C. Blind Storage

Blind storage proposed in [16] is an efficient oblivious
transfer protocol implementation under the honest-but-curious
adversary model. An overview of the process of blind storage
is shown in Fig.2. We refer the readers to [16] for more details
of blind storage.

The security property of the blind storage comes from the
fact that the storing locations of the documents are independent
of each other from the server’s point of view. A blind storage
only uses block ciphers and collision resistant hash functions
so that it is computationally efficient. The communication
and storage overhead to ensure a negligible probability of
information leakage is moderate (by a factor of 4).

IV. SYSTEM MODEL

The system model we consider in this work is shown in
Fig.3. There are three entities in the system, a cloud server, a
data owner and multiple users. The data owner generates the
encrypted index and outsources it along with the encrypted
data into the cloud. An authorized user submits a query request
to the server in the form of a trapdoor which he gets from
the data owner through a secure channel. After receiving the
trapdoor, the cloud server matches the encrypted index with

Setup: a pseudorandom function �, a pseudorandom
generator �, and F is a collection of f = (IDf , dataf)

BuildStorage:
• D is the storage which is arranged as an array of nD

blocks. All of the blocks are marked as free at the
beginning.

• For each f , the data owner generates a seed
s = �(IDf) and a pseudorandom sequence ⇤ = �(s).

• The server stores dataf along with its IDf into the
first |dataf | free blocks in the sequence ⇤.

Access:
• Given the IDf , the user generates the seed

s = �(IDf) and the sequence ⇤ = �(s) and retrieves a
certain number of the blocks from D.

• After decryption, the user finds the target file blocks by
the ID information.

Fig. 2. The scheme of the blind storage

Fig. 3. System architecture of search over encrypted data in cloud computing

the trapdoor. Finally, the cloud server returns the matching
documents as the search result.

We model the cloud server as a honest-but-curious adver-
sary. We assume that the authorized users are fully trusted
by the data owner and they are authorized to access all the
documents through search. The access control between data
owner and the users can be achieved using existing protocols
such as [12], [24], and therefore, we will not discuss it in this
paper.

A. Threat Model

A searchable encryption scheme should protect data owner’s
data privacy. The data privacy violation could come from three
aspects. The first one is the confidentiality of the document set.
In most scenarios, the data owner will encrypt his document
contents using a block cipher such as AES. Therefore, it is
safe to claim that the privacy of the document set itself is
well protected. So we focus on the other two aspects, which
are the encrypted index privacy and the trapdoor privacy.

Index privacy: The index privacy is twofold. First, the
cloud server should not learn the content of the index since
the content of the index directly reflects the content of the
documents. Second, the cloud server should deduce no infor-
mation about the document through analyzing the encrypted

2015 IEEE Conference on Computer Communications (INFOCOM)

2094

index. Such information includes 1) whether a document con-
tains certain keyword(s), and 2) whether different documents
contain a common keyword.

Trapdoor privacy: A trapdoor is generated for each query
request to allow the cloud server to search over the encrypted
index. Intuitively, the trapdoor contains the query information
but in an encrypted form. Given a trapdoor, the cloud server
should learn nothing about the user’s query from it. We con-
sider the protection of the following information for trapdoor
privacy: the content of the query, the number of the keywords
in the query, and the fact that whether the same query has
been searched before.

Access pattern refers to the accessed documents, i.e. the
search results. As pointed out by [25], the adversary could
further deduce the private information of the index and the
trapdoor from the access pattern. To avoid such leakage, the
search results of queries must be indistinguishable from each
other.

B. Definition and Notation

We will use the following notations through the rest of the
paper.

• ⌃ = (�

1

,�

2

, · · · ,�n) is a finite set of document collec-
tion, where �i is the ID of the ith document.

• ⌦ = (!

1

,!

2

, · · · ,!m) is a finite set of keyword collec-
tion from ⌃, which we denote as dictionary.

• I = (I!1 , I!2 , · · · , I!m), an inverted index for the
document set ⌃. Each I!i is a list which contains
⌃i = (�i1,�i2, · · · ,�ip) ⇢ ⌃ where !i 2 �ij , 1 j p.

• ˜I is the encrypted searchable index based on I.
• Q ⇢ ⌦ is a query request which is a subset of the

dictionary.
• TQ is the trapdoor for the query Q.
• [n] means an integer set from 1 to n.
• |S| refers to the cardinality of S which can be a set, a

list or a vector.

Before delve into the detail of our scheme, we first present
the definitions of searchable encryption scheme given in [2],
[14].

Definition 1 (Searchable Encryption Scheme): A searchable
encryption scheme consists of the following probabilistic
polynomial time algorithms.

• Setup(k) takes as input a security parameter k. It outputs
a master key MK.

• IndexGen(MK, I) takes as input the master key MK

and an index I for the document set ⌃. It outputs the
encrypted searchable index ˜I.

• TrapdoorGen(MK,Q) takes as input the master key
MK and a query Q. It outputs the trapdoor TQ for the
query.

• Query(˜I, TQ) takes as input the encrypted index ˜I and
the trapdoor TQ. It outputs R ⇢ ⌃ as the search result.

V. OUR INVERTED INDEX BASED PUBLIC-KEY
SEARCHABLE ENCRYPTION SCHEME

We present our inverted index based public-key searchable
encryption scheme in this section. We assume the data owner
already has an inverted index available for his dataset. Thus,
we skip the process of building an inverted index from a
document set.

A. Overview

As discussed in section III, an inverted index consists of
two parts: 1) a keyword dictionary and 2) a document list
for each keyword. When performing a search over plaintext,
the server matches the query keyword(s) to the dictionary to
locate the target document list(s) first. Then the server gets
the document candidates by integrating the document list(s)
together. Finally, the document candidates are returned to the
user as the search result.

When searching over encrypted inverted indexes, we have
to solve three challenging tasks. We first need a privacy
preserving method to determine the match between the query
keyword(s) and the dictionary. Then we need to select the
related inverted lists without letting the cloud server know
which ones are retrieved. Finally, the access pattern must
be concealed. We address these challenges through a series
of novel designs based on the FNP PSI protocol. To make
the presentation clear, we use a simple example in Fig.4
to illustrate our scheme. We now present the details of our
scheme as follows.

B. Scheme Details

Besides the four essential algorithms in Definition 1, our
scheme features an extra algorithm to hide the access pattern
from the cloud server. We store the documents in a blind stor-
age in the cloud. Correspondingly, we retrieve the documents
from the cloud storage following the access process of blind
storage. We give a brief description of blind storage in Fig.2.
More detail of blind storage is discussed in [16].

• Setup(k): The data owner first chooses two k-bit prime
numbers p, q such that gcd(pq, (p � 1)(q � 1)) = 1.
Then the data owner follows the key generation process
in Fig.1 to generate the key pair for the Paillier algorithm,
i.e. pk = (n, g), sk = (�, µ). The data owner keeps sk,
a pseudorandom permutation (PRP) f and an invertible
matrix M as the master key MK. The degree of M is
determined by the size of the dictionary m. At last, the
data owner publishes the public key to the cloud server.

• IndexGen(MK, I): Given an inverted index, the data
owner takes the following steps to convert it to the
encrypted version.

1) For each keyword !i 2 ⌦ and its corresponding
inverted list I!i , the data owner performs the fol-
lowing steps.
a) The data owner generates a tag t!i = f(!i).

Similarly, the data owner generates a tag for
each document �i 2 ⌃, where t�i = f(�i).

2015 IEEE Conference on Computer Communications (INFOCOM)

2095

Fig. 4. In this figure, we show the whole process using a simple example. 1) The data owner transforms each inverted list to a polynomial. The polynomial
is represented using its coefficients. To secure the index, the data owner encrypts the coefficients of each polynomial. Note that padding is not shown in the
figure for simplicity. The data owner generates a dictionary matrix MD following the algorithm. Note that here we use !i directly instead of the tag for
simplicity. 2) When generating a trapdoor for a query, the data owner first calculates P⌦/PQ, then adding randomness to hide the number of the keywords in
the query. The trapdoor is a 2-tuple. 3) When the cloud server receives the trapdoor, he calculates V 0 as shown in the figure. Each v

0
i in V 0 is the ciphertext

of PR(!i). Because PR(!i) = 0 if !i 62 Q, the result polynomial PR(x) only contains the inverted lists corresponding to the query keywords.

We denote the set of the keyword tags and the
document tags as f(⌦), f(⌃) respectively.

b) Let L be the maximum length of all the in-
verted list. The data owner generates a set of
random numbers Ri = {rj} for I!i , where rj 2
Z⇤
n, rj 62 f(⌦), |Ri| = L� |I!i |. Then, the data

owner pads Ri to the inverted list to hide the
length.

c) After getting all the polynomials of the inverted
lists, the data owner generates a polynomial
P!i(x) for I!i as

P!i(x) =

Y

�j2I!i

(x� t�j)

Y

rj2Ri

(x� rj).

2) The data owner calculates a polynomial vector as
follows,

I = (P!1 , P!2 , · · · , P!m)

T

3) The data owner encrypts the coefficients of each
polynomial P!i using the public key (n, g) of the
Paillier encryption algorithm, and sets the encrypted
index as ˜I = Enc

(n,g)(I).
4) The data owner constructs a dictionary matrix MD

as

MD =

0

BBB@

t

m
!1

t

m
!2

· · · t

m
!m

t

m�1

!1
t

m�1

!2
· · · t

m�1

!m

...
...

. . .
...

t!1 t!2 · · · t!m

1

CCCA

Then he encrypts it with the matrix M as M

0
D =

M ·MD.
5) Finally, the data owner outsources the matrix M

0
D

and the index polynomial vector ˜I to the cloud.
• TrapdoorGen(MK,Q): Before generating the trapdoors,

the data owner first generates a polynomial for the entire
dictionary PD as

PD(x) =

Y

!i2⌦

(x� t!i)

Note that this is a one-time cost.
When the data owner receives a query request Q from a
user, he constructs a polynomial PQ(x) where PQ(x) =
PD/

Q
!i2Q(x � t!i). Then, the data owner generates

P

0
Q(x) by padding random terms to PQ(x).

P

0
Q(x) = PQ(x)

mY

q+1

(x� rj), q = |Q|, rj 62 f(⌦)

We represent P

0
Q(x) using its coefficients

(am, am�1

, a

1

, a

0

). Finally, the data owner returns

2015 IEEE Conference on Computer Communications (INFOCOM)

2096

the trapdoor which is a 2-tuple to the user as

TQ = {(am, am�1

, · · · , a
1

) ⇤M�1

, Enc

(n,g)(a0)}

• Query(˜I, TQ): After receiving the trapdoor, the cloud
server first calculates

V = TQ[1] ⇤M 0
D = (v

1

, v

2

, · · · , vm).

For each vi, i 2 [m], the cloud server calculates v

0
i =

Enc

(n,g)(vi) +h TQ[2] where +h is homomorphic ad-
dition of the Paillier encryption algorithm. Then all the
values are organized as a vector:

V 0
= (v

0
1

, v

0
2

, · · · , v0m).

After that, the cloud server calculates

PR(x) = V 0 · ˜IT (1)

and returns PR(x) back to the user.
• OT(PR): After receiving PR, the user decrypts the poly-

nomial with the assistance of the data owner. Then
the user factors the polynomial to find the roots of
PR(x) = 0. Note that these roots are the tags of the
document candidates. Finally, the user launches the blind
storage fetch protocol to get the encrypted documents
back from the cloud server.

VI. SECURITY AND PERFORMANCE ANALYSIS

In this section, we first prove the correctness and the security
of our scheme. Then we analyze the complexity of our scheme.

A. Security Analysis

Theorem 1 (Completeness): Our scheme returns all the
documents that contain the query keyword(s).

Proof: We represent the query trapdoor as a polynomial
P

0
Q(x) so that the roots of P

0
Q(x) = 0 are the tags of the

keywords except those in the query, i.e. {x|x = t!i ,!i 62 Q}.
Because v

0
i = vi +h Enc

(n,g)(a0) is the ciphertext of
P

0
Q(t!i), i 2 [m], and P

0
Q(!i) = 0 for those keywords !i 62 Q.

Then, the result polynomial PR which is

PR(x) = V 0 · ˜IT
=

X

!j2Q
v

0
jP!j (2)

consists of the query-related inverted lists only. Note that the
scalar, i.e. vj , won’t affect the root of the polynomials. The
roots of equation 2 actually is \!j2Q⌃!j , which is the set of
the documents that contain all the query keywords. Therefore,
the user will fetch the correct documents from the cloud. ⌅

Before we prove the security of our basic scheme, we first
review the definition of semantic security.

Definition 2 (Semantic security): A cryptosystem is se-
mantically secure if given the ciphertext of a message Msg,
any probabilistic polynomial-time algorithm (PPTA) cannot
deduce any partial information about Msg computationally
with a high non-negligibly probability.

Definition 3 (Semantic security of searchable encryption):
A searchable encryption scheme is semantic secure if the

encrypted indexes and the trapdoors are indistinguishable
under Chosen Plaintext Attack (IND-CPA).

The underlying security significance of Definition 3 is that
given the encrypted index and the trapdoors any probabilistic
polynomial-time adversary (PPTA) cannot determine any par-
tial information of the documents. As proved in [23], the Pail-
lier homomorphic algorithm, which is based on the quadratic
residuosity problem, is a semantically secure cryptosystem.
Now we are ready to prove the security of our scheme.

Theorem 2 (Security): Our inverted index based public-key
searchable encryption scheme is semantically secure.

Proof: (sketch) Suppose a PPTA A chooses two document
set ⌃

0

,⌃

1

that |⌃
0

| = |⌃
1

| and |⌦
⌃0 | = |⌦

⌃1 |. A submits the
datasets to the data owner. The data owner randomly choose
b = {0, 1} and generates the encrypted inverted index for
⌃b. After that, we allow A to access the trapdoor generation
algorithm and the query algorithm. But we don’t allow A to
know the search result. This simulates the view of the cloud
server in our scheme. If A cannot guess b correctly with a
probability higher than 1/2, then our scheme is semantically
secure.

• Security of the tags: We use the PRF to produce the
tags in our scheme. Because |⌃

0

| = |⌃
1

| and |⌦
⌃0 | =

|⌦
⌃1 |, A clearly cannot gain advantage from the tags. In

practice, we can use a symmetric key encryption scheme
like AES as the PRF.

• Security of the index: The index is represented as
polynomials in our scheme, and the polynomials are en-
crypted using Paillier homomorphic encryption. Because
the Paillier cryptosystem is semantically secure, the cloud
server learns nothing from the encrypted polynomials.
Furthermore, the cloud server cannot learn useful infor-
mation from the length of the inverted list because of the
padding.

• Linkability of the trapdoors: In TQ[1], random terms
are introduced to hide the length of the query. Because of
the random terms, the coefficients of P 0

Q will be different
each time. In TQ[2], a

0

is encrypted using the Paillier
encryption. Recall with the Paillier encryption algorithm,
a random number is used each time when performing the
encryption, which means a plaintext will be encrypted
differently with the same key. As a result, a plaintext
query will be transfered to different trapdoors every time
due to the introduced randomness.

• Access pattern: The matching result is a polynomial of
which the coefficients are encrypted using the Paillier
encryption. Therefore, the matching result is semantically
secure as well. Furthermore, our blind storage based
oblivious transfer process is secure under the ideal/real
paradigm as shown in [16]. As a result, A cannot gain
advantage to guess b correctly by observing the matching
result. ⌅

B. Computation Complexity Analysis

In the Setup phrase, the data owner needs to generate the
key pair for the Paillier algorithm. It takes two exponentiations

2015 IEEE Conference on Computer Communications (INFOCOM)

2097

plus the computation of finding the prime numbers.
In the IndexGen process, there are m polynomials need

to be encrypted. Each of them has degree of L. Since the
polynomial is represented using its coefficient, we need m⇥L

encryption operations in total. The data owner also needs m

3

multiplications to generate the M

0
D. It is worth mentioning the

matrix multiplication can be optimized using existing methods
such as Strassen’s algorithm [26].

In the TrapdoorGen process, the data owner needs to per-
form: 1) a polynomial division which can be efficiently done
through the synthetic division method; 2) one exponentiation
to encrypt a

0

; and 3) m2 multiplications to generate TQ[1].
In the Query process, the cloud server needs to perform m

2

multiplications to calculate V , m exponentiations to encrypt
V , and m multiplications to do the homomorphic summation.

Comparison with the existing public key based schemes:
We compare the computational load of our scheme with the
existing public-key based schemes [7], [12], [19]–[21] in Table
I. Let E denote an exponentiation operation, M denote a
multiplication and e denote a pairing operation and P denote
a map-to-point hash function which hashes any input to the
bilinear paring group G

1

(such operations are not efficient).
In most cases, the number of the documents are greater than

the number of the keywords, i.e. n � m. Pairing operations
are far more expensive than multiplication and exponentiation.
The comparison table shows that our scheme is lighter-wright
than the existing solutions. It is worth mentioning that although
our scheme requires more computation when generating a
trapdoor than other schemes, we support multi-keyword con-
junctive search while none of them has this functionality.

C. One round communication vs. two round communication

Our scheme requires two rounds of communication between
the user and the cloud server to complete a search request. The
main reason is to protect the access pattern since a significant
amount of information can be learned from it [25]. It is
worth mentioning that our scheme can be modified to take
only one round communication by letting the cloud server
evaluate the result polynomial PR using the document tags.
However, the modified scheme will leak the access pattern to
the cloud server. Based on the different application scenarios,
one may choose the one-round scheme without the access
pattern protection, depending on the security and privacy
requirements demanded by the application.

VII. SIMULATION

In this section, we evaluate the performance of our proposed
scheme. A series of real-world dataset based simulations are
carried out to evaluate the computation cost of our scheme.
Most of the public-key based searchable encryption schemes
did not report a simulation study on algorithm efficiency. We
only found Li et al. [7] reported a simulation studies on their
proposed scheme so we will compare our results with theirs.

A. Environment Setting

We use Python to implement the prototype of our scheme on
a Windows 8.1 PC with Intel Core i3 3.3 GHz and 4 Gigabyte
memory. We use a simple pure Python implementation of the
Paillier homomorphic cryptosystem1.

Dataset: we use part of the Enron dataset 2 as our dataset.
The Enron email data contains a large number of documents.
The statistic of the dataset is shown in Table II (the keyword
set excludes the stop words and has been processed using
Porter’s stemming algorithm).

B. Data owner computation

Before outsourcing the data into the cloud, the data owner
needs to initialize the parameters of the system and generates
the encrypted inverted index. We assume the data owner has
built the inverted index already. In our simulation, we use
Lucene [27] to generate the inverted index for our dataset.

1) System Setup: During the system initialization, the data
owner first generates the key pair for the Paillier homomorphic
system. This process includes finding two big prime numbers
p, q and computing the public key and the private key. In
our experiment, the key generation process takes 0.40 second
for 512-bit security and 3.03 second for 1024-bit security.
Although 768-bit RSA module has been broken [28], in our
experiments, we report the computation costs for both 512-bit
and 1024-bit keys to demonstrate the trade-off between the
security and the efficiency.

2) Inverted Index Encryption: Although index generation
process is the most computationally expensive step, it is only a
one-time process. There are two steps of converting an inverted
index to its encrypted version. The first step is to calculate the
corresponding polynomial for each keyword list. The second
step is to encrypt the polynomials with the master key which
includes a matrix multiplication and a Paillier encryption. The
computation cost will increase as the dictionary size grows
large. It is worth to mention that when using 512-bit keys
for the Paillier crypto-system, the matrix multiplication costs
much more than the Paillier encryption while the encryption
consumes more computation when we use 1024-bit keys.
The computation of the matrix multiplication can be further
reduced by using multiple smaller size matrices instead of a
large size matrix. The computation cost of the index generation
respect to different key size and matrix size is shown in Fig.5.

3) Trapdoor Generation: We show the computation cost for
a trapdoor with different dictionary size in Fig.6. The most
computationally expensive step is the matrix multiplication.
Because only one encryption is involved, using different key
sizes shows little difference. The computation time is less than
one seconds when we use smaller matrices (128 by 128) to
perform the permutation. Note that even with a relatively large
matrix (1024 by 1024), the trapdoor generation time is still
under two seconds. It is worth mentioning that the number
of query keyword doesn’t affect the trapdoor generation time

1The source code available at https://github.com/mikeivanov/paillier
2Enron dataset, http://nlp.cs.aueb.gr/software and datasets/Enron-Spam/

2015 IEEE Conference on Computer Communications (INFOCOM)

2098

TABLE I
PERFORMANCE COMPARISON

Baek et al. [19] Rhee et al. [20] Zhao et al. [21] Li et al. [7] Sun et al. [12] Ours
Setup M 2E M 9mM (3n+1)E+e 2E
Index nm(E+M+P+2e) nm(2E+P+e) nm(4M+P+2e) n(m2+3m)M m(n+2)E mLE+m3M
Trapdoor P+M 2E+2P 3M+4P+e (m2+3m)M (2n+1)E m

2M+E
Search nm(M+e) nm(2E+P+e) nm(2M+P+4e) (m+3)e (n+1)e+(n+2)M+E (m2+1)M+mE
m is the size of the dictionary, n is the size of the document set, L is a constant decided by the dataset.

0

2

4

6

8

10

12

2000 4000 6000 8000 10000 12000

In
d

ex
 G

e
n

e
ra

ti
o

n
 T

im
e

5
1

2
-b

it
 k

ey
 (

se
co

n
d

)

Th
o
u
sa
n
d
s

Number of Documents

max

128

256

512

1024

(a) 512-bit key

3

8

13

18

23

28

33

2000 4000 6000 8000 10000 12000

In
d

ex
 G

e
n

e
ra

ti
o

n
 T

im
e

1
0

2
4

-b
it

 k
ey

 (
se

co
n

d
)

Th
o
u
sa
n
d
s

Number of Documents

max

128

256

512

1024

(b) 1024-bit key

Fig. 5. Index generation time for different key size and matrix size

0

2

4

6

8

10

12

Tr
ap

d
o

o
r

G
e

n
e

ra
ti

o
n

 T
im

e
(s

ec
o

n
d

)

max

128

256

512

1024

1517 2506 3253 3934 4572 5097
size of dictionary

Fig. 6. Trapdoor generation time respect to the size of the dictionary

because we hide the degree of the trapdoor polynomial by
padding random terms.

C. Cloud server computation

After receiving the trapdoor from the user, the cloud server
needs to multiply the trapdoor with the dictionary matrix. The
consumed time is shown in Fig.7. The computation includes
a matrix multiplication and m encryptions. As shown in the
figure, using smaller matrices can improve the efficiency but
the improvement is not much especially when using 1024-
bit keys encryptions. This is because the encryption takes a
large part of the computation. However, the encryption can be
accelerated through parallel processing. Therefore, the search
time can be further reduced if multiple threads are used by
the cloud server which also has more computation power than
our proof-of-concept environment.

4

9

14

19

24

2000 4000 6000 8000 10000 12000

Se
ar

ch
 T

im
e

5
1

2
-b

it
 (

se
co

n
d

)

Number of Documents

max

128

256

512

1024

(a) 512-bit key

40

60

80

100

120

140

160

180

2000 4000 6000 8000 10000 12000

Se
ar

ch
 T

im
e

1
0

2
4

-b
it

 (
se

co
n

d
)

Number of Documents

max

128

256

512

1024

(b) 1024-bit key

Fig. 7. Search time for different key sizes and matrix sizes

D. Comparison between Li et al’s scheme and ours

We compare the index generation time and the search
time with Li et al’s scheme [7]. Li et al’s scheme focuses
on matching queries with the attributes of documents of
which the number is supposed to be small. Therefore, their
scheme cannot handle general text keyword search which is
the object of our scheme. As reported in their original paper,
the index generation time for each index, i.e., each document,
is around 30 seconds with 70 attributes which equivalents
to 70 keywords in our scheme. Compared with theirs, our
scheme is extreme efficient because their scheme heavily relies
on pairing operation and the operations over elliptical curve.
Although their scheme has different objective, the comparison
demonstrates the same technique is not suitable for generating
secure index of general keyword search tasks.

TABLE II
DATASET STATISTIC

of Documents 2000 4000 6000 8000 1000 12000
of Keywords 1517 2506 3253 3934 4572 5097

VIII. CONCLUSION

In this paper, we proposed a novel construction of a public-
key searchable encryption scheme based on inverted index.
Our scheme overcomes the one-time-only search limitation in
the previous schemes. Our probabilistic trapdoor generation
algorithm prevents the cloud server from linking the trapdoors.
Our scheme also hides the number of keywords in the query.
Additionally, our scheme supports multi-keywords conjunctive
search. Because the access pattern has been identified as a
serious security threat in searchable encryption schemes, our
scheme can be integrated with blind storage technique to

2015 IEEE Conference on Computer Communications (INFOCOM)

2099

further protect the access pattern. Compared with the exiting
public-key based schemes that heavily rely on expensive
pairing operations, our scheme is more efficient by using
only multiplications and exponentiations. Finally, we validated
the practicality of the proposed scheme by implementing a
prototype of the scheme and evaluated the performance using
the Enron email dataset. The results showed that our scheme
features reasonable index construction for a large document
set. The trapdoor generation time and the search efficiency out-
perform the pairing based solutions. Furthermore, our scheme
scales well when handling large document set, which makes
our scheme ideal for real-world scenario.

ACKNOWLEDGMENT

This work was supported in part by US National Science
Foundation under grant CNS-1217889 and National Natural
Science Foundation of China under grants 61202034 and
61232002.

REFERENCES

[1] E.-J. Goh et al., “Secure indexes.” IACR Cryptology ePrint Archive, vol.
2003, p. 216, 2003.

[2] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Advances in Cryptology -
EUROCRYPT 2004, ser. Lecture Notes in Computer Science, C. Cachin
and J. Camenisch, Eds. Springer Berlin Heidelberg, 2004, vol. 3027,
pp. 506–522.

[3] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword
searches on remote encrypted data,” in Applied Cryptography and
Network Security, ser. Lecture Notes in Computer Science, J. Ioannidis,
A. Keromytis, and M. Yung, Eds. Springer Berlin Heidelberg, 2005,
vol. 3531, pp. 442–455.

[4] M. Bellare, A. Boldyreva, and A. ONeill, “Deterministic and efficiently
searchable encryption,” in Advances in Cryptology - CRYPTO 2007, ser.
Lecture Notes in Computer Science, A. Menezes, Ed. Springer Berlin
Heidelberg, 2007, vol. 4622, pp. 535–552.

[5] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy keyword
search over encrypted data in cloud computing,” in INFOCOM, 2010
Proceedings IEEE, March 2010, pp. 1–5.

[6] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multi-
keyword ranked search over encrypted cloud data,” in INFOCOM, 2011
Proceedings IEEE, April 2011, pp. 829–837.

[7] M. Li, S. Yu, N. Cao, and W. Lou, “Authorized private keyword search
over encrypted data in cloud computing,” in Distributed Computing
Systems (ICDCS), 2011 31st International Conference on, June 2011,
pp. 383–392.

[8] N. Cao, Z. Yang, C. Wang, K. Ren, and W. Lou, “Privacy-preserving
query over encrypted graph-structured data in cloud computing,” in
Distributed Computing Systems (ICDCS), 2011 31st International Con-
ference on, June 2011, pp. 393–402.

[9] Y. Lu, “Privacy-preserving logarithmic-time search on encrypted data in
cloud.” in NDSS. The Internet Society, 2012.

[10] M. Li, S. Yu, W. Lou, and Y. Hou, “Toward privacy-assured cloud data
services with flexible search functionalities,” in Distributed Computing
Systems Workshops (ICDCSW), 2012 32nd International Conference on,
June 2012, pp. 466–470.

[11] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and H. Li, “Privacy-
preserving multi-keyword text search in the cloud supporting similarity-
based ranking,” in Proceedings of the 8th ACM SIGSAC Symposium on
Information, Computer and Communications Security, ser. ASIA CCS
’13. New York, NY, USA: ACM, 2013, pp. 71–82.

[12] W. Sun, S. Yu, W. Lou, Y. Hou, and H. Li, “Protecting your right:
Attribute-based keyword search with fine-grained owner-enforced search
authorization in the cloud,” in INFOCOM, 2014 Proceedings IEEE,
April 2014, pp. 226–234.

[13] B. Wang, S. Yu, W. Lou, and Y. Hou, “Privacy-preserving multi-keyword
fuzzy search over encrypted data in the cloud,” in INFOCOM, 2014
Proceedings IEEE, April 2014, pp. 2112–2120.

[14] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient constructions,”
in Proceedings of the 13th ACM Conference on Computer and Commu-
nications Security, ser. CCS ’06. New York, NY, USA: ACM, 2006,
pp. 79–88.

[15] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proceedings of the 2012 ACM Conference
on Computer and Communications Security, ser. CCS ’12. New York,
NY, USA: ACM, 2012, pp. 965–976.

[16] M. Naveed, M. Prabhakaran, and C. A. Gunter, “Dynamic searchable
encryption via blind storage.” IACR Cryptology ePrint Archive, vol.
2014, p. 219, 2014.

[17] M. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching and
set intersection,” in Advances in Cryptology - EUROCRYPT 2004, ser.
Lecture Notes in Computer Science, C. Cachin and J. Camenisch, Eds.
Springer Berlin Heidelberg, 2004, vol. 3027, pp. 1–19.

[18] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Security and Privacy, Proceedings. 2000 IEEE
Symposium on, 2000, pp. 44–55.

[19] J. Baek, R. Safavi-Naini, and W. Susilo, “Public key encryption with
keyword search revisited,” in Computational Science and Its Applica-
tions ICCSA 2008, ser. Lecture Notes in Computer Science, O. Gervasi,
B. Murgante, A. Lagan, D. Taniar, Y. Mun, and M. Gavrilova, Eds.
Springer Berlin Heidelberg, 2008, vol. 5072, pp. 1249–1259.

[20] H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee, “Trapdoor security
in a searchable public-key encryption scheme with a designated tester,”
Journal of Systems and Software, vol. 83, no. 5, pp. 763 – 771, 2010.

[21] Y. Zhao, X. Chen, H. Ma, Q. Tang, and H. Zhu, “A new trapdoor-
indistinguishable public key encryption with keyword search,” Journal
of Wireless Mobile Networks, Ubiquitous Computing and Dependable
Applications, vol. 3, no. 1/2, pp. 72–81, 2012.

[22] D. E. Knuth, The Art of Computer Programming, Volume 1 (3rd Ed.):
Fundamental Algorithms. Redwood City, CA, USA: Addison Wesley
Longman Publishing Co., Inc., 1997.

[23] P. Paillier, “Public-key cryptosystems based on composite degree residu-
osity classes,” in Advances in Cryptology EUROCRYPT 99, ser. Lecture
Notes in Computer Science, J. Stern, Ed. Springer Berlin Heidelberg,
1999, vol. 1592, pp. 223–238.

[24] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and
fine-grained data access control in cloud computing,” in INFOCOM,
2010 Proceedings IEEE, March 2010, pp. 1–9.

[25] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation.” in NDSS,
2012.

[26] V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathe-
matik, vol. 13, no. 4, pp. 354–356, 1969.

[27] Lucene, “The Lucene search engine,” 2005.
[28] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos,

P. Gaudry, A. Kruppa, P. L. Montgomery, D. A. Osvik, H. Te Riele,
A. Timofeev, and P. Zimmermann, “Factorization of a 768-bit rsa
modulus,” in Proceedings of the 30th Annual Conference on Advances
in Cryptology, ser. CRYPTO’10. Berlin, Heidelberg: Springer-Verlag,
2010, pp. 333–350.

2015 IEEE Conference on Computer Communications (INFOCOM)

2100

