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Abstract—As computing system continues to play an increasing
role in daily life, user authentication is now an important
component. One of the most widely accepted methods for user
authentication is through proof of knowledge of a piece of
secret information, such as password. However, entering this
non-mutable secret for authentication in public space often
allows attackers to steal the secret by shoulder surfing or video
recording.

We observe that it is possible to block attacker’s access
to user input using augmented reality (AR) display, which is
only available to the user. Based on this intuition, we present
AugAuth, an authentication scheme in AR using commercial
off-the-shelf(COTS) gesture control sensors as an input device.
AugAuth can resist against shoulder surfing by presenting user
input interface that is only visible to the user and is unique
every time. To enable user input with finger movement using the
gesture control armband, Myo, we have solved several challenges
in electromyogram signal processing, such as annotating the start
of signal and finger classification. The experiment results for
our input system of a group of volunteers show that our finger
classification function has high accuracy and AugAuth is practical
for use in real life authentication scenarios.

I. INTRODUCTION

With the recent advancement in embedded devices and
widespread network connectivity, mobile devices are playing
an increasing role in our daily life. Despite decades of re-
search, it remains an active research topic to provide secure
and usable user authentication for these handheld devices. One
of the most widely accepted methods for authentication is by
demonstrating ownership of a piece of secret information, such
as password or pin.

However, using knowledge of a piece of secret information
for authentication has its own drawbacks, especially when
such secret is entered in public space. The confidentiality of
user secret is often leaked to malicious attackers via shoulder
surfing [1], security camera recordings [2] or malicious image
processing unit on wearable devices [3], [4]. In some cases, the
attacker doesn’t even need to see the screen of the user’s tablet,
the pin entered can be inferred with just the position of fingers
relative to the tablet [5] or from the reflecting of screen on the
retina of users [6]. To mitigate these risks, there has been a
large number of research focusing on development of different
types of password-equivalent secrets [7], [8], [9] while others
rely on biometrics [10]. With the recent development of

human-computer interfacing and battery technology, we are
now at the uprising frontier of augmented reality.

In this paper, we present AugAuth, an innovative authen-
tication scheme with unique features enabled by AR headset
and gesture control device. The design of AugAuth is based
on the observation that user secrets are leaked to attackers
because an attacker can observe the activities of the user (i.e.
the input sequence) and also the input device screen. However,
if we display the authentication interface only to the user and
nobody else through AR, an attacker will lose the access to
the input device screen. Furthermore, the orientation or layout
of the authentication interface (i.e. the virtual keyboard) can
be randomized each time it is used to prevent replay attack.

In AugAuth, users are presented with a virtual keypad with
numbers in randomized order inside the AR view that is
only available to the user. AugAuth employs a gesture control
device to capture the finger movement as user input on such
virtual keypad. This way, even if the eavesdroppers are capable
of observing the activities of the user, they would have no way
of knowing what the password is. Despite the simplicity of the
approach, capturing the finger movement with gesture control
device in a simple-to-use manner remains a challenging issue
using commodity device. It is unrealistic to put sensors on
every finger of the user due to usability concern. We chose
to use one of the most popular gesture control armband,
Myo [11], to capture finger movement as user input. Myo
is an armband equipped with eight electromyogram sensors.
It is designed to detect simple hand gestures such as holding
the fist or completely opening up the hand, our goal on the
other hand is to take the coarse-grained information provided
by the armband to predict finger movement.

To implement accurate finger detection with Myo we have to
tackle three major challenges. First, it is difficult to determine
the start of the input events because there exists lots of noise
caused by user’s irregular moving. Second, the pushing and
releasing of finger when a user is performing an input ac-
tivity will produce two overlapping electromyography (EMG)
signals which is hard to process with. Third, the relationship
between EMG signal and finger movement is not clear.

Our approach analyzes the time and frequency character-
istics of the signals for finger movement events to build up
AugAuth system with two subsystems, input event detection



subsystem and finger movement classification subsystem. In
our scheme, by putting EMG signal through input event
detection subsystem, we obtain the exact time stamp of when
a user has finger movement. And by placing EMG signal
around the time stamp into the finger movement classification
subsystem, we are able to infer the exact finger a user is
moving.

We summarize our main contributions as follows:
• We propose a novel password authentication scheme that

is resistant to shoulder surfing or camera recording by
exploiting the unique private display feature in AR.

• We develop new algorithms to capture the dynamics of
EMG signals in finger movement .

• We demonstrate the feasibility of our approach by show-
ing it is possible to capture finger movements with just
a commercial off-the-shelf gesture control equipment,
Myo. We also present our study on the finger movement
detection accuracy on a group of volunteers.

II. BACKGROUND

In our proposed scheme, it includes two devices, an aug-
mented reality headset such as hololens [12] and a gesture
control device. The headset will serve as a display device and
to detect user input depends on the gesture control device.
The challenging part in our scheme sits on how to detect
fine-grained finger movement with gesture control device. In
this paper, we launch proof-of-concept experiment with COTS
device, Myo, which costs 169 dollars. Myo [11] is a gesture
control device that is designed to be worn on the arm of a user.
It’s light-weighted with only 93 grams. The gesture control
device is equipped with multiple sensors to provide seamless
human-computer interaction. Myo is connected to computer
desktop or mobile devices using bluetooth. It is powered by
an ARM Cotex M4 processor which is very energy efficient.
With one charge, the arm band can be used for a full day.
Within the slick design, it houses highly sensitive medical
grade sensors including eight EMG sensors. EMG signal is
generated according to body movement and can be detect by
tiny devices called electrodes on human surface [13]. Some
samples of EMG signals are shown in Fig. 1, which are
recorded when a user is performing finger taps.

III. THREAT MODEL AND ASSUMPTIONS

Authentication by a password occurs in different settings
and with different applications including online banking, gam-
ing, online medical record, email in areas with increased
security requirements. We model password authentication
more abstractly as a game between three parties: a machine
interrogator, a human oracle, and a human observer (or video
recorder) [14].

The objective of the oracle is to authenticate himself to the
interrogator by his password. The objective of the interrogator
is to decide whether the oracle knows the correct password by
asking the oracle questions. The observer observes all activities
performed by the oracle but he is not able to observe the
interrogator interface; his objective is to impersonate the oracle

Fig. 1: Diagram of real-life EMG signals collected by Myo

in subsequent games with the same interrogator. The game
also assumes the oracle and interrogator shares a password by
which the interrogator can verify whether the oracle’s input is
correct and matches his identity.

We assume that the observer cannot verify the correctness
of a given password unless he also knows the shared secret
(and we assume he does not). Additionally, we expect that the
interrogator keeps a record of how often an oracle successively
inputs a false password. If the count reaches three, the inter-
rogator voids the oracle’s authorization until the oracle waits
another thirty minutes. We consider the case that the observer
has the capability to record all the activities of oracle when
he is interacting with the interrogator without error for every
single game. Having explained our assumptions and threat
model, we continue by describing our AugAuth methods.

IV. AUGAUTH: AUGMENTED REALITY AUTHENTICATION

A. AugAuth Design Model

When a user is putting on Myo for the first time, he will
be instructed by the headset to perform multiple finger taps
with different fingers on any surface which will generate
labeled sensor data for the system. With the labeled sensor
data collected, a model will be built using supervised machine
learning technique and every model corresponds to specific
user. After the model is generated, the user will be instructed
to set up password. Then, the augmented reality headset will
provide the user with an virtual keyboard in the user’s view.
The virtual keyboard is composed of eight distinct randomized
numbers from 0 to 7, for example, the key can be arranged as
57612304. And the user can use finger tap to input the initial
password which completes the initialization phase.

During the authentication phase, the AR headset again
presents the user a virtual keyboard but with different keyboard
layout in the user’s AR view. The user needs to use finger taps
to select the correct password during the initialization phase.
Otherwise, the system will reject the user.
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Fig. 2: System framework of AugAuth.

B. EMG Signal Modeling

In AugAuth, accurate detection and classification of finger
taps is of most importance and it is based on the analysis
and characterization of forearm EMG signal during the user
input event. When recorded at a cellular level by EMG sensor
inside Myo, forearm EMG signal can be viewed as a series
of action potentials, and its time and frequency characteristics
is related to the phase of the mechanical activity. In our case,
the recorded electromyographic signals can be modeled by a
random process

x(t) =

n∑
i=1

Ci(t) +

n∑
i=1

Ri(t) + n(t) (1)

This equation is a composite of multiple types of signals col-
lected by the EMG sensor (activity burst, noise ...).

∑n
i=1 Ci(t)

are our target signals which are caused by the pushing actions
while

∑n
i=1Ri(t) are caused by the releasing actions. The

superscript n means the number of keystrokes performed.
Both the pushing and releasing actions follow a pattern of
short potentials which appear with the acts of fingers. At
last, n(t) is the white noise caused by multiple factors like
environmental conditions or thermal noise, and it is well
known as a stationary Gaussian process.

Two specificities make the signal difficult to analyze. First,
the impedance on human surface makes the EMG signal have
tail. Second, because the pushing and releasing of a finger tap
action are extremely close to each other which is about 100
milliseconds according to [15], the signal collected by EMG
sensor is hard to distinguish. Nevertheless, our objective is
to construct an algorithm which is capable of continuously
detecting the exact timestamps of the pushing motions and to
accurately classify the actions. The system overview of how
we implement finger taps classification is as Fig. 2.

C. Input Event Detection Subsystem

In order to extract the exact timestamps of finger taps,
we first construct an input event detection subsystem. In

the subsystem, we first calculate the dynamic cumulative
sum (DCS) of the collected EMG signals which includes
technology from digital signal processing (DSP) and statistics.
After that, through analyzing the DCS of the EMG signal,
we can obtain the timestamp of each target action. The key
insight is that, the DCS will reach maximum during the
motion proved in [16]. So the each turning point of DCS
represents one action. Besides, the signal noise ratio (SNR)
of different EMG channels for movements of different fingers
varies. Thus, we also invent a change point fusion algorithm
here to improve the detection performance. What the change
point fusion algorithm does is to merge events which are close
to each other in different EMG channels.

1) DCS: To take advantage of DCS, we first need to make
sure our EMG signals follow Gaussian distribution. We will
show that in the following part of this section. DCS is based
on the the local dynamic cumulative sum around the point
of change tm. Basically, DCS calculate the local cumulative
sum of the likelihood ratios between the segments before and
after time point tm. Let us assume the two segments are
S
(tm)
b (before tm) and S(tm)

a (after tm) and the width of these
two segments is W . Stmb : xi;i=tm−W,...,tm−1

follows a pdf
fθb(xi) and Stma : xi;i=tm+1,...,tm+W

follows a pdf fθa(xi).
The parameters θ̂b and θ̂a are estimated using S(tm)

b and S(tm)
a .

The DCS is defined as the sum of the logarithm of likelihood
ratios from the beginning of the signal to the time tm:

DCS(tm)(S(tm)
a , S

(tm)
b ) =

tm∑
i=1

Ln
fθ̂a

(tm)(xi)

fθ̂b
(tm)(xi)

(2)

where, the θ can be estimated by the variance of each
segments.

We further adopt wavelet transform (WT) [17] to launch
multiscale decomposition of the two local segments of the
EMG signal to improve the movement detection accuracy.
WT is applied to both of the before and after segments and
these multiscale representations combine variance information
and frequency components. The choice of motherlet is a
crucial point when adopting WT. In [18], they conclude
the best wavelet to keep for human movement EMG signal
case is the second-order Coiflet associated with the first five
decomposition scales obtained by Shannon entropy criterion.
The results of our experiment reinforce their conclusion.

During the development of input event detection subsystem,
the assumption we have made is that the WT decompositions
of EMG signals are multidimensional Gaussian. Fig. 3 presents
an example of the histograms of randomly selected 600-sample
and its WT decomposition at five scales. The experiment
shows that our case subjects to the assumption. We can
observe from Fig. 3 that the signals can be assumed to
adequately follow Gaussian distributions. Similar distributions
are obtained from other segments also.

Fig. 4 is the figure for all eight channels for the input of
four finger taps with ring finger, and we can find that some
channels perform better than others. We can also see from Fig.
4, the channel 1 and channel 8 which are next to each other
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perform best in this case. That is because the muscle used to
do the finger tap with ring finger majorally sits near that part
of the forearm.

Fig. 4: DCS of all eight EMG channels.

2) Algorithms: The two algorithms to find the correct
movement timestamp are described in this section. The first
algorithm is the movement detection algorithm which is
developed to calculate the DCS and to detect the pushing
movements in the EMG signals. In the movement detection
algorithm, we set up threshold T to get rid of the releasing
movements. The value of T is set to 350 empirically. Then we
redirect the output timestamps to the second algorithm, change
point fusion algorithm. The reason why we need to fuse
points of change is that no channel alone can detect all finger
movements. As in Fig. 4, the movement of different fingers
correlates to different portion of forearm muscle. Empirically,
we adopt two distinct channels and the threshold x in the

change point fusion algorithm is set to 20 which is 100
milliseconds in time scale.

Algorithm 1: movement detection algorithm
1: At each sample, the DCS is calculated according to (3) using the two

segments Stm
b : xi;i=tm−W,...,tm−1

and Stm
a : xi;i=tm+1,...,tm+W

2: if The DCS has a turning point at that sample which indicates that it
may be a finger pushing movement or a finger releasing movement then

3: if There is a releasing movement before then
4: This is a pushing movement, record the timestamp
5: Move to the next sample
6: else
7: if The difference between this movement and the former pushing

movement exceeds a threshold T then
8: This is a releasing movement
9: Move to the next sample

10: else
11: This is a pushing movement, record the timestamp
12: Move to the next sample
13: end if
14: end if
15: else
16: Move to the next sample
17: end if
18: Output the timestamps recorded

Algorithm 2: change point fusion algorithm
1: Get the recorded timestamps from the output of movement detection

algorithm for selected channels and sort them into list L1 ascendingly.
2: Generate an empty list L2
3: Start from the first element lm in L1 and do the following.
4: if Any timestamp from other selected channels are close to lm within

threshold x then
5: Add lm into list L2
6: Delete timestamps close to lm within threshold x in list L1
7: Delete lm in list L1
8: Go to the next element in list L1
9: else

10: Go to the next element in list L1
11: end if
12: Output the list L2

D. Finger Movement Classification Subsystem

After the input event detection subsystem, we now have
the timestamp for each finger action. Here we set up a
window for the EMG signal at each timestamp. According to
experiments, the performance of classification performs best
when the size of the sliding windows is 45 samples which is
225 milliseconds. Besides, we add offset to the timestamp so
that the sliding window can include the signal for the whole
movement. The whole process for this section will include two
parts, feature extraction and classification.

1) Feature extraction: We extract Hudgins feature set [19]
from each motion. The Hudgin’s time-domain features are
comprised of five different features for a given classification
window. Here we divide the classification window into five
equally-divided segments as in Fig. 5 and each of the segments
will have five features. So there will be a total of 30 features
per channel (including the undivided classification window).
These features include mean absolute value (MAV), difference
MAV, zero crossing, slope sign changes and waveform length.
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2) Classification: We have implemented the classifier with
supervised learning technique. We ask people to perform
finger taps as needed to gather labeled samples. We further
take advantage of the labeled samples to do a supervised
learning using support vector machine (SVM) [20] classifier.
The trained classifier will give us which finger the sample is
related to when it is given the EMG signal for a finger tap
action.

V. EXPERIMENTS AND RESULTS

Ideally, the experiment should be conducted to verify not
only the input accuracy of Myo device, but also the usability of
the interfaces after randomization. However, augmented reality
headsets are not yet available. For our evaluation in this work,
we focus primarily on how well simple wearable sensors are
in capturing finger movements as input for authentication.

We recruit eight volunteers to conduct the experiment. In
the experiment, we ask the volunteers to perform finger taps
for each fingers except thumb for twenty times for training
the SVM classifier, and another twenty times for testing.
Meanwhile, we employ Myo to record the EMG signals on
both forearms of the volunteers. All of the eight participants
are between twenty and forty years old, including three women
and five men.

To evaluate the performance of finger movement classifier,
we define finger detection accuracy as the possibility of correct
classification. The ground truth of the finger taps is recorded
by us during the experiments.

We evaluate the performance of our proposed system ac-
cording to finger detection accuracy. What worth mentioning
here is that we adopt the movement detection algorithm to
extract the timestamps and the algorithm fully detected all the
movements. On the order hand, there is one SVM classifier
for each volunteer trained by their own labeled samples. The
finger detection accuracy for each volunteer is shown in Fig.
6.

As shown in Fig. 6, we can observe that the average
accuracy is eighty-six percent. Through the experiment, we

Fig. 6: Finger detection accuracy

can also observe that the classifiers for volunteer from three
to five have a better performance. After reviewing the video
record of the experiments, we find out that the people who
are using clips, an accessory of Myo, to tighten Myo tend
to have a higher accuracy which is almost nighty percent.
This is becuase electromyogram signals can be better captured
with good skin contact. On the other hand, despite loose
contact with the skin, the finger identification accuracy is still
acceptable with the lowest at 80%.

According to the result of the experiment, we can not
assume perfectly accurate finger classification. Therefore, it
is necessary to build error tolerance into the AugAuth system.
To compensate the inaccurate input error, we can view the im-
perfect classification as a noisy channel and adopt technology
from information theory. For example, error correction coding
can be appended to the user-defined pin numbers. The machine
will generate parity bits according to the pin which user has
set up initially. And the machine will ask user to remember
both the pin and the parity bits. During authentication, the
user will be instructed to input both the pin and the parity
bit. As long as the number of misclassified inputs does not
exceed a specific percentage, the user will be authenticated.
However, this scheme may face usability issue because the
user is required to remember a small number of random parity
bits. Another alternative is to let the system authenticate the
user as long as a percentage of entered pin numbers matches.
For example, let us assume the pin has ten digits, and the pin
detected by the system can have three mistakes at most. Then
through simple mathematic calculation, the possibility of false
positive is 98.72%. Although this will reduce the search space
for brute force attack, from the usability aspect, it doesn’t have
the drawback of the error correction code. Nevertheless, the
problem of inaccurate input originates from the commodity
wearable device, due to imperfect of sensors on Myo. The
concept of AugAuth does not limit the use of input device to
only Myo. With the development of technology, it is possible
to provide AugAuth with perfect input accuracy.



VI. RELATED WORK

Researchers have explored and improved various methods
to authenticate users for many years. Typical authentication
methods consists of three main categories: (1) Token based,
e.g., a security token generator (2) Biometric based, e.g.,
fingerprints, and (3) Knowledge based, e.g., passwords. Al-
though biometric methods provide a high level of security,
they requires costly hardware. On the other hand, security
token is troublesome to use and traditional knowledge based
methods suffers shoulder surfing attacks. In lieu of an alphanu-
meric password, researchers have examined the feasibility
of other authentication schemes [21]. Recently, research has
been launched on authentication for google glass [22], [23],
[24]. And this paper further explores the path and provides a
shoulder-surfing-proof and easy-to-use scheme.

Processing of EMG signals has also received significant
attentions due to its medical applications [25], [26], [27].
However, the current simple threshold methods and simple
energy comparison [25], [26], [27] are not suitable for cases
where signals appear dynamic and noisy. We address this
problem by building up input event detection subsystem based
on DCS.

VII. CONCLUSION

In this work, we present AugAuth, a shoulder-surfing re-
sistant gesture authentication for augmented reality, which is
based on the observation that display in augmented reality is
only shown to the user. By randomizing the authentication
interface in the display, coupling with fine grained finger
movement detection using COTS armband, AugAuth can
provide user the ability to authenticate themselves securely
even under the observation of attackers. We addresses sev-
eral unique challenges in using the EMG signal from Myo
to capture finger movement of user. More specifically, we
invent a new movement detection algorithm based on DCS to
reliably detect movement events of fingers. Furthermore, we
also propose and implement the finger classification process.
Through experiment with a group of volunteer, we show the
feasibility of AugAuth.
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