
A Network Coding Approach to Reliable Broadcast in
Wireless Mesh Networks�

Zhenyu Yang, Ming Li, and Wenjing Lou

Department of Electrical and Computer Engineering,
Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609

{zyyang,mingli,wjlou}@wpi.edu

Abstract. Reliable broadcast is an important primitive in wireless mesh net-
works (WMNs) for applications such as software upgrade, video downloading,
etc. However, due to the lossy nature of wireless link, it is not trivial to achieve the
reliability and efficiency at the same time. In this paper, we put forward R-Code,
a reliable and efficient broadcast protocol based on intra-flow network coding.
The key idea is to construct a minimum spanning tree as a backbone whose link
weight is based on ETX metric. The broadcast overhead and delay are simultane-
ously reduced by enabling each node to be covered by the parent node in the tree
which promise its reliable reception of the whole file. Opportunistic overhearing
is utilized to further reduce the number of transmissions. Extensive simulation re-
sults show that R-Code always achieves 100% packet delivery ratio (PDR), while
introducing less broadcast overhead and much shorter delay than AdapCode.

1 Introduction

Wireless mesh networks (WMNs) is an approach to provide high-bandwidth network
access for a specific area, which becomes prosperous during the last decade. Broadcast
is an important function in WMNs. For example, it is necessary for software code up-
dates which may be done at the initial deployment and testing phase of the network,
or being used in multimedia services like video/audio downloading. The salient feature
of such kind of applications is that they require the PDR (Packet Delivery Ratio) to be
strictly 100%, which means all the nodes have to download every byte of the broadcast-
ing file. Also, since other normal unicast traffics may exist in the network at any time,
broadcast applications are desired to have good coexistence with these traffics, which
means consuming minimal amount of network bandwidth and complete the broadcast
process quickly.

The fundamental challenge in the design of reliable and efficient broadcast protocol
in WMNs is the unreliability of wireless links, which is mainly due to the path loss,
interference and channel fading [12]. Previous schemes usually achieve reliability by
applying the same mechanisms as used in wired broadcast protocols, such as ARQ
mechanism [13], FEC mechanism [11], etc. However, these schemes tend to introduce
large amount of redundant transmissions and incur problems like “ACK explosion”, etc.

� This work was supported in part by the US National Science Foundation under grants CNS-
0626601, CNS-0746977, CNS-0716306, and CNS-0831628.

B. Liu et al. (Eds.): WASA 2009, LNCS 5682, pp. 234–243, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Network Coding Approach to Reliable Broadcast in Wireless Mesh Networks 235

Network coding (NC) has emerged as a promising technique to increase the network
bandwidth-efficiency and reliability recent years. Briefly speaking, NC is a new com-
munication paradigm for packet-based networks which breaks with the conventional
store-and-forward way. It gives the intermediate nodes the flexibility of encoding differ-
ent packets received previously together for subsequent transmission with the purpose
of benefiting multiple receivers with single transmission. Those packets mixed together
could be from different data flows, in which case it is called inter-flow nework cod-
ing [8]; otherwise if they are from the same data flow, it is called intra-flow network
coding [2]. Moreover, NC makes the schedule of retransmission easier since now each
encoded packet is the same and no specific packet is indispensable for the receivers.

Prior works that exploit the advantage of NC for reliable broadcasting in wireless
networks are still at preliminary stage. As far as we know, AdapCode [7] is the only pro-
tocol designed purposely for reliable broadcasting. It combines probabilistic forwarding
and NC together and promises perfect reliability by a “NACK+timer” mechanism.

In this paper, we propose R-Code, a NC-based reliable broadcast protocol in WMNs
with unreliable links. In R-Code, we build a minimum spanning tree (MST) to behave
as a “virtual backbone”, whose link weight is based on ETX metric [4]. The key idea
of R-Code is that every node is covered by the best neighbor, the parent node in the
MST, for its reliable reception and successful decoding. R-Code continues to exploit
the broadcast nature of wireless transmission to further reduce the transmissions. Simu-
lation results show that, R-Code can guarantee 100% PDR with less broadcast overhead
than AdapCode and achieve much lower broadcast delay at the same time.

The rest of the paper is organized as follows. Related work in given in Section 2. We
describe the network model and network coding primitives in Section 3. The design of
the protocol is shown in Section 4. In Section 5, we present the simulation results. In
the end, we give conclusion in Section 6.

2 Related Work

Exploiting the idea of NC for reliable broadcast is still at a preliminary stage. MORE [2]
is the first NC-based protocol for reliable routing. To the best of our knowledge, it is also
the only one that is implemented and applied in real world scenario. MORE combines
the idea of opportunistic routing (OR) [1] and network coding, which eliminates OR’s
requirement for complicated and costly coordination between receivers while enjoying
the throughput benefit of NC. MORE is designed for supporting unicast flows and it
can also be extended to support broadcast applications, although it does not perform
very well in that case, because almost all the nodes become forwarders which incur
heavy contention and congestion. Koutsonikolas et.al. proposed Pacifier [10], a high
throughput, reliable multicast protocol based on MORE. Pacifier addresses the weak-
ness of MORE by maintaining a multicast tree structure. It also alleviates the “cry-
ing baby” problem by a round-robin algorithm and further increases the throughput.
Namely, when one of the destinations has very poor connection and if we try to satisfy
its reliability requirement, then the rest of the destinations will experience performance
degradation. We note that although both MORE and Pacifier can support broadcast ap-
plications, they are not purposely designed for that. In both protocols, the source node is

236 Z. Yang, M. Li, and W. Lou

the only active “pump” that transmits packet proactively and all the other intermediate
nodes just play the role of forwarder, which passively relay what they received. Thus,
for some missing packet, the destinations can only get it from the source rather than
some node nearby that has already got the whole file, which will incur many redundant
transmissions and is inefficient.

In comparison, since each node has to get the whole file ultimately, the schemes spe-
cially designed for broadcast make all the nodes within the network to be “temporary
source” after receiving the whole file. AdapCode [7] is such a protocol, which aims
at reliable broadcast in wireless sensor networks (WSNs) and studies the global code
updates. It also tries to achieve load balance and rapid propagation. Since we will com-
pare R-Code with AdapCode in this paper, a brief overview of it is presented below.
AdapCode is motivated by probabilistic forwarding approach, which means for each
received packet, the receiver just forwards it with some probability less than 1 in order
to reduce the traffic introduced compared with naive flooding. AdapCode combines this
idea with network coding which further reduces the traffic by letting a node send one
coded packet after receiving every N coded packets from other nodes. The particular
choice of such N is called coding scheme. Also, it applies a “NACK+Timer” mecha-
nism to promise 100% reliability. During the code update process, each node keeps a
count-down timer. If the node missed some packets, it will broadcast a NACK packet
when the timer fires, within which contains the IDs of those missed packets. All the
other nodes overheard this NACK and have already received those requested packets
will take part in a response process and one of them will be randomly selected as the
real responder. This process goes on until all the nodes get all the packets. However,
since the NACK mechanism inherently tends to elongate the reception time, AdapCode
still needs relatively long propagation delay. Also, the link quality is not explicitly con-
sidered in the design of AdapCode, which may result in additional transmissions in
realistic networks.

3 Preliminaries

3.1 Network Model

In this paper, We only consider the wireless mesh network that consists of all the routers,
one of which plays the role of gateway that connects to the Internet. The gateway is
always the only source that wants to broadcast files through the network. Since we
only consider the one-to-all scenario, intra-flow network coding [2] is adopted to re-
duce the number of transmissions and simplify the protocol design. The WMN is mod-
elled as a weighted undirected graph G(V, E), where V is the set of nodes and E is
the set of links. The weight of link (i, j) is: wi,j = (1/pi,j + 1/pj,i)/2, where pi,j

is the probability of successful packet reception from i to j, vice versa (the reason
for taking the average of probabilities of both directional is that the construction of
MST is based on undirected links). Since in reality mesh routers are often statically de-
ployed, we assume the network topology and also the link quality keep stable during one
broadcast session [14], which is usually finished within several minutes at most. More-
over, we assume the routers have enough memory that can store several generations

A Network Coding Approach to Reliable Broadcast in Wireless Mesh Networks 237

simultaneously, each of which usually are tens of kilo-bytes. The definition of genera-
tion is presented in the following section.

3.2 Network Coding

For the purpose of reducing the complexity of encoding/decoding and storage require-
ment, the broadcasted file is divided into segments sequentially, called generation [3].
Each generation contains same number of k packets, denoted as si, i = 1, 2, ..., k.
All the encoding/decoding operation is done within one generation, where a coded
packet x is the linear combination of all these k original packets: x =

∑k
j=1 αjsj .

< α1, α1, ..., αk > is the encoding vector, which identifies how to generate this coded
packet from the original packets in this generation. Each element of the coding vector is
independently randomly [6] selected from a Galois field GF (2q). Every coded packet
includes this coding vector in the packet header for future decoding. Upon receiving a
coded packet x of generation i, the receiver puts x into the buffer matrix for generation
i and then tries to decode it along with all the other coded packets of this generation
received previously by doing Gaussian elimination on the buffer matrix, whose com-
plexity is O(k3).

3.3 Minimum Spanning Tree

Since applying MST for broadcast is well studied in both wired and wireless networks,
many efficient and distributed algorithms of building and maintaining MST for a given
network are proposed [5, 9],. In our protocol, since we assume the WMN is static,
the MST can be computed and updated distributively along with the routing table at
relatively long intervals and be shared by multiple broadcast sessions, thus the extra
communication and computation overheads introduced can be amortized and are negli-
gible [2].

4 R-CODE

In this section, we present the design of R-Code. At first, we use a simple example
to explain the intuition behind R-Code; In the following, we present the details of the
design.

4.1 Intuition of R-Code

The intuition underlying our approach is that for each node i , since all its neighbors ca-
pable of behaving as a “temporary source”, it can always choose to be reliably covered
by the best neighbor with minimum cost, where the word best means this neighbor can
transmit one packet to i reliably with minimum expected number of transmissions. We
believe a good global performance can be achieved through all those simple, optimal
local decisions.

This can be illustrated with a simple example that is shown by Fig.1. This toy net-
work consists of 4 nodes, with S being the only source and wants to broadcast a packet

238 Z. Yang, M. Li, and W. Lou

(a) (b)

Fig. 1. A simple example to show the intuition of R-Code. The ETX value is assigned for each
link.

reliably. If we build the broadcast tree like Pacifier does, which is to combine all the
best unicast path from source to every other nodes, then we get the tree that is shown
in Fig.1(a) with bold lines. The total expected number of transmissions introduced is
6, where both of S and B generates 3 transmissions; However, we observe that some
nodes are not covered by the best choice. For example, C can get the packet from B
with 2 transmissions, which is more efficient than getting it directly from the source
S. If we make all nodes to be covered by their best neighbors, then we naturally build
a MST as broadcast tree, which is shown in Fig.1(b). Now the total expected number
of transmissions needed is 2 + 2/3 + 14/9 = 4.23, which is generated by S, B, C
respectively. Actually, this is also the minimum number of transmissions needed. How-
ever, we do not claim that this optimal result can always be achieved through R-Code.
We note that our effort in this paper is put on designing practical and efficient protocol
rather than pursing theoretically optimal performance.

4.2 Design of R-Code

Generally, R-code can be divided into two stages.

Initialization Stage. During this stage, each node i broadcasts “Hello” packets with
period T to estimate the quality of links to other nodes nearby. Based on collected
information, i builds up a neighbor table Tablei, Tablei = {j|wi,j ≤ Wthreshold, j ∈
V and j �= i}, where Wthreshold is some predefined threshold value. Further, based on
this table, i builds a MST [9] and stores this tree structure by a node set which contains
all the neighbors within the MST.

Above is the general initialization stage. For a specific broadcast session, the single
source s makes the MST just built a directed tree originated from itself, which is the
root. Each node i records the upstream node as its Guardian Guardiani, and all the
downstream nodes as Childreni. The Guardians is s itself and the children sets of all
the leaf nodes is empty.

Broadcast Stage. R-Code works on top of the IP layer and the packet header format is
shown in Fig.2, which contains a type field that identifies data packet from ACK packet,
the source’s IP address, broadcast session id, generation index, generation size which

A Network Coding Approach to Reliable Broadcast in Wireless Mesh Networks 239

Fig. 2. R-Code packet header format

indicates the total number of generations and code vector that describes the packet
content with respect to the original packets. The broadcast session starts by letting the
source continuously send coded packets of the first generation with interval Tpkt. When
a node i overhears a packet, it stores this packet in the corresponding buffer matrix and
runs Gaussian elimination on the matrix to check if it received enough information to
retrieve all the original packets of this generation. If so, it records this reception time
and notifies the guardian by sending a positive ACK in unicast, whose reliability can
be promised by MAC layer. Then, if i is currently not in the process of broadcasting
for other generation, it begins to play the role of guardian for its children by keeping
sending coded packets of this generation with interval Tpkt. Otherwise, if i is still not
able to retrieve all the original packets of this generation, it keeps silent and waits for
more packets;

In R-Code, guardian node needs to receive the ACKs from all its children before
moving to the next generation. After receiving all those ACKs, the guardian node will
deliver the packets of this generation to upper layer and flush the corresponding buffer
matrix. Additionally, it should add the index of this generation into the successfully
acknowledged ones and pause for a period of Tgeneration time before broadcasting the
next generation, allowing the children nodes to rebroadcast what they just received [15].
There are two challenges need to be solved to make R-Code run smoothly.

1. How to select the generation to be sent next? For source node, it moves sequen-
tially, from generation n to generation n+1, until complete the last generation and then
quit this broadcast session. We note that source’s quit does not mean the termination of
the broadcast session, which maybe still goes on in other nodes. For other transmitters,
the selection of next generation follows FIFO policy: it chooses the earliest received
generation from those successfully received but not successfully acknowledged ones,
the index of which is always the smallest too. If there are no such generations currently,
then this node checks the previous records of successfully acknowledged generations to
see if all the generations have been acknowledged. If so, it quits this broadcast session;
or else this node keeps silent and wait for future reception.

2. Dealing with ACKs. As presented above, the perfect reliability is guaranteed
by the guardian-child relationship. Although multiple ACKs will be send back to the
guardian, we argue that this will not incur “ACK explosion” problem for reasons listed
below. (1) We make a requirement about the generation size used in R-Code, which
should be relatively large, i.e, 32 or 64. Because those ACKs is in generation-level
rather than packet-level, if one generation contains large number of packets, for some
specific guardian node, the link qualities between it to its children are different and

240 Z. Yang, M. Li, and W. Lou

Table 1. Optimal coding schemes

average neighbor 0-5 5-8 8-11 11-
N 1 2 4 8

Table 2. Simulation parameters

Simulation Parameter Value
Wthreshold 5
Random backoff time 10..30ms
pathloss model two-ray
fading mode rician
rician k factor 4
Hello packet interval(T) 1s
Tgeneration 100ms

those child nodes tend to receive the whole generation successfully at different times
with very high probability. (2) Since the child nodes are usually a small subset of all the
neighbors of the guardian node, thus even some of them really reply ACKs almost at the
same time and cause a conflict at the guardian node side, the collision avoidance mech-
anism of 802.11 can easily handle this. Further, we require that each child backoffs a
random short time before sending ACK.

5 Performance Evaluation

We evaluate the performance of R-Code and compare it with AdapCode through exten-
sive simulations. In our implementation of AdapCode, for fairness, we always allow the
nodes to generate coded packets by doing linear combination of all the k original pack-
ets rather than a portion of them, where the latter is AdapCode’s intended consideration
for WSNs. As claimed in [7], this relaxation could give adapCode better performance
on bandwidth efficiency.

5.1 Simulation Settings

We use Glomosim simulator in our simulations. The network consists of a 7 × 7 grid
of static nodes, where the grid size equals 200m and average number of neighbors per
node is 9.51. For AdapCode, We follow the optimal coding schemes presented in [7],
which is shown in Table 1.

The source is fixed to be node 0 in the left-bottom corner for all the simulations.
The broadcasted file is 1MB and is divided into 4096 pieces, each of which is 256 byte
long. The MAC layer runs 802.11b with some modification that fixes the data rate to
be 11Mbps. Other related simulation parameters are listed in Table 2. We run both
protocols in this network 10 times with Tpkt varied from 11ms to 29ms and use the
following metrics for comparison:

Average propagation delay: The total time required for a node to receive the whole file,
average over all nodes.

A Network Coding Approach to Reliable Broadcast in Wireless Mesh Networks 241

Average number of transmissions: The total number of transmissions of all the nodes
divided by the node number. It gives an estimate of the average traffic introduced by
this broadcast session.

Average number of linearly dependent packets: The total number of linearly dependent
packets received by all the nodes divided by the node number. We note that this number
includes those packets overheard by some node who has already got the whole genera-
tion that this packet belongs to.

Note that we do not compare PDR performance, since both R-Code and AdapCode
can guarantee 100% reliability.

5.2 Traffic

We first compare the average traffic introduced by both protocols. Besides data packets,
we also count the NACKS of AdapCode and those unicast packets for maintaining the
guard relation and ACKs of R-Code. From Fig.3(a) we can see that R-Code introduces
fewer transmissions than AdapCode in all settings and the performance gain is greater
when the per packet broadcast interval Tpkt is larger, where the maximal gain can be
15% when Tpkt is 29ms. We also observe that as Tpkt increases, the average number
of transmissions incurred by R-Code decreases while the average traffic introduced by
AdapCode keeps almost the same and even increases a little. The key reason for this is
R-Code’s local optimal decision. For each node, it always choosing the best neighbor
to be the guardian. In comparison, when a node i in AdapCode is requiring some more
packets, it just randomly chooses a node from those who overheard i’s NACK and also
able to reply. This randomly selected node, we argue, maybe not the best one and thus
needs more number of transmissions to satisfy the requirement of node i. The second
cause for the more number of transmissions of AdapCode is presented below. Since the
timer of each node in AdapCode is restored to initial value once this node receives a new
packet due to the “lazy NACK” mechanism, on the opposite, this means if the node does
not receive any packet for some period, its timer will fire firstly and it will broadcast the
NACK. Unfortunately, this is just what happened to those nodes with bad connection to
the sender. Further, because this bad connected node has received much fewer packets,
it will require more retransmissions in its NACK and most of those retransmissions
tend to be useless for those good connected receivers who only miss small number of
innovative packets. This is shown clearly in Fig.3(b), where we can see that nodes in
AdapCode encounter more linearly dependent reception in all cases.

5.3 Propagation Delay

Compared with the performance of introduced traffic, R-Code brings a larger gain over
AdapCode when it comes to the metric of propagation delay. It is obviously to see that
under all settings, the average propagation delay of R-Code performances much better
than AdapCode, which is shown in Fig.4(a). The gain is higher when packet broadcast
interval is small, i.e., when Tpkt is 11ms, the reduction ratio can be almost 50%. This
is consistent with our analysis in previous section, which indicates that NACK mecha-
nism inherently tends to elongate the propagation delay. And we also observe that both
protocols’ broadcast delay grow almost linearly to the packet broadcast interval. This is

242 Z. Yang, M. Li, and W. Lou

 1200

 1250

 1300

 1350

 1400

 1450

 10 12 14 16 18 20 22 24 26 28 30

A
ve

ra
ge

 p
ac

ke
t s

en
t p

er
 n

od
e

Packet broadcast interval (ms)

AdapCode
R-Code

(a)

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 10 12 14 16 18 20 22 24 26 28 30

A
ve

ra
ge

 li
ne

ar
ly

 d
ep

en
de

nt
 p

ac
ke

t r
ec

ei
ve

d
pe

r
no

de

Packet broadcast interval (ms)

AdapCode
R-Code

(b)

Fig. 3. Traffic

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 10 12 14 16 18 20 22 24 26 28 30

A
ve

ra
ge

 p
ro

pa
ga

tio
n

de
la

y
(s

)

Packet broadcast interval (ms)

AdapCode
R-Code

(a)

 0 5 10 15 20 25 30 35 40 45 50

29
27

25
23

21
19

17
15

13
11

 0
 20
 40
 60
 80

 100
 120
 140

Broadcast Propagation Delay(s)

R-Code
Node’s ID

Broadcast Interval (ms)

Broadcast Propagation Delay(s)

(b)

 0 5 10 15 20 25 30 35 40 45 50

29
27

25
23

21
19

17
15

13
11

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

Broadcast Propagation Delay(s)

AdapCode
Node’s ID

Broadcast Interval (ms)

Broadcast Propagation Delay(s)

(c)

Fig. 4. Propagation Delay

because all the transmitters inject packets into network with a period of Tpkt. Besides
shorter average propagation delay, R-Code can also achieves more consistent individual
node propagation delay, which means all the nodes running R-Code can get the whole
file at approximately the same time. This is shown in Fig.4(b); In comparison, nodes
running AdapCode receive the whole file with delays that have much larger variation,
which is shown in Fig.4(c). This makes R-Code more appropriate for applications like
software updates where some subsequent operations will be done just after the reception
of the whole file.

From the simulation results presented above, we can see that R-Code is a simple and
high performance reliable broadcast protocol for WMNs, which achieves less trans-
mission overhead and shorter broadcast delay without the need of complicated timer
mechanism. However, we also observe that there is a tradeoff between those two met-
rics, both for R-Code and AdapCode. Thus for specific application, it should chooses
proper parameter values according to its own requirement.

6 Conclusion

In this paper, we focus on designing a practical broadcasting protocol for wireless mesh
networks, which provides 100% reliability for all receivers. We present R-Code, A sim-
ple, efficient and high-performance broadcast protocol with the help of network coding
to reduce the number of total transmissions required and average propagation delay.
The core idea is to promise each node to be covered by the best neighbor. Based on

A Network Coding Approach to Reliable Broadcast in Wireless Mesh Networks 243

the intuition that local optimal solution can achieves better global performance, we ap-
ply MST as the broadcast tree. Extensive simulations showed that R-Code can reduce
the number of required transmissions and propagation delay as high as 15% and 50%,
respectively, compared with the state-of-the-art AdapCode.

References

1. Biswas, S., Morris, R.: Opportunistic routing in multi-hop wireless networks. SIGCOMM
Computer Communications Review (2004)

2. Chachulski, S., Jennings, M., Katti, S., Katabi, D.: Trading structure for randomness in wire-
less opportunistic routing. In: SIGCOMM 2007 (2007)

3. Chou, P., Wu, Y., Jain, K.: Practical network coding. In: Proceedings of the 41st Allerton
Conference on Communication, Control, and Computing (September 2003)

4. De Couto, D., Aguayo, D., Bicket, J., Morris, R.: A high-throughput path metric for multi-
hop wireless routing

5. Garay, J.A., Kutten, S., Peleg, D.: A sub-linear time distributed algorithm for minimum-
weight spanning trees. SIAM J. Comput. (1998)

6. Ho, T., Mdard, M., Koetter, R., Karger, D.R., Effros, M., Shi, J., Leong, B.: A random linear
network coding approach to multicast. IEEE Trans. Inform. Theory (2006)

7. Hou, I.-H., Tsai, Y.-E., Abdelzaher, T., Gupta, I.: Adapcode: Adaptive network coding for
code updates in wireless sensor networks. In: INFOCOM 2008 (April 2008)

8. Katti, S., Rahul, H., Hu, W., Katabi, D., Medard, M., Crowcroft, J.: Xors in the air: practical
wireless network coding. SIGCOMM Computer Communications Review (2006)

9. Khan, Maleq, Pandurangan, Gopal: A fast distributed approximation algorithm for minimum
spanning trees. Distributed Computing (April 2008)

10. Koutsonikolas, D., Hu, Y.-C., Wang, C.-C.: High-throughput, reliable multicast without cry-
ing babies in wireless mesh networks. In: INFOCOM 2009 (April 2009)

11. Koutsonikolas, D., Hu, Y.C.: The case for fec-based reliable multicast in wireless mesh net-
works. In: DSN 2007: Proceedings of the 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pp. 491–501 (2007)

12. Marco Zú, N.Z., Krishnamachari, B.: An analysis of unreliability and asymmetry in low-
power wireless links. ACM Trans. Sen. Netw. 3(2), 7 (2007)

13. Pagani, E., Rossi, G.P.: Reliable broadcast in mobile multihop packet networks. In: Mobi-
Com 1997, pp. 34–42 (1997)

14. Reis, C., Mahajan, R., Rodrig, M., Wetherall, D., Zahorjan, J.: Measurement-based mod-
els of delivery and interference in static wireless networks. SIGCOMM Comput. Commun.
Rev. 36(4), 51–62 (2006)

15. Scheuermann, B., Lochert, C., Mauve, M.: Implicit hop-by-hop congestion control in wire-
less multihop networks. Ad Hoc Networks (2008)

	A Network Coding Approach to Reliable Broadcast in Wireless Mesh Networks
	Introduction
	Related Work
	Preliminaries
	Network Model
	Network Coding
	Minimum Spanning Tree

	R-CODE
	Intuition of R-Code
	Design of R-Code

	Performance Evaluation
	Simulation Settings
	Traffic
	Propagation Delay

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

