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Per-Node Based Optimal Power Control for
Multi-Hop Cognitive Radio Networks
Yi Shi, Member, IEEE, Y. Thomas Hou, Senior Member, IEEE, and Huaibei Zhou

Abstract—Cognitive radio network (CRN) is a promising
approach to improve spectrum efficiency for wireless networking.
This paper investigates how to perform optimal power control
on each node (or per-node based power control) in the network
so as to optimize network performance. Per-node based power
control is a difficult problem due to its large design space
(i.e., interaction among the powers on different nodes in the
network) and the coupling relationship between power control
and upper layers (scheduling and routing). In this paper, we
develop a formal mathematical model for joint power control,
scheduling, and routing. We formulate a cross-layer optimization
problem encompassing these three layers and develop a unified
solution procedure based on branch-and-bound framework and
convex hull relaxation. Using numerical results, we demonstrate
the efficacy of the solution procedure and offer insights on the
behavior of per-node based power control.

Index Terms—Cognitive radio network (CRN), multi-hop net-
working, per-node based power control, interference modeling,
cross-layer optimization.

I. INTRODUCTION

COGNITIVE radio (CR) is a revolution in radio technol-
ogy that is enabled by recent advances in RF design,

signal processing, and communications software [18]. The
capability of CR has been recognized by the military and
commercial sector and is now under intensive research and
development by the DoD’s Joint Tactical Radio System (JTRS)
program [10] and wireless industry [19]. Since transmitted
waveform is defined by software, a CR is capable of re-
configuring RF (on the fly) and switching to newly-selected
frequency bands. From networking perspective, the emergence
of CR offers new challenges in algorithm and protocol design.

It is important to realize that a CR is vastly more powerful
and flexible than existing multi-channel multi-radio (MC-MR)
technology (see e.g., [1], [6], [11], [12], [17] and reference
therein). Note that MC-MR remains hardware-based radio
technology: each radio can only operate on a single channel
at a time and the number of concurrent channels that can be
used at a wireless node is limited by the number of radio
interfaces. In addition, an MC-MR wireless network typically
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works on a set of pre-assigned channels and is not able to
sense available spectrum. In contract, each node in a CRN
is able to perform spectrum sensing and work on a different
set of available frequency bands. These important differences
warrant that algorithm design for a CRN is more complex and
interesting.

A fundamental problem for a wireless network is power
control. In a multi-hop wireless network, power control is
challenging since it directly affects upper layers scheduling
and routing. When each node is allowed to perform power
control (which we call per-node based power control), the
problem becomes even more difficult due to its large opti-
mization space. Due to such difficulty, some previous work,
e.g., [2], [12], considered synchronized power control, where
transmission power at each node in the network is adjustable
but is synchronized to be identical. Needless to say, such
synchronization in power control cannot offer optimal network
performance.

Recognizing the benefits of per-node based power control,
there have been active research efforts in recent years. But per-
node based power control is an extremely difficult problem as
it is tightly coupled with scheduling and routing. Due to such
coupling, a joint formulation of multiple layers is necessary,
which inevitably lead to a very complex problem. Although
there has been some success in the context of asymptotic
scaling laws (e.g., [9], [12]), theoretically optimal results for
a given finite-sized network remain unsatisfactory and many
issues are still open. For example, in [3], Bhatia and Kodialam
optimized power control and routing, but assumed some fre-
quency hopping mechanism is in place for scheduling, which
helps simplify joint consideration of scheduling. In [7], Elbatt
and Ephremides optimized power control and scheduling, but
assumed routing was given a priori. Although [4], [5] aimed
to investigate joint power control, scheduling, and routing
problem, both solutions followed a “de-coupled” approach,
where the final solution was obtained by determining algo-
rithm/mechanism for one layer at a time (instead of solving
a unified problem, as we shall do in this paper). Due to such
de-coupling approach in solution procedure, the final solution
is unlikely to be cross-layer globally optimal.

In this paper, we study the per-node based power control
problem for a multi-hop CRN. The benefits of per-node based
power control for CRNs were discussed in [22]. This problem
is both challenging and interesting as it inherits not only all
the difficulties associates with per-node based power control,
but also all the unique characteristics associated with a CRN.
We develop a formal mathematical model for a joint per-node
based power control, scheduling, and flow routing problem.

1536-1276/09$25.00 c⃝ 2009 IEEE
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TABLE I
NOTATION.

Symbol Definition
𝒩 The set of nodes in the network
ℳ𝑖 The set of available bands at node 𝑖 ∈ 𝒩
ℳ =

∑
𝑖∈𝒩 ℳ𝑖, the set of bands in the network

ℳ𝑖𝑗 = ℳ𝑖
∩ℳ𝑗 , the set of available bands at link 𝑖→ 𝑗

𝑊 Bandwidth of each frequency band
ℒ The set of user communication sessions

𝑠(𝑙), 𝑑(𝑙) Source and destination nodes of session 𝑙 ∈ ℒ
𝑟(𝑙) Rate requirement of session 𝑙
𝑃 The maximum transmission power
𝑛 Path loss index
𝜂 Ambient Gaussian noise density
𝑑𝑖𝑗 Distance between nodes 𝑖 and 𝑗
𝑔𝑖𝑗 Path attenuation loss from node 𝑖 to node 𝑗
𝛼 The threshold of minimum receiving power
𝛽 The threshold of maximum interference power

𝑅𝑇 (𝑝), 𝑅𝐼 (𝑝) The transmission and interference ranges under
transmission power 𝑝

𝑅𝑚𝑎𝑥
𝑇 , 𝑅𝑚𝑎𝑥

𝐼 The maximum transmission and interference ranges
under full transmission power 𝑃

𝒯 𝑚
𝑖 The set of nodes to which node 𝑖 can transmit on

band 𝑚 (under full transmission power 𝑃 )
𝒯𝑖 =

∪
𝑚∈ℳ𝑖

𝒯 𝑚
𝑖 , the set of nodes to which node 𝑖

can transmit (under full transmission power 𝑃 )
ℐ𝑚
𝑗 The set of nodes that can interfere node 𝑗 on band

𝑚 (under full transmission power 𝑃 )
𝑥𝑚𝑖𝑗 Binary indicator to mark whether or not band 𝑚 is

used by link 𝑖 → 𝑗
𝑝𝑚𝑖𝑗 Transmission power at node 𝑖 to node 𝑗 on band 𝑚
𝑐𝑚𝑖𝑗 Link capacity of link 𝑖 → 𝑗 under 𝑝𝑚𝑖𝑗
𝑓𝑖𝑗(𝑙) Data rate that is attributed to session 𝑙 on link 𝑖→ 𝑗
𝑄 Number of transmission power levels
𝑞𝑚𝑖𝑗 Transmission power level from node 𝑖 to node 𝑗 on

band 𝑚
x The vector of variables 𝑥𝑚𝑖𝑗 , 𝑖∈𝒩 ,𝑚∈ℳ𝑖, 𝑗∈𝒯 𝑚

𝑖
q The vector of variables 𝑞𝑚𝑖𝑗 , 𝑖∈𝒩 ,𝑚∈ℳ𝑖, 𝑗∈𝒯 𝑚

𝑖
f The vector of variables 𝑓𝑖𝑗(𝑙), 𝑙∈ℒ, 𝑖∈𝒩 , 𝑖 ∕=𝑑(𝑙),

𝑗 ∈ 𝒯𝑖, 𝑗 ∕= 𝑠(𝑙)
Notation for branch-and-bound procedure

𝜀 The desired accuracy in the final solution
Ω𝑧 The set of all possible values of (x,q) in problem 𝑧

𝐿𝐵𝑧 , 𝑈𝐵𝑧 The lower and upper bounds of problem 𝑧
𝜓𝑧 The solution obtained by local search for problem 𝑧

𝐿𝐵, 𝑈𝐵 The lower and upper bounds for the original problem
𝜓𝜀 The (1 − 𝜀) optimal solution

This joint formulation leads to a mixed integer nonlinear
programming (MINLP) problem. Subsequently, we develop
a unified (instead of de-coupled) solution procedure based
on branch-and-bound framework and convex hull relaxation.
This solution procedure guarantees a (1−𝜀) optimal solution,
where 𝜀 is a small pre-specified error tolerance parameter.
By applying the solution procedure on a random network, we
validate this solution procedure and offer additional insights
on the behavior of per-node based power control. The results
in this paper close some long stand open issues associated with
network optimization with per-node based power control.

The remainder of this paper is organized as follows. In
Section II, we develop a unified mathematical model for per-
node based power control, scheduling, and flow routing. In
Section III, we formulate the cross-layer optimization prob-
lem. Section IV describes a solution procedure to this cross-
layer optimization problem. In Section V, we use numerical
results to validate the efficacy of the solution procedure.
Section VI concludes this paper.

II. MATHEMATICAL MODELING

We consider a multi-hop CRN consisting of a set of 𝒩
nodes. The set of available frequency bands at each node
depends on its location and may not be the same. For example,
at node 𝑖, its available frequency bands may consist of bands
I, III, and V while at a different node 𝑗, its available frequency
bands may consist of bands I, IV, and VI, and so forth. More
formally, denote ℳ𝑖 the set of available frequency bands
at node 𝑖. For simplicity, we assume the bandwidth of each
frequency band is 𝑊 (the case of heterogeneous bandwidth
for each frequency band can be easily extended). Denote ℳ
the set of all frequency bands present in the network, i.e.,
ℳ =

∪
𝑖∈𝒩 ℳ𝑖. Table I lists all notation in this paper.

A. Necessary and Sufficient Condition for Successful Trans-
mission

Scheduling for transmission at each node in the network
can be done either in time domain or frequency domain
and these two scheduling schemes are equivalent in terms of
achievable rate region. In this paper, we consider scheduling
in the frequency domain in the form of frequency bands. Note
that in this context, we can always divide bands into smaller
sub-bands to ensure there are enough bands/sub-bands for
scheduling.

Suppose that band 𝑚 is available at both node 𝑖 and node
𝑗, i.e., 𝑚 ∈ ℳ𝑖𝑗 , where ℳ𝑖𝑗 = ℳ𝑖

∩ℳ𝑗 . Denote 𝑝𝑚𝑖𝑗 the
transmission power from node 𝑖 to node 𝑗 in frequency band
𝑚. For transmission from node 𝑖 to node 𝑗, a simple model
for path attenuation loss 𝑔𝑖𝑗 is

𝑔𝑖𝑗 = 𝑑
−𝑛
𝑖𝑗 , (1)

where 𝑑𝑖𝑗 is the physical distance between nodes 𝑖 and 𝑗
and 𝑛 is the path loss index. In this context, we assume a
data transmission from node 𝑖 to node 𝑗 is successful only if
the received power at node 𝑗 exceeds a threshold 𝛼. Denote
the transmission range of at node 𝑖 under 𝑝𝑚𝑖𝑗 as 𝑅𝑇 (𝑝

𝑚
𝑖𝑗 ).

Then based on 𝑔𝑖𝑗 ⋅ 𝑝𝑚𝑖𝑗 ≥ 𝛼 and (1), we can calculate the
transmission range of this node as follows:

𝑅𝑇 (𝑝
𝑚
𝑖𝑗 ) =

(
𝑝𝑚𝑖𝑗
𝛼

)1/𝑛

. (2)

Since the receiving node 𝑗 must be physically within the
transmission range of node 𝑖, we have

(C-1) 𝑑𝑖𝑗 ≤
(
𝑝𝑚𝑖𝑗
𝛼

)1/𝑛

.

Similarly, we assume that an interference is non-negligible
only if it exceeds a threshold, say 𝛽 at a receiver. Denote
the interference range of node 𝑘 (𝑘 ∈ 𝒩 , 𝑘 ∕= 𝑖) under
𝑝𝑚𝑘ℎ as 𝑅𝐼(𝑝

𝑚
𝑘ℎ), where ℎ is the intended receiving node

of transmitting node 𝑘. Then following the same taken as
the derivation for the transmission range, we can obtain the

interference range of node 𝑘 as 𝑅𝐼(𝑝
𝑚
𝑘ℎ) =

(
𝑝𝑚
𝑘ℎ

𝛽

)1/𝑛

. Since
the receiving node 𝑗 must not fall in the interference range
of any other node 𝑘 that is transmitting in the same band, we
have

(C-2) 𝑑𝑗𝑘 ≥
(
𝑝𝑚𝑘ℎ
𝛽

)1/𝑛

.
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(a) No power control case.
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(b) Per-node based power control case.

Fig. 1. A 3-link network.

As an example, Fig. 1(a) shows a network with three links
(1 → 2, 3 → 4, and 5 → 6). For each transmitting node
(1, 3, and 5), the inner circle (dashed) represents transmission
range and the outer circle (solid) represents interference range.
Clearly, each receiving node falls in the transmission range of
its respective transmitting node. Further, we can see that both
receiving nodes 2 and 6 fall in the interference range of node
3. Thus, when link 3 → 4 is using a frequency band 𝑚 for
transmission, link 1 → 2 and link 5 → 6 should not use the
same band. It should also be noted that when link 3 → 4 is not
using a frequency band 𝑚, both link 1 → 2 and link 5 → 6
may use band 𝑚. This is because that receiving node 2 does
not fall in node 5’s interference range and receiving node 6
does not fall in node 1’s interference range. Now consider
that each node can adjust its transmission power. In this
setting, nodes 1, 3, and 5 can reduce their transmission powers
while still maintaining data transmission to the corresponding
receiving nodes (see Fig. 1(b)). Then receiving nodes 2 and
6 are no longer in node 3’s interference range. As a result of
this, both transmitting nodes 1 and 5 can transmit in the same
frequency band 𝑚 simultaneously.

B. Per-Node Based Power Control and Scheduling

In this section, we formalize a mathematical model for the
joint relationship between per-node based power control and
scheduling. Suppose that band 𝑚 is available at both node 𝑖

and node 𝑗. Denote

𝑥𝑚𝑖𝑗 =

{
1 If node 𝑖 transmits data to node 𝑗 on band 𝑚,
0 otherwise.

As mentioned earlier, we consider scheduling in the frequency
domain and thus once a band 𝑚 ∈ ℳ𝑖 is used by node 𝑖 for
transmission to node 𝑗, this band cannot be used again by
node 𝑖 to transmit to a different node. That is,

(C-3)
∑

𝑗∈𝒯 𝑚
𝑖

𝑥𝑚𝑖𝑗 ≤ 1 ,

where 𝒯 𝑚
𝑖 is the set of nodes to which node 𝑖 can transmit

on band 𝑚 under full power 𝑃 .
Denote 𝑅𝑚𝑎𝑥

𝑇 the maximum transmission range of a node
when it transmits at full power 𝑃 . Then based on (2), we have
𝑅𝑚𝑎𝑥

𝑇 = 𝑅𝑇 (𝑃 ) =
(
𝑃
𝛼

)1/𝑛
. Thus, we have 𝛼 = 𝑃

(𝑅𝑚𝑎𝑥
𝑇 )𝑛 .

Then for a node transmitting at a power 𝑝 ∈ [0, 𝑃 ], its
transmission range is

𝑅𝑇 (𝑝) =
( 𝑝
𝛼

)1/𝑛

=

[
𝑝(𝑅𝑚𝑎𝑥

𝑇 )𝑛

𝑃

]1/𝑛
=
( 𝑝
𝑃

)1/𝑛

𝑅𝑚𝑎𝑥
𝑇 . (3)

Similarly, denote 𝑅𝑚𝑎𝑥
𝐼 the maximum interference range of

a node when it transmits at full power 𝑃 . Then following

the same token, we have 𝑅𝑚𝑎𝑥
𝐼 = 𝑅𝐼(𝑃 ) =

(
𝑃
𝛽

)1/𝑛

and

𝛽 = 𝑃
(𝑅𝑚𝑎𝑥

𝐼 )𝑛 . For a node transmitting at a power 𝑝 ∈ [0, 𝑃 ],
its interference range is

𝑅𝐼(𝑝) =
( 𝑝
𝑃

)1/𝑛

𝑅𝑚𝑎𝑥
𝐼 . (4)

Recall that 𝒯 𝑚
𝑖 denotes the set of nodes to which node 𝑖

can transmit on band 𝑚 under full power 𝑃 . More formally,
we have 𝒯 𝑚

𝑖 = {𝑗 : 𝑑𝑖𝑗 ≤ 𝑅𝑚𝑎𝑥
𝑇 , 𝑗 ∕= 𝑖,𝑚 ∈ ℳ𝑗}. Similarly,

denote ℐ𝑚
𝑗 the set of nodes that can make interference on

node 𝑗 on band 𝑚 under full power 𝑃 , i.e., ℐ𝑚
𝑗 = {𝑘 : 𝑑𝑗𝑘 ≤

𝑅𝑚𝑎𝑥
𝐼 ,𝑚 ∈ ℳ𝑘}. Note that the definitions of 𝒯 𝑚

𝑖 and ℐ𝑚
𝑗 are

both based on full transmission power 𝑃 . When power level
𝑝 is below 𝑃 , the corresponding transmission and interference
ranges will be smaller. As a result, it is necessary to keep track
of the set of nodes fall in the transmission range and the set
of nodes that can produce interference whenever transmission
power changes at a node.

Recall the two constraints (C-1) and (C-2) for successful
transmission from node 𝑖 to node 𝑗 and (3) and (4), respec-
tively, we have

𝑑𝑖𝑗 ≤ 𝑅𝑇 (𝑝
𝑚
𝑖𝑗 ) =

(
𝑝𝑚𝑖𝑗
𝑃

)1/𝑛

𝑅𝑚𝑎𝑥
𝑇 ,

𝑑𝑗𝑘 ≥ 𝑅𝐼(𝑝
𝑚
𝑘ℎ) =

(
𝑝𝑚𝑘ℎ
𝑃

)1/𝑛

𝑅𝑚𝑎𝑥
𝐼 (𝑘 ∈ ℐ𝑚

𝑗 , 𝑘 ∕= 𝑖, ℎ ∈ 𝒯 𝑚
𝑘 ) .

Based the above two constraints, we have the following
requirements for the transmission link 𝑖 → 𝑗 and interfering
link 𝑘→ ℎ:

𝑝𝑚𝑖𝑗

{
∈
[(

𝑑𝑖𝑗

𝑅𝑚𝑎𝑥
𝑇

)𝑛

𝑃, 𝑃
]

If 𝑥𝑚𝑖𝑗 = 1,

= 0 If 𝑥𝑚𝑖𝑗 = 0.

𝑝𝑚𝑘ℎ≤
{ (

𝑑𝑘𝑗

𝑅𝑚𝑎𝑥
𝐼

)𝑛

𝑃 If 𝑥𝑚𝑖𝑗 =1,

𝑃 If 𝑥𝑚𝑖𝑗 =0.
(𝑘∈ℐ𝑚

𝑗 , 𝑘 ∕= 𝑖, ℎ∈𝒯 𝑚
𝑘 ) .
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Mathematically, these requirements can be re-written as

(C-1’) 𝑝𝑚𝑖𝑗 ∈
[(

𝑑𝑖𝑗
𝑅𝑚𝑎𝑥

𝑇

)𝑛

𝑃𝑥𝑚𝑖𝑗 , 𝑃𝑥
𝑚
𝑖𝑗

]
,

(C-2’) 𝑝𝑚𝑘ℎ ≤ 𝑃 −
[
1−

(
𝑑𝑘𝑗
𝑅𝑚𝑎𝑥

𝐼

)𝑛]
𝑃𝑥𝑚𝑖𝑗

(𝑘 ∈ ℐ𝑚
𝑗 , 𝑘 ∕= 𝑖, ℎ ∈ 𝒯 𝑚

𝑘 ) .

In addition, for successful scheduling in frequency domain,
the following two constraints must also hold:

(C-4) For a band 𝑚 ∈ ℳ𝑗 that is available at node 𝑗,
this band cannot be used for both transmission and
receiving. That is, if band 𝑚 is used at node 𝑗 for
transmission (or receiving), then it cannot be used
for receiving (or transmission).

(C-5) Similar to constraint (C-3) on transmission, node 𝑗
cannot use the same band 𝑚 ∈ ℳ𝑗 to receive from
two different nodes.

Note that (C-4) can be viewed as “self-interference” avoid-
ance constraint where at the same node 𝑗, its transmission to
another node ℎ on band 𝑚 interferes its reception from node
𝑖 on the same band. It turns out that the above two constraints
are mathematically embedded in (C-1’) and (C-2’). That is,
once (C-1’) and (C-2’) are satisfied, then both constraints (C-
4) and (C-5) are also satisfied. This result is formally stated
in the following lemma.

Lemma 1: If transmission powers on every transmission
link and interference link satisfy (C-1’) and (C-2’) in the
network, then (C-4) and (C-5) are also satisfied.
Proof. We first prove that (C-1’) and (C-2’) lead to (C-4).
To do this, we let 𝑘 = 𝑗 in (C-2’). Then (C-2’) degenerates
into 𝑝𝑚𝑗ℎ ≤ 𝑃 − 𝑃𝑥𝑚𝑖𝑗 since 𝑑𝑗𝑗 = 0.

∙ Suppose node 𝑗 is receiving from node 𝑖 on band 𝑚,
i.e., 𝑥𝑚𝑖𝑗 = 1, then 𝑝𝑚𝑗ℎ ≤ 𝑃 − 𝑃𝑥𝑚𝑖𝑗 = 0. Since 𝑝𝑚𝑗ℎ ≥(

𝑑𝑗ℎ

𝑅𝑚𝑎𝑥
𝑇

)𝑛

𝑃𝑥𝑚𝑗ℎ from (C-1’), we have that 𝑥𝑚𝑗ℎ must be
0. That is, if node 𝑗 is receiving from node 𝑖 on band
𝑚, then node 𝑗 cannot transmit to a node ℎ in the same
band.

∙ Now suppose node 𝑗 is transmitting to node ℎ on band
𝑚, i.e., 𝑥𝑚𝑗ℎ = 1. We will show that this will lead to
𝑥𝑚𝑖𝑗 = 0. This can be proved by contradiction. That is, if
𝑥𝑚𝑖𝑗 = 1, then we have just proved in the above paragraph
that 𝑥𝑚𝑗ℎ = 0. But this contradicts our initial assumption
that 𝑥𝑚𝑗ℎ = 1. Therefore, 𝑥𝑚𝑖𝑗 must be 0. That is, if node 𝑗
is transmitting to node ℎ on band 𝑚, then node 𝑗 cannot
use the same band for receiving from a node 𝑖.

Combining the above two results, we have shown that (C-4)
holds.

We now prove that (C-1’) and (C-2’) also lead to (C-
5). Again the proof is based on contradiction. Suppose that
(C-5) does not hold. Then node 𝑗 can receive from two
different nodes 𝑖 and 𝑘 on the same band 𝑚, i.e., 𝑥𝑚𝑖𝑗 = 1
and 𝑥𝑚𝑘𝑗 = 1. Note that link 𝑘 → 𝑗 can be viewed as an
interfering link to link 𝑖 → 𝑗. This corresponds to letting
ℎ = 𝑗 in (C-2’). Then from (C-2’), since 𝑥𝑚𝑖𝑗 = 1, we

have 𝑝𝑚𝑘𝑗 ≤
(

𝑑𝑘𝑗

𝑅𝑚𝑎𝑥
𝐼

)𝑛

𝑃 . On the other hand, by (C-1’), we

have 𝑝𝑚𝑘𝑗 ≥
(

𝑑𝑘𝑗

𝑅𝑚𝑎𝑥
𝑇

)𝑛

𝑃 . However, the above two inequalities

cannot hold simultaneously (contradiction) since we have
𝑅𝑚𝑎𝑥

𝐼 > 𝑅𝑚𝑎𝑥
𝑇 . Thus, the initial assumption that (C-5) does

not hold is incorrect and the proof is complete. □
The significance of Lemma 1 is that since (C-4) and (C-5)

are embedded in (C-1’) and (C-2’), it is sufficient to consider
constraints (C-1’), (C-2’), and (C-3) for scheduling and power
control.

C. Flow Routing and Link Capacity Constraints

In this study, we assume there is a set of ℒ active user
communication (unicast) sessions in the CRN. Denote 𝑠(𝑙)
and 𝑑(𝑙) the source and destination nodes of session 𝑙 ∈ ℒ and
𝑟(𝑙) the rate requirement (in b/s) of session 𝑙. We consider the
most general case of multi-path routing, i.e., we allow flow
splitting between a source node and its destination node.

Mathematically, this can be easily modeled based on flow
balance at each node. Denote 𝑓𝑖𝑗(𝑙) the data rate on link (𝑖, 𝑗)
that is attributed to session 𝑙, where 𝑖 ∈ 𝒩 , 𝑖 ∕= 𝑑(𝑙), 𝑗 ∈ 𝒯𝑖 =∪

𝑚∈ℳ𝑖
𝒯 𝑚
𝑖 , 𝑗 ∕= 𝑠(𝑙).1 If node 𝑖 is the source node of session

𝑙, i.e., 𝑖 = 𝑠(𝑙), then∑
𝑗∈𝒯𝑖

𝑓𝑖𝑗(𝑙) = 𝑟(𝑙) . (5)

If node 𝑖 is an intermediate relay node for session 𝑙, i.e., 𝑖 ∕=
𝑠(𝑙) and 𝑖 ∕= 𝑑(𝑙), then

𝑗 ∕=𝑠(𝑙)∑
𝑗∈𝒯𝑖

𝑓𝑖𝑗(𝑙) =

𝑘 ∕=𝑑(𝑙)∑
𝑘∈𝒯𝑖

𝑓𝑘𝑖(𝑙) . (6)

If node 𝑖 is the destination node of session 𝑙, i.e., 𝑖 = 𝑑(𝑙),
then ∑

𝑘∈𝒯𝑖

𝑓𝑘𝑖(𝑙) = 𝑟(𝑙) . (7)

It can be easily verified that once (5) and (6) are satisfied, (7)
must also be satisfied. As a result, it is sufficient to have (5)
and (6) in the formulation.

In addition to the above flow balance equations at each node
𝑖 ∈ 𝒩 for session 𝑙 ∈ ℒ, the aggregated flow rates on each
radio link cannot exceed this link’s capacity. Under 𝑝𝑚𝑖𝑗 , we
have
𝑠(𝑙) ∕=𝑗,𝑑(𝑙) ∕=𝑖∑

𝑙∈ℒ
𝑓𝑖𝑗(𝑙) ≤

∑
𝑚∈ℳ𝑖𝑗

𝑐𝑚𝑖𝑗

=
∑

𝑚∈ℳ𝑖𝑗

𝑊 log2

(
1 +

𝑔𝑖𝑗
𝜂𝑊

𝑝𝑚𝑖𝑗

)
, (8)

where 𝜂 is the ambient Gaussian noise density.

III. PROBLEM FORMULATION

Objective Function. In this paper, we consider how to
minimize network resource usage to support a set of user
sessions. Network resource usage can be defined in a number
of ways, which typically includes bandwidth usage. However,

1For 𝑓𝑖𝑗(𝑙), we set 𝑖 ∕= 𝑑(𝑙) to ensure that the destination node 𝑑(𝑙) will
be a sink node and not transmit data to a relay node 𝑖. We also set 𝑗 ∕= 𝑠(𝑙)
to ensure that a relay node 𝑖 will not transmit data back to the source node
𝑠(𝑙).
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as pointed out in [13], bandwidth usage can only characterize
resource usage in spectrum, but cannot characterize the impact
(i.e., interference) of radio transmission in space. For example,
a node transmitting with the same channel bandwidth but
with different power levels will produce different interference
“footprint” areas. To account for both the spectrum usage
and the impact of a CR in space dimension, the so-called
bandwidth-footprint-product (BFP) metric was introduced in
[13] and will also be adopted in this paper. Since each node
in the network will use a number of bands for transmission
and each band will have a certain footprint corresponding
to its transmission power, our objective will be to minimize
network-wide BFP, which is the sum of BFPs among all the
nodes in the network, i.e.,

min
∑

𝑖∈𝒩
∑

𝑚∈ℳ𝑖

∑
𝑗∈𝒯 𝑚

𝑖
𝑊 ⋅ 𝜋(𝑅𝐼(𝑝

𝑚
𝑖𝑗 ))

2 . (9)

In some sense, minimizing network-wide BFP can be viewed
as minimizing “weighted” version of bandwidth usage,
where the weight is the interference footprint area. Note
that (9) is equivalent to minimize 𝜋(𝑅𝑚𝑎𝑥

𝐼 )2
∑

𝑖∈𝒩
∑

𝑚∈ℳ𝑖∑
𝑗∈𝒯 𝑚

𝑖
𝑊

(
𝑝𝑚
𝑖𝑗

𝑃

)2/𝑛

. Since 𝜋(𝑅𝑚𝑎𝑥
𝐼 )2 is a constant factor,

we can remove it from the objective function. We also point
out that although BFP is used as objective function in this
paper, those traditional utility-based objective functions (e.g.
[14], [16], [21]) can also be used if needed.

Discretization of Transmission Powers. For power control,
we allow the transmission power to be adjusted between 0 and
𝑃 . In practice, the transmission power can only be tuned into
a finite number of discrete levels between 0 and 𝑃 . To model
this discrete version of power control, we introduce an integer
parameter𝑄 that represents the total number of power levels to
which a transmitter can be adjusted, i.e., 0, 1

𝑄𝑃,
2
𝑄𝑃, ⋅ ⋅ ⋅ , 𝑃 .

Denote 𝑞𝑚𝑖𝑗 ∈ {0, 1, 2, ⋅ ⋅ ⋅ , 𝑄} the integer power level for 𝑝𝑚𝑖𝑗 ,

i.e., 𝑝𝑚𝑖𝑗 =
𝑞𝑚𝑖𝑗
𝑄 𝑃 . Then (C-1’), (C-2’), and (8) can be re-written

as follows:

𝑞𝑚𝑖𝑗 ∈
[(

𝑑𝑖𝑗

𝑅𝑚𝑎𝑥
𝑇

)𝑛

𝑄𝑥𝑚𝑖𝑗 , 𝑄𝑥
𝑚
𝑖𝑗

]
, (10)

𝑞𝑚𝑘ℎ≤𝑄−
[
1−

(
𝑑𝑘𝑗

𝑅𝑚𝑎𝑥
𝐼

)𝑛]
𝑄𝑥𝑚𝑖𝑗 (𝑘∈ℐ𝑚

𝑗 , 𝑘 ∕= 𝑖, ℎ∈𝒯 𝑚
𝑘 ),(11)

∑𝑠(𝑙) ∕=𝑗,𝑑(𝑙) ∕=𝑖
𝑙∈ℒ 𝑓𝑖𝑗(𝑙) ≤

∑
𝑚∈ℳ𝑖𝑗

𝑊 log2

(
1 +

𝑔𝑖𝑗𝑃
𝜂𝑊𝑄𝑞

𝑚
𝑖𝑗

)
.

We can re-formulate (11) as follows. Note that by (C-3), there
is at most one ℎ ∈ 𝒯 𝑚

𝑘 such that 𝑥𝑚𝑘ℎ = 1. As a result, based
on (10), there is at most one 𝑞𝑚𝑘ℎ > 0 in

∑
ℎ∈𝒯 𝑚

𝑘
𝑞𝑚𝑘ℎ. Thus,

(11) can be rewritten as∑
ℎ∈𝒯 𝑚

𝑘

𝑞𝑚𝑘ℎ ≤ 𝑄−
(
1−

(
𝑑𝑘𝑗
𝑅𝑚𝑎𝑥

𝐼

)𝑛)
𝑄𝑥𝑚𝑖𝑗 (𝑘 ∈ ℐ𝑚

𝑗 , 𝑘 ∕= 𝑖).

Problem Formulation. Putting together the objective
function and all the constraints for per-node based power
control, scheduling, and flow routing, we have the following
formulation.

Min
∑

𝑖∈𝒩
∑

𝑚∈ℳ𝑖

∑
𝑗∈𝒯 𝑚

𝑖
𝑊

(
𝑞𝑚𝑖𝑗
𝑄

)2/𝑛

s.t.
∑

𝑗∈𝒯 𝑚
𝑖

𝑥𝑚
𝑖𝑗 ≤ 1 (𝑖 ∈ 𝒩 ,𝑚 ∈ ℳ𝑖)

𝑞𝑚𝑖𝑗 −
(

𝑑𝑖𝑗
𝑅𝑚𝑎𝑥

𝑇

)𝑛

𝑄𝑥𝑚
𝑖𝑗 ≥ 0 (𝑖 ∈ 𝒩 ,𝑚 ∈ ℳ𝑖, 𝑗 ∈ 𝒯 𝑚

𝑖 ) (12)

𝑞𝑚𝑖𝑗 −𝑄𝑥𝑚
𝑖𝑗 ≤ 0 (𝑖 ∈ 𝒩 ,𝑚 ∈ ℳ𝑖, 𝑗 ∈ 𝒯 𝑚

𝑖 ) (13)

∑
ℎ∈𝒯 𝑚

𝑘

𝑞𝑚𝑘ℎ +

(
1−

(
𝑑𝑘𝑗
𝑅𝑚𝑎𝑥

𝐼

)𝑛)
𝑄𝑥𝑚

𝑖𝑗 ≤ 𝑄

(𝑖∈𝒩 ,𝑚∈ℳ𝑖, 𝑗∈𝒯 𝑚
𝑖 , 𝑘∈ℐ𝑚

𝑗 , 𝑘 ∕= 𝑖) (14)
𝑠(𝑙) ∕=𝑗,𝑑(𝑙) ∕=𝑖∑

𝑙∈ℒ
𝑓𝑖𝑗(𝑙)−

∑
𝑚∈ℳ𝑖𝑗

𝑊 log2

(
1+

𝑔𝑖𝑗𝑃

𝜂𝑊𝑄
𝑞𝑚𝑖𝑗

)
≤0

(𝑖 ∈ 𝒩 , 𝑗 ∈ 𝒯𝑖)

∑
𝑗∈𝒯𝑖

𝑓𝑖𝑗(𝑙) = 𝑟(𝑙) (𝑙 ∈ ℒ, 𝑖 = 𝑠(𝑙))

𝑗 ∕=𝑠(𝑙)∑
𝑗∈𝒯𝑖

𝑓𝑖𝑗(𝑙)−
𝑘 ∕=𝑑(𝑙)∑
𝑘∈𝒯𝑖

𝑓𝑘𝑖(𝑙) = 0 (𝑙 ∈ ℒ, 𝑖 ∈ 𝒩 , 𝑖 ∕= 𝑠(𝑙), 𝑑(𝑙))

𝑥𝑚
𝑖𝑗 ∈ {0, 1}, 𝑞𝑚𝑖𝑗 ∈ {0, 1, 2, ⋅ ⋅ ⋅ , 𝑄} (𝑖 ∈ 𝒩 ,𝑚 ∈ ℳ𝑖, 𝑗 ∈ 𝒯 𝑚

𝑖 )

𝑓𝑖𝑗(𝑙) ≥ 0 (𝑙 ∈ ℒ, 𝑖 ∈ 𝒩 , 𝑖 ∕= 𝑑(𝑙), 𝑗 ∈ 𝒯𝑖, 𝑗 ∕= 𝑠(𝑙)) ,

where (12) and (13) come from (10), 𝑊, 𝑔𝑖𝑗 , 𝑅𝑚𝑎𝑥
𝑇 , 𝑅𝑚𝑎𝑥

𝐼 , 𝑃 ,
𝜂, 𝑟(𝑙), and 𝑄 are all constants and 𝑥𝑚𝑖𝑗 , 𝑞

𝑚
𝑖𝑗 , and 𝑓𝑖𝑗(𝑙) are

all optimization variables.
This optimization problem is in the form of mixed-integer

non-linear program (MINLP), which is NP-hard in general
[8]. In the next section, we develop a unified (instead of de-
coupled) solution procedure based on the branch-and-bound
framework [15] and the convex hull relaxation to solve this
problem.

IV. A SOLUTION PROCEDURE

A. Overview

Note that the difficulty of this optimization problem comes
from the integer variables 𝑥𝑚𝑖𝑗 ’s and 𝑞𝑚𝑖𝑗 ’s. Once the values of
all integer variables are determined, the values of remaining
variables 𝑓𝑖𝑗(𝑙)’s can be obtained by a linear program (LP).
Thus, the key step to solve our problem is to narrow down
the value sets and finally determine these values for integer
variables. We find that the so-called branch-and-bound frame-
work [15] is most effective in solving this problem. Under this
approach, we aim to provide a (1−𝜀) optimal solution, which
is formally defined as follows.

Definition 1: For a minimization problem, denote 𝑦∗ the
objective value of the optimal solution. A feasible solution
with objective value 𝑦 is called a (1 − 𝜀) optimal solution if
we have 𝑦∗ ≥ (1− 𝜀)𝑦.

Initially, the value set for 𝑥𝑚𝑖𝑗 ’s and 𝑞𝑚𝑖𝑗 ’s are 𝑥𝑚𝑖𝑗 ∈ {0, 1}
and 𝑞𝑚𝑖𝑗 ∈ {0, 1, 2, ⋅ ⋅ ⋅ , 𝑄}. By using some relaxation tech-
nique, branch-and-bound obtains a linear relaxation for the
original MINLP problem and its solution provides a lower
bound (𝐿𝐵) to the objective function. As we shall show
shortly, this critical step is made possible by the convex hull
relaxation for non-linear discrete terms. With the relaxation
solution as a starting point, branch-and-bound uses a local
search algorithm to find a feasible solution to the original
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problem, which provides an upper bound (𝑈𝐵) for the ob-
jective function. If the obtained lower and upper bounds are
within 𝜀 to each other, i.e., 𝐿𝐵 ≥ (1− 𝜀)𝑈𝐵, we are done.

If the relaxation errors are not small, then the upper bound
𝑈𝐵 could be far away from the lower bound 𝐿𝐵. To close
this gap, we must have a tighter linear relaxation, i.e., with
smaller relaxation errors. This could be achieved by further
narrowing down the value sets of 𝑥𝑚𝑖𝑗 ’s and 𝑞𝑚𝑖𝑗 ’s. We call
these variables as partition variables. Specifically, branch-and-
bound selects a partition variable with the largest relaxation
error and divides its value set into two sets based on its
value in the relaxation solution. For example, if a 𝑞𝑚𝑖𝑗 with a
value set {0, 1, 2, 3} is selected and its value in the relaxation
solution is 1.3, then its value set is divided into two sets {0, 1}
(the set of values no more than 1.3) and {2, 3} (the set of
values no less than 1.3). Then the original problem (denoted
as problem 1) is divided into two new problems (denoted as
problem 2 and problem 3). Again, branch-and-bound performs
relaxation and local search on these two new problems. Now
we have lower bounds 𝐿𝐵2 and 𝐿𝐵3 for problems 2 and 3,
respectively. We also have feasible solutions that provide upper
bounds 𝑈𝐵2 and 𝑈𝐵3 for problems 2 and 3, respectively.
Since the relaxations in problems 2 and 3 are both tighter
than that in problem 1, we have min{𝐿𝐵2, 𝐿𝐵3} ≥ 𝐿𝐵1

and min{𝑈𝐵2, 𝑈𝐵3} ≤ 𝑈𝐵1. For a minimization problem,
the lower bound of the original problem is updated from
𝐿𝐵 = 𝐿𝐵1 to 𝐿𝐵 = min{𝐿𝐵2, 𝐿𝐵3}. Also, the upper
bound of the original problem is updated from 𝑈𝐵 = 𝑈𝐵1

to 𝑈𝐵 = min{𝑈𝐵2, 𝑈𝐵3}, since the best feasible solution
to the original problem is the solution with a smaller 𝑈𝐵𝑖.
As a result, we now have smaller gap between 𝑈𝐵 and 𝐿𝐵.
If 𝐿𝐵 ≥ (1 − 𝜀)𝑈𝐵, we are done. Otherwise, we choose a
problem with the minimum lower bound and perform partition
for this problem.

Note that during the process for branch-and-bound, if we
find a problem 𝑧 with 𝐿𝐵𝑧 ≥ (1 − 𝜀)𝑈𝐵, then we can
conclude that this problem cannot contribute to find a (1− 𝜀)
optimal solution.2 We can thus remove this problem from list
for further consideration. Eventually, we will find 𝐿𝐵 ≥ (1−
𝜀)𝑈𝐵 and the branch-and-bound procedure terminates. It has
been shown that under very general conditions, a branch-and-
bound solution procedure always converges [20]. Moreover,
although the worst-case complexity of such a procedure is
exponential, the actual running time could be fast when all
partition variables are integers (e.g., the problem considered
in this paper).

Figure 2 shows the pseudocode of branch-and-bound frame-
work. There are several key components in this framework that
are problem specific and need to be carefully designed. These
components are described in the following sections.

2For such a problem 𝑧, there are two possible cases. Case 1: The global
optimal solution is not in problem 𝑧. In this case, the removal of problem 𝑧
will not cause the loss of the optimal solution in future iterations. Case 2: The
global optimal solution is in problem 𝑧. In this case, the optimal (feasible)
solution must have an objective value greater than or equal to 𝐿𝐵𝑧 , which
means that it is also greater than or equal to (1 − 𝜀)𝑈𝐵 (since 𝐿𝐵𝑧 ≥
(1 − 𝜀)𝑈𝐵). Thus, by Definition 1, the current best feasible solution with
objective value 𝑈𝐵 is already a (1−𝜀) optimal solution. Therefore, although
the removal of problem 𝑧 may lead to the loss of an optimal solution, we
can still guarantee (1− 𝜀) optimality, since we have already found a (1− 𝜀)
optimal solution.

Branch-and-bound Procedure
Initialization:
1. Let the initial solution 𝜓𝜀 = ∅, the initial upper bound

𝑈𝐵 = ∞, and the initial problem list include only the
original problem, denoted as problem 1.

2. Determine initial value set for each partition variable.
3. Build a linear relaxation for problem 1 and obtain its

solution 𝜓1.
4. The objective value of 𝜓1 is a lower bound 𝐿𝐵1 to

problem 1.
Iteration:
5. Select problem 𝑧 that has the minimum 𝐿𝐵𝑧 among all

problems in the problem list.
6. Update lower bound by 𝐿𝐵 = 𝐿𝐵𝑧 .
7. Find a feasible solution 𝜓𝑧 from 𝜓𝑧 via a local search

algorithm and denote its objective value as 𝑈𝐵𝑧 .
8. If (𝑈𝐵𝑧 < 𝑈𝐵) {
9. Update 𝜓𝜀 = 𝜓𝑧 and 𝑈𝐵 = 𝑈𝐵𝑧 .
10. If 𝐿𝐵 ≥ (1− 𝜀)𝑈𝐵, stop with the (1− 𝜀)

optimal solution 𝜓𝜀.
Otherwise, remove all problems 𝑧′ with 𝐿𝐵𝑧′ ≥
(1− 𝜀)𝑈𝐵 from the problem list. }

11. Select a variable with the largest relaxation error and
divide its value set into two sets based on its value in 𝜓𝑧 .

12. Build two new problems 𝑧1 and 𝑧2 based on these two
sets.

13. Remove problem 𝑧 from the problem list.
14. Obtain 𝐿𝐵𝑧1 and 𝐿𝐵𝑧2 for problems 𝑧1 and 𝑧2 via their

linear relaxations.
15. If 𝐿𝐵𝑧1 ≤ (1− 𝜀)𝑈𝐵, add problem 𝑧1 into the problem

list.
16. If 𝐿𝐵𝑧2 ≤ (1− 𝜀)𝑈𝐵, add problem 𝑧2 into the problem

list.
17. If the problem list is empty, we stop with the (1− 𝜀)

optimal solution 𝜓𝜀. Otherwise, go to the next iteration.

Fig. 2. Pseudocode for branch-and-bound.

B. Linear Relaxation

During each iteration of branch-and-bound, we need a
relaxation technique to obtain a lower bound of the objective
function (see line 4 in Fig. 2). For a non-linear discrete
term, we propose to use a convex hull relaxation. That is,
we introduce a new variable 𝑢𝑚𝑖𝑗 for non-linear discrete term
(𝑞𝑚𝑖𝑗 )

2/𝑛. Suppose 𝑞𝑚𝑖𝑗 ∈ {𝑞0, 𝑞1, ⋅ ⋅ ⋅ , 𝑞𝐾}, where (𝑞𝑚𝑖𝑗 )𝐿 =
𝑞0 < 𝑞1 < ⋅ ⋅ ⋅ < 𝑞𝐾 = (𝑞𝑚𝑖𝑗 )𝑈 . The convex hull (see Fig. 3)
can be formulated as

𝑢𝑚𝑖𝑗 −
(𝑞𝐾)2/𝑛 − (𝑞0)

2/𝑛

𝑞𝐾 − 𝑞0 𝑞𝑚𝑖𝑗 ≥ 𝑞𝐾(𝑞0)
2/𝑛 − (𝑞𝐾)2/𝑛𝑞0
𝑞𝐾 − 𝑞0 ,

𝑢𝑚𝑖𝑗 −
(𝑞𝑘)

2/𝑛 − (𝑞𝑘−1)
2/𝑛

𝑞𝑘 − 𝑞𝑘−1
𝑞𝑚𝑖𝑗 ≤ 𝑞𝑘(𝑞𝑘−1)

2/𝑛 − (𝑞𝑘)
2/𝑛𝑞𝑘−1

𝑞𝑘 − 𝑞𝑘−1

(1 ≤ 𝑘 ≤ 𝐾) .

Similarly, we can introduce a new variable 𝑣𝑚𝑖𝑗 for non-linear

discrete term log2

(
1 +

𝑔𝑖𝑗𝑃
𝜂𝑊𝑄𝑞

𝑚
𝑖𝑗

)
and construct convex hull

constraints for 𝑣𝑚𝑖𝑗 .
Denote x and q as the vector for variables 𝑥𝑚𝑖𝑗 and 𝑞𝑚𝑖𝑗 ,

respectively. We have the following linear relaxation for
problem 𝑧.

Min
∑

𝑖∈𝒩
∑

𝑚∈ℳ𝑖

∑
𝑗∈𝒯 𝑚

𝑖

𝑊

𝑄−2/𝑛 𝑢
𝑚
𝑖𝑗
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Fig. 3. Illustration of convex hull for a discrete term.

s.t. Convex hull constraints for 𝑢𝑚
𝑖𝑗 (𝑖 ∈ 𝒩 ,𝑚 ∈ ℳ𝑖, 𝑗 ∈ 𝒯 𝑚

𝑖 )∑
𝑗∈𝒯 𝑚

𝑖

𝑥𝑚
𝑖𝑗 ≤ 1 (𝑖 ∈ 𝒩 ,𝑚 ∈ ℳ𝑖)

𝑞𝑚𝑖𝑗 −
(

𝑑𝑖𝑗
𝑅𝑚𝑎𝑥

𝑇

)𝑛

𝑄𝑥𝑚
𝑖𝑗 ≥ 0 (𝑖 ∈ 𝒩 ,𝑚 ∈ ℳ𝑖, 𝑗 ∈ 𝒯 𝑚

𝑖 )

𝑞𝑚𝑖𝑗 −𝑄𝑥𝑚
𝑖𝑗 ≤ 0 (𝑖 ∈ 𝒩 ,𝑚 ∈ ℳ𝑖, 𝑗 ∈ 𝒯 𝑚

𝑖 )

∑
ℎ∈𝒯 𝑚

𝑘

𝑞𝑚𝑘ℎ +

(
1−

(
𝑑𝑘𝑗
𝑅𝑚𝑎𝑥

𝐼

)𝑛)
𝑄𝑥𝑚

𝑖𝑗 ≤ 𝑄

(𝑖∈𝒩 ,𝑚∈ℳ𝑖, 𝑗∈𝒯 𝑚
𝑖 , 𝑘∈ℐ𝑚

𝑗 , 𝑘 ∕= 𝑖)

𝑠(𝑙) ∕=𝑗,𝑑(𝑙) ∕=𝑖∑
𝑙∈ℒ

𝑓𝑖𝑗(𝑙)−
∑

𝑚∈ℳ𝑖𝑗

𝑊𝑣𝑚𝑖𝑗 ≤0 (𝑖 ∈ 𝒩 , 𝑗 ∈ 𝒯𝑖)

Convex hull constraints for 𝑣𝑚𝑖𝑗 (𝑖 ∈ 𝒩 ,𝑚 ∈ ℳ𝑖, 𝑗 ∈ 𝒯 𝑚
𝑖 )∑

𝑗∈𝒯𝑖

𝑓𝑖𝑗(𝑙) = 𝑟(𝑙) (𝑙 ∈ ℒ, 𝑖 = 𝑠(𝑙))

𝑗 ∕=𝑠(𝑙)∑
𝑗∈𝒯𝑖

𝑓𝑖𝑗(𝑙)−
𝑘 ∕=𝑑(𝑙)∑
𝑘∈𝒯𝑖

𝑓𝑘𝑖(𝑙) = 0 (𝑙∈ℒ, 𝑖∈𝒩 , 𝑖 ∕=𝑠(𝑙), 𝑑(𝑙))

𝑢𝑚
𝑖𝑗 , 𝑣

𝑚
𝑖𝑗 ≥ 0 (𝑖 ∈ 𝒩 ,𝑚 ∈ ℳ𝑖, 𝑗 ∈ 𝒯 𝑚

𝑖 )

𝑓𝑖𝑗(𝑙) ≥ 0 (𝑙∈ℒ, 𝑖∈𝒩 , 𝑖 ∕=𝑑(𝑙), 𝑗∈𝒯𝑖, 𝑗 ∕=𝑠(𝑙))
(x,q) ∈ Ω𝑧 ,

where Ω𝑧 is the set of all possible values of (x,q) in problem
𝑧. For example, Ω1 for the original problem 1 is {(x,q) : 0 ≤
𝑥𝑚𝑖𝑗 ≤ 1, 0 ≤ 𝑞𝑚𝑖𝑗 ≤ 𝑄}.

C. Local Search Algorithm

A linear relaxation for a problem 𝑧 can be solved in
polynomial time. Denote the relaxation solution as 𝜓𝑧 , which
provides a lower bound to problem 𝑧, although it may not be
feasible. We now show how to obtain a feasible solution 𝜓𝑧

based on 𝜓𝑧 (see line 7 in Fig. 2).
For the feasible solution 𝜓𝑧 , we use the same routing

solution as that in 𝜓𝑧 , i.e., let f = f̂ . We then need to determine
the value for x and q in 𝜓𝑧 such that the routing solution f
is feasible, i.e., (8) should hold for each link 𝑖→ 𝑗.

Initially, each 𝑞𝑚𝑖𝑗 is set as the smallest value (𝑞𝑚𝑖𝑗 )𝐿 in its
value set and 𝑥𝑚𝑖𝑗 is fixed to 0 or 1 if its value set only has

Local Search Algorithm
Initialization:
1. Set 𝑞𝑚𝑖𝑗 = (𝑞𝑚𝑖𝑗 )𝐿 and fix 𝑥𝑚

𝑖𝑗 to 0 or 1 if its value set only
has one element 0 or 1, respectively.

2. Compute the capacity
∑

𝑚∈ℳ𝑖
𝑊 log2

(
1 +

𝑔𝑖𝑗𝑃

𝜂𝑊𝑄
𝑞𝑚𝑖𝑗

)
and the requirement

∑𝑠(𝑙) ∕=𝑗,𝑑(𝑙) ∕=𝑖
𝑙∈ℒ 𝑓𝑖𝑗(𝑙) for each link

𝑖→ 𝑗.
Iteration:
3. If there is no link with its requirement larger than its

capacity, then a feasible solution is found.
4. Otherwise, among all the links having their requirements

larger than their capacities, find link 𝑖→ 𝑗 that has the
largest requirement.

5. Try to increase the capacity for link 𝑖→ 𝑗 as follows.
6. Increase 𝑞𝑚𝑖𝑗 among active bands in the non-increasing

order of 𝑞𝑚𝑖𝑗 and under the limitation that 𝑞𝑚𝑖𝑗 ≤
min{⌈𝑞𝑚𝑖𝑗 ⌉, (𝑞𝑚𝑖𝑗 )𝑈}.

7. If the achieved capacity is insufficient, then try to use an
available but currently unused band 𝑚 in the
non-increasing order of 𝑞𝑚𝑖𝑗 .

8. A band 𝑚 is available if for any transmitting node 𝑘 using
this band, node 𝑗 is not in its interference range.

9. Increase 𝑞𝑚𝑖𝑗 under the constraint 𝑞𝑚𝑖𝑗 ≤ min{⌈𝑞𝑚𝑖𝑗 ⌉,
(𝑞𝑚𝑖𝑗 )𝑈}.

10. Also set 𝑥𝑚
𝑖𝑗 = 1, 𝑥𝑚

𝑖ℎ = 0 for ℎ ∈ 𝒯𝑖, ℎ ∕= 𝑗, and let

(𝑞𝑚𝑘ℎ)𝑈 ≤
⌊(

𝑑𝑘𝑗

𝑅𝑚𝑎𝑥
𝐼

)𝑛

𝑄
⌋

for 𝑘 ∈ ℐ𝑚
𝑗 , 𝑘 ∕= 𝑖, ℎ ∈ 𝒯 𝑚

𝑘 .

11. If the achieved capacity is still insufficient, increase 𝑞𝑚𝑖𝑗
among active bands in non-increasing order of 𝑞𝑚𝑖𝑗 and
under the constraint 𝑞𝑚𝑖𝑗 ≤ (𝑞𝑚𝑖𝑗 )𝑈 .

12. Finally, if the achieved capacity is still insufficient, then
link 𝑖→ 𝑗 cannot be satisfied.

Fig. 4. An algorithm to obtain x and q.

one element 0 or 1, respectively. Based on these 𝑞𝑚𝑖𝑗 ’s, we

can compute the capacity
∑

𝑚∈ℳ𝑖
𝑊 log2

(
1 +

𝑔𝑖𝑗𝑃
𝜂𝑊𝑄𝑞

𝑚
𝑖𝑗

)
for each link 𝑖 → 𝑗. The requirement on a link 𝑖 → 𝑗 is∑𝑠(𝑙) ∕=𝑗,𝑑(𝑙) ∕=𝑖

𝑙∈ℒ 𝑓𝑖𝑗(𝑙). For each link with a requirement larger
than its capacity, we will try to satisfy (8) by increasing 𝑞𝑚𝑖𝑗
under its value set limitation. After we do this for all links,
then we can calculate the objective value of solution 𝜓𝑧 .
Otherwise, if the requirement of any link cannot be satisfied,
then we fail to find a feasible solution and we set the objective
value to ∞. The details of this local search algorithm is shown
in Fig. 4.

D. Selection of Partition Variables

If the relaxation error for a problem 𝑧 is not small, the
gap between its lower and upper bounds may be large. To
narrow this gap, we generate two new sub-problems 𝑧1 and
𝑧2 from problem 𝑧. We hope that these two new problems
have smaller relaxation errors. Subsequently, they may have
tighter bounds for the objective function. To generate 𝑧1 and
𝑧2, we identify a partition variable based on its relaxation error
(line 11 in Fig. 2). As we discussed in Section IV-A, these
partition variables include all x and q variables.

Since x variables are more important than q variables, we
first select one of x variables. In particular, for the relaxation
solution 𝜓𝑧 , we choose an 𝑥𝑚𝑖𝑗 with the largest relaxation error
min{�̂�𝑚𝑖𝑗 , 1− 𝑥𝑚𝑖𝑗 } among all x variables and let its value set



SHI et al.: PER-NODE BASED OPTIMAL POWER CONTROL FOR MULTI-HOP COGNITIVE RADIO NETWORKS 5297

4

0
0

10

20

40

50

30

10 20 30 40 50

3

8

6

5
18

9

11

10

16
12

19
20

7

13

15

14

17

1

2

Fig. 5. A 20-node ad hoc network.

in problems 𝑧1 and 𝑧2 be {0} and {1}, respectively.3 It should
be note that the new value set of 𝑥𝑚𝑖𝑗 imposes constraints on
other variables. That is, if the new value set of 𝑥𝑚𝑖𝑗 is {0}, then
we have 𝑞𝑚𝑖𝑗 = 0 based on (13). If the new value set of 𝑥𝑚𝑖𝑗 is
{1}, then we have 𝑥𝑚𝑖ℎ = 0 for ℎ ∈ 𝒯𝑖, ℎ ∕= 𝑗 based on (C-3),

𝑞𝑚𝑖𝑗 ≥
(

𝑑𝑖𝑗

𝑅𝑚𝑎𝑥
𝑇

)𝑛

𝑄 based on (12), and 𝑞𝑚𝑘ℎ ≤
(

𝑑𝑘𝑗

𝑅𝑚𝑎𝑥
𝐼

)𝑛

𝑄 for

𝑘 ∈ ℐ𝑚
𝑗 , 𝑘 ∕= 𝑖, ℎ ∈ 𝒯𝑘 based on (14).4

After we are done with all x variables, i.e., all x variables
are fixed to either 0 or 1, then we select one of q variables.
In particular, for the relaxation solution 𝜓𝑧 , the relaxation
error of a discrete term 𝑞𝑚𝑖𝑗 is min{𝑞𝑚𝑖𝑗 − ⌊𝑞𝑚𝑖𝑗 ⌋, ⌊𝑞𝑚𝑖𝑗 ⌋ +
1 − 𝑞𝑚𝑖𝑗 }; the relaxation error of a non-linear discrete term
𝑢𝑚𝑖𝑗 = (𝑞𝑚𝑖𝑗 )

2/𝑛 is ∣�̂�𝑚𝑖𝑗 − (𝑞𝑚𝑖𝑗 )
2/𝑛∣; and the relaxation error

of a non-linear discrete term 𝑣𝑚𝑖𝑗 = log2

(
1 +

𝑞𝑖𝑗𝑃
𝜂𝑊𝑄𝑞

𝑚
𝑖𝑗

)
is

∣∣∣𝑣𝑚𝑖𝑗 − log2

(
1 +

𝑞𝑖𝑗𝑃
𝜂𝑊𝑄𝑞

𝑚
𝑖𝑗

)∣∣∣. Among these three types of
relaxation errors, we identify the largest one and choose the
corresponding 𝑞𝑚𝑖𝑗 as the partition variable. Assuming the
value set of 𝑞𝑚𝑖𝑗 in problem 𝑧 is {𝑞0, 𝑞1, ⋅ ⋅ ⋅ , 𝑞𝐾}, its value
set in problems 𝑧1 and 𝑧2 will be {𝑞0, 𝑞1, ⋅ ⋅ ⋅ , ⌊𝑞𝑚𝑖𝑗 ⌋} and
{⌊𝑞𝑚𝑖𝑗 ⌋+ 1, ⌊𝑞𝑚𝑖𝑗 ⌋+ 2, ⋅ ⋅ ⋅ , 𝑞𝐾}, respectively.

V. NUMERICAL RESULTS

A. Simulation Setting

In this section, we consider a randomly generated 20-node
ad hoc network with each node located in a 50x50 area.
For ease of exposition, we normalize all units for distance,
bandwidth, rate, and power based on (1) and (8) with appro-
priate dimensions. An instance of network topology is given
in Fig. 5 with each node’s location listed in Table III. Within
this network, we assume there are ∣ℒ∣ = 5 user sessions, with
source node and destination node randomly selected and the
rate of each session is randomly generated within [10, 100].
Table II specifies an instance of the source node, destination

3Since the value set for this 𝑥𝑚𝑖𝑗 only has one element, this 𝑥𝑚𝑖𝑗 can be
replaced by a constant in the new problem. As a result, some constraints may
also be removed.

4If the constraints make the new value set of a variable 𝑞𝑚𝑘ℎ empty, then the
corresponding new problem is clearly infeasible. As a result, we can remove
it from the problem list.

TABLE II
SOURCE NODE, DESTINATION NODE, AND RATE REQUIREMENT OF THE 5

SESSIONS.

Session Source Node Destination Node Rate Requirement

1 7 16 28

2 8 5 12

3 15 13 56

4 2 18 75

5 9 11 29

TABLE III
EACH NODE’S LOCATION AND AVAILABLE FREQUENCY BANDS FOR THE

20-NODE NETWORK.

Node Index Location Available Bands

1 (10.5, 4.3) I, II, III, IV, V, VI, VII, VIII, IX, X
2 (1.7, 17.3) II, III, IV, V, VI, VII, X

3 (10.7, 30.8) I, III, IV, V, VI, VII, VIII, IX, X

4 (10.2, 45.3) I, III, IV, V, VI, VII, VIII, IX, X

5 (17.8, 4) I, II, V, VI, VII, VIII, IX

6 (17.2, 15.2) I, II, IV, VIII

7 (16.9, 30.8) I, II, III, IV, V, VI, VII, VIII, IX, X

8 (12.3, 47.3) I, III, IV, V, VII, VIII, IX

9 (28.2, 11.5) I, III, V, VII

10 (32.1, 13.8) I, II, III, IV, VI, VII, VIII, IX, X

11 (30.4, 25.6) I, II, III, V, VI, VIII, IX, X

12 (29.7, 36) I, II, III, IV, VI, VI

13 (41.7, 3.1) I, II, III, V, VI, VIII, IX, X

14 (47.5, 20) I, IV, V, VIII, IX, X

15 (43.3, 25.3) II, III, IV, V, VI, VII, VIII, IX, X

16 (44.1, 42.7) I, II, IV, VI, VII, VIII, IX, X

17 (49.6, 15.8) I, II, III, IV, V, VI, VII, VIII

18 (28.7, 2.5) I, II, III, VI, VII, VIII, IX, X

19 (28, 43.5) II, IV, V, VI, VIII

20 (5, 46.9) II, IV, V, VI, VII

node, and rate requirement for the five sessions in the network.
We assume there are ∣ℳ∣ = 10 frequency bands in the
network and each band has a bandwidth of 𝑊 = 50. At each
node, only a subset of these frequency bands is available. In
the simulation, this is done by randomly selecting a subset of
bands for each node. Table III shows the available bands for
each node.

We assume 𝑅𝑚𝑎𝑥
𝑇 = 20, 𝑅𝑚𝑎𝑥

𝐼 = 40, and the path loss in-
dex 𝑛 = 4. The threshold 𝛼 is assumed to be 𝛼 = 𝜂𝑊 = 50𝜂.

Thus, we have 𝛽 =
(

𝑅𝑚𝑎𝑥
𝑇

𝑅𝑚𝑎𝑥
𝐼

)𝑛

𝛼𝑊 = 50
16𝜂 and the maximum

transmission power 𝑃 = (𝑅𝑚𝑎𝑥
𝑇 )𝑛𝛼𝑊 = 8 ⋅ 106𝜂. We set

𝜀 = 0.05, which guarantees that the obtained solution is within
5% from the optimum.

B. Results

In this set of results, we apply the solution procedure to the
20-node network described above for different level of power
control granularity (𝑄). Note that 𝑄 = 1 corresponds to the
case that there is no power control, i.e., a node always uses
its peak power 𝑃 for transmission. When 𝑄 is sufficiently
large, power control approaches continuous. Figure 6 shows
the results. First, we note that power control has a significant
impact on objective value. Comparing the case when there is
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Fig. 6. Objective value as a function of 𝑄.

no power control (𝑄 = 1) and the case of 𝑄 = 15, we find that
there is nearly a 40% reduction in the objective value. Second,
although the objective value is a non-increasing function of 𝑄,
when 𝑄 becomes sufficiently large (e.g., 10 in this network
setting), further increase in 𝑄 will not have much reduction
on objective value. This suggests that for practical purpose,
the number of required power control levels does not need to
be a large number.

The rest of results are for 𝑄 = 10. For transmission power,
we have

𝑞19,11 = 3, 𝑞212,16 = 4, 𝑞37,12 = 3,
𝑞42,1 = 4, 𝑞52,1 = 4, 𝑞65,18 = 2,
𝑞717,13 = 4, 𝑞88,3 = 5, 𝑞814,17 = 1, 𝑞91,5 = 1, 𝑞915,14 = 1,
𝑞103,2 = 5.

The scheduling results are

𝑥19,11 = 1, 𝑥212,16 = 1, 𝑥37,12 = 1,
𝑥42,1 = 1, 𝑥52,1 = 1, 𝑥65,18 = 1,
𝑥717,13 = 1, 𝑥88,3 = 1, 𝑥814,17 = 1, 𝑥91,5 = 1, 𝑥915,14 = 1,
𝑥103,2 = 1.

The flow routing topology is shown in Fig. 7. The correspond-
ing flow rates are

𝑓7,12(1) = 28, 𝑓12,16(1) = 28,
𝑓8,3(2) = 12, 𝑓3,2(2) = 12, 𝑓2,1(2) = 12, 𝑓1,5(2) = 12,
𝑓15,14(3) = 56, 𝑓14,17(3) = 56, 𝑓17,13(3) = 56,
𝑓2,1(4) = 75, 𝑓1,5(4) = 75, 𝑓5,18(4) = 75,
𝑓9,11(5) = 29.

Note that a link may be used by multiple sessions. For
example, link 2 → 1 is used by sessions 2 and 4. As a
result, the total data rate on link 2 → 1 is 𝑓2,1(2)+ 𝑓2,1(4) =
12 + 75 = 87.

The following observations on the numerical results show
the close coupling relationships between per-node power con-
trol and upper layers. In one observation (scheduling), we can
see that, links 8 → 3 and 14 → 17 are active on the same
band 8. This is feasible because the interference range at node
14 is 22.49 under 𝑞814,17 = 1, which is smaller than 38.35 (the
distance between nodes 3 and 14). We note that if there is no
power control, i.e., node 14 use the peak transmission power,
then node 3 will be in the interference range of node 14,
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Fig. 7. Flow routing for the five sessions in the 20-node network.

which is 𝑅𝑚𝑎𝑥
𝐼 = 40, and will lead to a scheduling conflict. In

another observation (routing), we see that, for session 2 (from
node 8 to node 5), the routing path is 8 → 3 → 2 → 1 → 5.
Here, a shorter path 8 → 3 → 6 → 5 is not used. This
is because that path 8 → 3 → 6 → 5 is interfered by
transmissions on other paths. The optimal solution tends to
choose paths that are not close to each other. Finally, for
session 3 (form node 15 to node 13), the routing path is
15 → 14 → 17 → 13, while a shorter path 15 → 17 → 13
is not used. This is because that node 15 can use a smaller
transmission power to transmit to a closer neighboring node
14 with a smaller interference footprint. This will allow link
1 → 5 to be active on the same band 9 with link 15 → 14.

VI. CONCLUSION

In this paper, we investigated the challenging problem of
per-node based power control for a multi-hop CRN. This
problem is difficult due to its large design space and the
coupling relationship between power control and upper layers.
We developed a mathematical framework to optimize these
layers jointly and formulated a mixed integer non-linear
program. Subsequently, we developed a solution procedure
to derive results for all three layers jointly. Our solution
guarantees (1 − 𝜀) optimal performance. The results in this
paper close some long standing issues associated with network
optimization with per-node based power control.
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