
Enabling Secure and Efficient Ranked Keyword
Search over Outsourced Cloud Data

Cong Wang, Student Member, IEEE, Ning Cao, Student Member, IEEE,

Kui Ren, Senior Member, IEEE, and Wenjing Lou, Senior Member, IEEE

Abstract—Cloud computing economically enables the paradigm of data service outsourcing. However, to protect data privacy,

sensitive cloud data have to be encrypted before outsourced to the commercial public cloud, which makes effective data utilization

service a very challenging task. Although traditional searchable encryption techniques allow users to securely search over encrypted

data through keywords, they support only Boolean search and are not yet sufficient to meet the effective data utilization need that is

inherently demanded by large number of users and huge amount of data files in cloud. In this paper, we define and solve the problem of

secure ranked keyword search over encrypted cloud data. Ranked search greatly enhances system usability by enabling search result

relevance ranking instead of sending undifferentiated results, and further ensures the file retrieval accuracy. Specifically, we explore

the statistical measure approach, i.e., relevance score, from information retrieval to build a secure searchable index, and develop a

one-to-many order-preserving mapping technique to properly protect those sensitive score information. The resulting design is able to

facilitate efficient server-side ranking without losing keyword privacy. Thorough analysis shows that our proposed solution enjoys “as-

strong-as-possible” security guarantee compared to previous searchable encryption schemes, while correctly realizing the goal of

ranked keyword search. Extensive experimental results demonstrate the efficiency of the proposed solution.

Index Terms—Ranked search, searchable encryption, order-preserving mapping, confidential data, cloud computing.

Ç

1 INTRODUCTION

CLOUD Computing is the long dreamed vision of
computing as a utility, where cloud customers can

remotely store their data into the cloud so as to enjoy the
on-demand high-quality applications and services from a
shared pool of configurable computing resources [2]. The
benefits brought by this new computing model include but
are not limited to: relief of the burden for storage manage-
ment, universal data access with independent geographical
locations, and avoidance of capital expenditure on hard-
ware, software, and personnel maintenances, etc., [3].

As Cloud Computing becomes prevalent, more and
more sensitive information are being centralized into the
cloud, such as e-mails, personal health records, company
finance data, and government documents, etc. The fact that
data owners and cloud server are no longer in the same
trusted domain may put the outsourced unencrypted data
at risk [4], [33]: the cloud server may leak data information
to unauthorized entities [5] or even be hacked [6]. It follows

that sensitive data have to be encrypted prior to outsourcing
for data privacy and combating unsolicited accesses.
However, data encryption makes effective data utilization
a very challenging task given that there could be a large
amount of outsourced data files. Besides, in Cloud
Computing, data owners may share their outsourced data
with a large number of users, who might want to only
retrieve certain specific data files they are interested in
during a given session. One of the most popular ways to do
so is through keyword-based search. Such keyword search
technique allows users to selectively retrieve files of interest
and has been widely applied in plaintext search scenarios
[7]. Unfortunately, data encryption, which restricts user’s
ability to perform keyword search and further demands the
protection of keyword privacy, makes the traditional
plaintext search methods fail for encrypted cloud data.

Although traditional searchable encryption schemes
(e.g., [8], [9], [10], [11], [12], to list a few) allow a user to
securely search over encrypted data through keywords
without first decrypting it, these techniques support only
conventional Boolean keyword search,1 without capturing
any relevance of the files in the search result. When directly
applied in large collaborative data outsourcing cloud
environment, they may suffer from the following two main
drawbacks. On the one hand, for each search request, users
without preknowledge of the encrypted cloud data have to
go through every retrieved file in order to find ones most
matching their interest, which demands possibly large
amount of postprocessing overhead; On the other hand,
invariably sending back all files solely based on presence/
absence of the keyword further incurs large unnecessary

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 8, AUGUST 2012 1467

. C. Wang is with the Department of Electrical and Computer Engineering,
Illinois Institute of Technology, 3301 S Dearborn St., Siegel Hall 221A,
Chicago, IL 60616. E-mail: cong@ece.iit.edu.

. N. Cao is with the Department of Electrical and Computer Engineering,
Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA
01609. E-mail: ncao@wpi.edu.

. K. Ren is with the Department of Electrical and Computer Engineering,
Illinois Institute of Technology, 3301 S Dearborn St., Siegel Hall 319,
Chicago, IL 60616. E-mail: kren@ece.iit.edu.

. W. Lou is with the Department of Computer Science, Virginia Polytechnic
Institute and State University, 7054 Haycock Rd, Falls Church, VA 22043.
E-mail: wjlou@vt.edu.

Manuscript received 22 Mar. 2011; revised 4 Oct. 2011; accepted 17 Oct.
2011; published online 29 Nov. 2011.
Recommended for acceptance by I. Ahmad.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2011-03-0166.
Digital Object Identifier no. 10.1109/TPDS.2011.282.

1. In the existing symmetric key-based searchable encryption schemes,
the support of disjunctive Boolean operation (OR) on multiple keywords
searches still remains an open problem.

1045-9219/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

network traffic, which is absolutely undesirable in today’s
pay-as-you-use cloud paradigm. In short, lacking of
effective mechanisms to ensure the file retrieval accuracy
is a significant drawback of existing searchable encryption
schemes in the context of Cloud Computing. Nonetheless,
the state of the art in information retrieval (IR) community
has already been utilizing various scoring mechanisms [13]
to quantify and rank order the relevance of files in response
to any given search query. Although the importance of
ranked search has received attention for a long history in
the context of plaintext searching by IR community,
surprisingly, it is still being overlooked and remains to be
addressed in the context of encrypted data search.

Therefore, how to enable a searchable encryption system
with support of secure ranked search is the problem tackled
in this paper. Our work is among the first few ones to
explore ranked search over encrypted data in Cloud
Computing. Ranked search greatly enhances system usabil-
ity by returning the matching files in a ranked order
regarding to certain relevance criteria (e.g., keyword
frequency), thus making one step closer toward practical
deployment of privacy-preserving data hosting services in
the context of Cloud Computing. To achieve our design
goals on both system security and usability, we propose to
bring together the advance of both crypto and IR commu-
nity to design the ranked searchable symmetric encryption
(RSSE) scheme, in the spirit of “as-strong-as-possible”
security guarantee. Specifically, we explore the statistical
measure approach from IR and text mining to embed
weight information (i.e., relevance score) of each file during
the establishment of searchable index before outsourcing
the encrypted file collection. As directly outsourcing
relevance scores will leak lots of sensitive frequency
information against the keyword privacy, we then integrate
a recent crypto primitive [14] order-preserving symmetric
encryption (OPSE) and properly modify it to develop a one-
to-many order-preserving mapping technique for our
purpose to protect those sensitive weight information,
while providing efficient ranked search functionalities.
Our contribution can be summarized as follows:

1. For the first time, we define the problem of secure
ranked keyword search over encrypted cloud data,
and provide such an effective protocol, which fulfills
the secure ranked search functionality with little
relevance score information leakage against key-
word privacy.

2. Thorough security analysis shows that our ranked
searchable symmetric encryption scheme indeed
enjoys “as-strong-as-possible” security guarantee
compared to previous searchable symmetric encryp-
tion (SSE) schemes.

3. We investigate the practical considerations and
enhancements of our ranked search mechanism,
including the efficient support of relevance score
dynamics, the authentication of ranked search
results, and the reversibility of our proposed one-
to-many order-preserving mapping technique.

4. Extensive experimental results demonstrate the
effectiveness and efficiency of the proposed solution.

The rest of the paper is organized as follows: Section 2
gives the system and threat model, our design goals,

notations, and preliminaries. Then, we provide the frame-
work, definitions, and basic scheme in Section 3, followed
by Section 4, which gives the detailed description of our
ranked searchable symmetric encryption system. Section 5
gives the security analysis. Section 6 studies further
enhancements and practical considerations, followed by
Section 7 on performance evaluations. Related work for
both searchable encryption and secure result ranking is
discussed in Section 8. Finally, Section 9 gives the
concluding remark of the whole paper.

2 PROBLEM STATEMENT

2.1 The System and Threat Model

We consider an encrypted cloud data hosting service
involving three different entities, as illustrated in Fig. 1:
data owner, data user, and cloud server. Data owner has a
collection of n data files C ¼ ðF1; F2; . . . ; FnÞ that he wants to
outsource on the cloud server in encrypted form while still
keeping the capability to search through them for effective
data utilization reasons. To do so, before outsourcing, data
owner will first build a secure searchable index I from a set
of m distinct keywords W ¼ ðw1; w2; . . . ; wmÞ extracted2

from the file collection C, and store both the index I and the
encrypted file collection C on the cloud server.

We assume the authorization between the data owner
and users is appropriately done. To search the file collection
for a given keyword w, an authorized user generates and
submits a search request in a secret form—a trapdoor Tw of
the keyword w—to the cloud server. Upon receiving the
search request Tw, the cloud server is responsible to search
the index I and return the corresponding set of files to the
user. We consider the secure ranked keyword search
problem as follows: the search result should be returned
according to certain ranked relevance criteria (e.g., keyword
frequency-based scores, as will be introduced shortly), to
improve file retrieval accuracy for users without prior
knowledge on the file collection C. However, cloud server
should learn nothing or little about the relevance criteria as
they exhibit significant sensitive information against key-
word privacy. To reduce bandwidth, the user may send an
optional value k along with the trapdoor Tw and cloud
server only sends back the top-k most relevant files to the
user’s interested keyword w.

We primarily consider an “honest-but-curious” server in
our model, which is consistent with most of the previous
searchable encryption schemes. We assume the cloud server
acts in an “honest” fashion and correctly follows the

1468 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 8, AUGUST 2012

Fig. 1. Architecture for search over encrypted cloud data.

2. To reduce the size of index, a list of standard IR techniques can be
adopted, including case folding, stemming, and stop words, etc. We omit
this process of keyword extraction and refinement and refer readers to [7]
for more details.

designated protocol specification, but is “curious” to infer
and analyze the message flow received during the protocol
so as to learn additional information. In other words, the
cloud server has no intention to actively modify the
message flow or disrupt any other kind of services.
However, in some unexpected events, the cloud server
may behave beyond the “honest-but-curious” model. We
specifically deal with this scenario in Section 6.2.

2.2 Design Goals

To enable ranked searchable symmetric encryption for
effective utilization of outsourced and encrypted cloud data
under the aforementioned model, our system design should
achieve the following security and performance guarantee.
Specifically, we have the following goals: 1) Ranked
keyword search: to explore different mechanisms for
designing effective ranked search schemes based on the
existing searchable encryption framework; 2) Security
guarantee: to prevent cloud server from learning the
plaintext of either the data files or the searched keywords,
and achieve the “as-strong-as-possible” security strength
compared to existing searchable encryption schemes;
3) Efficiency: above goals should be achieved with mini-
mum communication and computation overhead.

2.3 Notation and Preliminaries

. C—the file collection to be outsourced, denoted as a
set of n data files C ¼ ðF1; F2; . . . ; FnÞ.

. W—the distinct keywords extracted from file collec-
tion C, denoted as a set of m words W ¼ ðw1;
w2; . . . ; wmÞ.

. idðFjÞ—the identifier of file Fj that can help uniquely
locate the actual file.

. I—the index built from the file collection, including
a set of posting lists fIðwiÞg, as introduced below.

. Twi—the trapdoor generated by a user as a search
request of keyword wi.

. FðwiÞ—the set of identifiers of files in C that contain
keyword wi.

. Ni—the number of files containing the keyword wi
and Ni ¼ jFðwiÞj.

We now introduce some necessary information retrieval
background for our proposed scheme:

Inverted index. In information retrieval, inverted index
(also referred to as postings file) is a widely used indexing
structure that stores a list of mappings from keywords to the
corresponding set of files that contain this keyword, allowing
full text search [13]. For ranked search purposes, the task of
determining which files are most relevant is typically done
by assigning a numerical score, which can be precomputed,
to each file based on some ranking function introduced
below. One example posting list of an index is shown in
Table 1. We will use this inverted index structure to give our
basic ranked searchable symmetric encryption construction.

Ranking function. In information retrieval, a ranking
function is used to calculate relevance scores of matching
files to a given search request. The most widely used
statistical measurement for evaluating relevance score in the
information retrieval community uses the TF� IDF rule,
where term frequency (TF) is simply the number of times a

given term or keyword (we will use them interchangeably
hereafter) appears within a file (to measure the importance
of the term within the particular file), and inverse document
frequency (IDF) is obtained by dividing the number of files
in the whole collection by the number of files containing the
term (to measure the overall importance of the term within
the whole collection). Among several hundred variations of
the TF � IDF weighting scheme, no single combination of
them outperforms any of the others universally [15]. Thus,
without loss of generality, we choose an example formula
that is commonly used and widely seen in the literature (see
[7, Ch. 4]) for the relevance score calculation in the following
presentation. Its definition is as follows:

ScoreðQ;FdÞ ¼
X
t2Q

1

jFdj
� ð1þ ln fd;tÞ � ln 1þN

ft

� �
: ð1Þ

Here, Q denotes the searched keywords; fd;t denotes the TF
of term t in file Fd; ft denotes the number of files that
contain term t; N denotes the total number of files in the
collection; and jFdj is the length of file Fd, obtained by
counting the number of indexed terms, functioning as the
normalization factor.

3 THE DEFINITIONS AND BASIC SCHEME

In the introduction, we have motivated the ranked keyword
search over encrypted data to achieve economies of scale for
Cloud Computing. In this section, we start from the review
of existing searchable symmetric encryption schemes and
provide the definitions and framework for our proposed
ranked searchable symmetric encryption. Note that by
following the same security guarantee of existing SSE, it
would be very inefficient to support ranked search
functionality over encrypted data, as demonstrated in our
basic scheme. The discussion of its demerits will lead to our
proposed scheme.

3.1 Background on Searchable Symmetric
Encryption

Searchable encryption allows data owner to outsource his
data in an encrypted manner while maintaining the
selectively search capability over the encrypted data.
Generally, searchable encryption can be achieved in its full
functionality using an oblivious RAMs [16]. Although
hiding everything during the search from a malicious
server (including access pattern), utilizing oblivious RAM
usually brings the cost of logarithmic number of interac-
tions between the user and the server for each search
request. Thus, in order to achieve more efficient solutions,
almost all the existing works on searchable encryption
literature resort to the weakened security guarantee, i.e.,
revealing the access pattern and search pattern but nothing
else. Here, access pattern refers to the outcome of the search

WANG ET AL.: ENABLING SECURE AND EFFICIENT RANKED KEYWORD SEARCH OVER OUTSOURCED CLOUD DATA 1469

TABLE 1
An Example Posting List of the Inverted Index

result, i.e., which files have been retrieved. The search
pattern includes the equality pattern among the two search
requests (whether two searches were performed for the
same keyword), and any information derived thereafter
from this statement. We refer readers to [12] for the
thorough discussion on SSE definitions.

Having a correct intuition on the security guarantee of
existing SSE literature is very important for us to define our
ranked searchable symmetric encryption problem. As later,
we will show that following the exactly same security
guarantee of existing SSE scheme, it would be very
inefficient to achieve ranked keyword search, which
motivates us to further weaken the security guarantee of
existing SSE appropriately (leak the relative relevance order
but not the relevance score) and realize an “as-strong-as-
possible” ranked searchable symmetric encryption. Actu-
ally, this notion has been employed by cryptographers in
many recent work [14], [17] where efficiency is preferred
over security.

3.2 Definitions and Framework of RSSE System

We follow the similar framework of previously proposed
searchable symmetric encryption schemes [12] and adapt
the framework for our ranked searchable encryption
system. A ranked searchable encryption scheme consists
of four algorithms (KeyGen, BuildIndex, TrapdoorGen,
SearchIndex). Our ranked searchable encryption system
can be constructed from these four algorithms in two
phases, Setup and Retrieval:

. Setup. The data owner initializes the public and
secret parameters of the system by executing Key-

Gen, and pre-processes the data file collection C by
using BuildIndex to generate the searchable index
from the unique words extracted from C. The owner
then encrypts the data file collection C, and publishes
the index including the keyword frequency-based
relevance scores in some encrypted form, together
with the encrypted collection C to the Cloud. As part
of Setup phase, the data owner also needs to
distribute the necessary secret parameters (in our
case, the trapdoor generation key) to a group of
authorized users by employing off-the-shelf public
key cryptography or more efficient primitive such as
broadcast encryption.

. Retrieval. The user uses TrapdoorGen to gen-
erate a secure trapdoor corresponding to his inter-
ested keyword, and submits it to the cloud server.
Upon receiving the trapdoor, the cloud server will
derive a list of matched file IDs and their corre-
sponding encrypted relevance scores by searching
the index via SearchIndex. The matched files
should be sent back in a ranked sequence based on
the relevance scores. However, the server should
learn nothing or little beyond the order of the
relevance scores.

Note that as an initial attempt to investigate the secure
ranked searchable encryption system, in this paper we
focus on single keyword search. In this case, the IDF factor
in (1) is always constant with regard to the given searched
keyword. Thus, search results can be accurately ranked

based only on the term frequency and file length informa-
tion contained within the single file using

Scoreðt; FdÞ ¼
1

jFdj
� ð1þ ln fd;tÞ: ð2Þ

Data owner can keep a record of these two values and
precalculate the relevance score, which introduces little
overhead regarding to the index building. We will demon-
strate this via experiments in the performance evaluation
Section 7.

3.3 The Basic Scheme

Before giving our main result, we first start with a
straightforward yet ideal scheme, where the security of
our ranked searchable encryption is the same as previous
SSE schemes, i.e., the user gets the ranked results without
letting cloud server learn any additional information more
than the access pattern and search pattern. However, this is
achieved with the tradeoff of efficiency: namely, either
should the user wait for two round-trip time for each
search request, or he may even lose the capability to
perform top-k retrieval, resulting the unnecessary commu-
nication overhead. We believe the analysis of these
demerits will lead to our main result. Note that the basic
scheme we discuss here is tightly pertained to recent work
[12], though our focus is on secure result ranking. Actually,
it can be considered as the most simplified version of
searchable symmetric encryption that satisfies the non-
adaptive security definition of [12].

Basic scheme. Let k; ‘; ‘0; p be security parameters that
will be used in Keygen(�). Let E be a semantically secure
symmetric encryption algorithm: E : f0; 1g‘ � f0; 1gr !
f0; 1gr. Let � be the maximum number of files containing
some keyword wi 2W for i ¼ 1; . . . ;m, i.e., � ¼ maxmi¼1Ni.
This value does not need to be known in advance for the
instantiation of the scheme. Also, let f be a pseudorandom
function and � be a collision resistant hash function with the
following parameters:

. f : f0; 1gk � f0; 1g� ! f0; 1g‘

. � : f0; 1gk � f0; 1g� ! f0; 1gp where p > logm.

In practice, �ð�Þ will be instantiated by off-the-shelf hash
functions like SHA-1, in which case p is 160 bits.

In the Setup phase

1. The data owner initiates the scheme by calling

KeyGen(1k; 1‘; 1‘
0
; 1p), generates random keys x;

y �R f0; 1gk, z �R f0; 1g‘, and outputs K ¼ fx; y;
z; 1‘; 1‘

0
; 1pg.

2. The data owner then builds a secure inverted index
from the file collection C by calling BuildIndex

(K; C). The details are given in Table 2. The ‘0

padding 00s indicate the valid posting entry.

In the Retrieval phase

1. For an interested keyword w, the user generates a
t r a p d o o r T ¼ ð�xðwÞ; fyðwÞÞ b y c a l l i n g
TrapdoorGenðwÞ.

2. Upon receiving the trapdoor Tw, the server calls
SearchIndexðI ; TwÞ: first locates the matching list of
the index via �xðwÞ, uses fyðwÞ to decrypt the entries,

1470 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 8, AUGUST 2012

and then sends back the corresponding files accord-
ing to FðwÞ, together with their associated encrypted
relevance scores.

3. User decrypts the relevance scores via key z and gets
the ranked search results.

Discussion. The above scheme clearly satisfies the
security guarantee of SSE, i.e., only the access pattern and
search pattern are leaked. However, the ranking is done on
the user side, which may bring in huge post processing
overhead. Moreover, sending back all the files consumes
large undesirable bandwidth. One possible way to reduce
the communication overhead is that server first sends back
all the valid entries hidðFijÞkEzðSijÞi, where 1 � j � Ni. User
then decrypts the relevance score and sends cloud server
another request to retrieve the most relevant files (top-k
retrieval) by the rank-ordered decrypted scores. As the size
of valid entries hidðFijÞkEzðSijÞi is far less than the
corresponding files, significant amount of bandwidth is
expected to be saved, as long as user does not retrieve all
the matching files. However, the most obvious disadvan-
tage is the two round-trip time for each search request of
every user. Also note that in this way, server still learns
nothing about the value of relevance scores, but it knows
the requested files are more relevant than the unrequested
ones, which inevitably leaks more information than the
access pattern and search pattern.

4 EFFICIENT RANKED SEARCHABLE SYMMETRIC

ENCRYPTION SCHEME

The above straightforward approach demonstrates the core
problem that causes the inefficiency of ranked searchable
encryption. That is how to let server quickly perform the
ranking without actually knowing the relevance scores. To
effectively support ranked search over encrypted file
collection, we now resort to the newly developed crypto-
graphic primitive—order preserving symmetric encryption
[14] to achieve more practical performance. Note that by
resorting to OPSE, our security guarantee of RSSE is
inherently weakened compared to SSE, as we now let
server know the relevance order. However, this is the
information we want to trade off for efficient RSSE, as

discussed in previous Section 3. We will first briefly discuss
the primitive of OPSE and its pros and cons. Then, we show
how we can adapt it to suit our purpose for ranked
searchable encryption with an “as-strong-as-possible” se-
curity guarantee. Finally, we demonstrate how to choose
different scheme parameters via concrete examples.

4.1 Using Order Preserving Symmetric Encryption

The OPSE is a deterministic encryption scheme where the
numerical ordering of the plaintexts gets preserved by the
encryption function. Boldyreva et al. [14] gives the first
cryptographic study of OPSE primitive and provides a
construction that is provably secure under the security
framework of pseudorandom function or pseudorandom
permutation. Namely, considering that any order-preser-
ving function gð�Þ from domain D ¼ f1; . . . ;Mg to range
R ¼ f1; . . . ; Ng can be uniquely defined by a combination
of M out of N ordered items, an OPSE is then said to be
secure if and only if an adversary has to perform a brute
force search over all the possible combinations of M out of
N to break the encryption scheme. If the security level is
chosen to be 80 bits, then it is suggested to choose M ¼
N=2 > 80 so that the total number of combinations will be
greater than 280. Their construction is based on an
uncovered relationship between a random order-preserving
function (which meets the above security notion) and the
hypergeometric probability distribution, which will later be
denoted as HGD. We refer readers to [14] for more details
about OPSE and its security definition.

At the first glance, by changing the relevance score
encryption from the standard indistinguishable symmetric
encryption scheme to this OPSE, it seems to follow directly
that efficient relevance score ranking can be achieved just
like in the plaintext domain. However, as pointed out
earlier, the OPSE is a deterministic encryption scheme. This
inherent deterministic property, if not treated appropri-
ately, will still leak a lot of information as any deterministic
encryption scheme will do. One such information leakage is
the plaintext distribution. Take Fig. 2, for example, which
shows a skewed relevance score distribution of keyword
“network,” sampled from 1,000 files of our test collection.
For easy exposition, we encode the actual score into
128 levels in domain from 1 to 128. Due to the deterministic

WANG ET AL.: ENABLING SECURE AND EFFICIENT RANKED KEYWORD SEARCH OVER OUTSOURCED CLOUD DATA 1471

TABLE 2
The Details of BuildIndex(�) for Basic Scheme

property, if we use OPSE directly over these sampled
relevance scores, the resulting ciphertext shall share exactly
the same distribution as the relevance score in Fig. 2. On the
other hand, previous research works [18], [22] have shown
that the score distribution can be seen as keyword specific.
Specifically, in [22], the authors have shown that the TF
distribution of certain keywords from the Enron e-mail
corpus3 can be very peaky, and thus result in significant
information leak for the corresponding keyword. In [18], the
authors further point out that the TF distribution of the
keyword in a given file collection usually follows a power
law distribution, regardless of the popularity of the key-
word. Their results on a few test file collections show that
not only different keywords can be differentiated by the
slope and value range of their TF distribution, but even the
normalized TF distributions, i.e., the original score distribu-
tions (see (2)), can be keyword specific. Thus, with certain
background information on the file collection, such as
knowing it contains only technical research papers, the
adversary may be able to reverse engineer the keyword
“network” directly from the encrypted score distribution
without actually breaking the trapdoor construction, nor
does the adversary need to break the OPSE.

4.2 One-to-Many Order-Preserving Mapping

Therefore, we have to modify the OPSE to suit our purpose.
In order to reduce the amount of information leakage from
the deterministic property, an one-to-many OPSE scheme is
thus desired, which can flatten or obfuscate the original
relevance score distribution, increase its randomness, and
still preserve the plaintext order. To do so, we first briefly
review the encryption process of original deterministic
OPSE, where a plaintext m in domain D is always mapped
to the same random-sized nonoverlapping interval bucket
in range R, determined by a keyed binary search over the
range R and the result of a random HGD sampling
function. A ciphertext c is then chosen within the bucket
by using m as the seed for some random selection function.

Our one-to-many order-preserving mapping employs the

random plaintext-to-bucket mapping of OPSE, but incorpo-

rates the unique file IDs together with the plaintext m as the

random seed in the final ciphertext chosen process. Due to

the use of unique file ID as part of random selection seed, the

same plaintextmwill no longer be deterministically assigned

to the same ciphertext c, but instead a random value within

the randomly assigned bucket in rangeR. The whole process

is shown in Algorithm 1, adapted from [14]. Here,

TapeGenð�Þ is a random coin generator and HYGEINVð�Þ is

the efficient function implemented in Matlab as our instance

for the HGDð�Þ sampling function. The correctness of our

one-to-many order-preserving mapping follows directly

from the Algorithm 1. Note that our rational is to use the

OPSE block cipher as a tool for different application

scenarios and achieve better security, which is suggested

by and consistent with [14]. Now, if we denote OPM as our

one-to-many order-preserving mapping function with para-

meter: OPM : f0; 1g‘ � f0; 1glog jDj ! f0; 1glog jRj, our pro-

posed RSSE scheme can be described as follows:
In the Setup phase

1. The data owner calls KeyGen(1k; 1‘; 1‘
0
; 1p; jDj; jRj),

generates random keys x; y; z �R f0; 1gk, and out-
puts K ¼ fx; y; z; 1‘; 1‘0 ; 1p; jDj; jRjg.

2. The data owner calls BuildIndex(K; C) to build
the inverted index of collection C, and uses
OPMfzðwiÞð�Þ instead of Eð�Þ to encrypt the scores.

In the Retrieval phase

1. The user generates and sends a trapdoor Tw ¼
ð�xðwÞ; fyðwÞÞ for an interested keyword w. Upon
receiving the trapdoor Tw, the cloud server first
locates the matching entries of the index via �xðwÞ,
and then uses fyðwÞ to decrypt the entry. These are
the same with basic approach.

2. The cloud server now sees the file identifiers
hidðFijÞi (suppose w ¼ wi and thus j 2 f1; . . . ; Nig)
and their associated order-preserved encrypted
scores: OPMfzðwiÞðSijÞ.

3. The server then fetches the files and sends back them
in a ranked sequence according to the encrypted
relevance scores fOPMfzðwiÞðSijÞg, or sends top-k
most relevant files if the optional value k is provided.

Algorithm 1. One-to-Many Order-Preserving

Mapping-OPM
1: procedure OPMKðD;R;m; idðF ÞÞ
2: while jDj! ¼ 1 do

3: fD;Rg BinarySearch(K;D;R;m);

4: end while

5: coin �R TapeGenðK; ðD;R; 1km; idðF ÞÞÞ;
6: c �coin R;
7: return c;

8: end procedure

9: procedure BinarySearchðK;D;R;mÞ;
10: M jDj; N jRj;
11: d minðDÞ � 1; r minðRÞ � 1;

12: y rþ dN=2e;
13: coin �R TapeGenðK; ðD;R; 0kyÞÞ;
14: x �R dþHYGEINVðcoin;M;N; y� rÞ;
15: if m � x then

16: D fdþ 1; . . . ; xg;
17: R frþ 1; . . . ; yg;
18: else

1472 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 8, AUGUST 2012

Fig. 2. An example of relevance score distribution.

3. http://www.cs.cmu.edu/~enron/.

19: D fxþ 1; . . . ; dþMg;
20: R fyþ 1; . . . ; rþNg;
21: end if

22: return fD;Rg;
23: end procedure

Discussion. With the help of order-preserving mapping,
now the server can accordingly rank the files as efficiently
as for the unencrypted score. The reason that we use
different keys (fzðwiÞ) to encrypt the relevance score for
different posting lists is to make the one-to-many mapping
more indistinguishable. Therefore, the same relevance
score appearing in different lists of the index I will be
mapped to different “bucket” in R. Combining this with
our one-to-many mapping will randomize the encrypted
values from an overall point of view. Thus, we can further
mitigate the useful information revealed to the cloud
server, who may be consistently interested at the statistical
analysis on the encrypted numeric value to infer the
underlying information.

4.3 Choosing Range Size of R
We have highlighted our idea, but there still needs some care
for implementation. Our purpose is to discard the peaky
distribution of the plaintext domain as much as possible
during the mapping, so as to eliminate the predictability of
the keyword specific score distribution on the domain D.
Clearly, according to our random one-to-many order-
preserving mapping (Algorithm 1 line 6), the larger size
the range R is set, the less peaky feature will be preserved.
However, the range size jRj cannot be arbitrarily large as it
may slow down the efficiency of HGD function. Here, we
use the min-entropy as our tool to find the size of range R.

In information theory, the min-entropy of a discrete
random variable X is defined as:

H1ðXÞ ¼ � logðmaxaPr½X ¼ a�Þ:

The higher H1ðXÞ is, the more difficult the X can be
predicted. We say X has high min-entropy if H1ðXÞ 2
!ðlog kÞ [17], where k is the bit length used to denote all the
possible states of X . Note that one possible choice of H1ðXÞ
is ðlog kÞc where c > 1. Based on this high min-entropy
requirement as a guideline, we aim to find appropriate size
of the range R, which not only helps discard the peaky
feature of the plaintext score distribution after score
encryption, but also maintains within relatively small size
so as to ensure the order-preserving mapping efficiency.

Let max denote the maximum possible number of score
duplicates within the index I , and let � denote the average
number of scores to be mapped within each posting list
IðwiÞ. Without loss of generality, we let D ¼ f1; . . . ;Mg and
thus jDj ¼M. Then, based on above high min-entropy
requirement, we can find the least possible jRj satisfying
the following equation:

max=
�
jRj � 1

2

5 logMþ12�
�

� 2�ðlogðlog jRjÞÞc : ð3Þ

Here, we use the result of [14] that the total recursive calls of
HGD sampling during an OPSE operation is a function
belonging toOðlogMÞ, and is at most 5 logM þ 12 on average,

which is the expected number of times the rangeRwill be cut
into half during the function call of BinarySearchð�Þ. We also
assume that the one-to-many mapping is truly random
(Algorithm 1 line 5-6). Therefore, the numerator of left-hand
side of the above equation is indeed the expected largest
number of duplicates after mapping. Dividing the numerator
by �, we have on the left-hand side the expected largest
probability of a plaintext score mapped to a given encrypted
value in range R. If we denote the range size jRj in bits, i.e.,
k ¼ log jRj, we can rewrite the above inequation as

max � 25 logMþ12

2k � � ¼ max �M
5

2k�12 � � � 2�ðlog kÞc : ð4Þ

With the established index I , it is easy to determine the
appropriate range size jRj.

Following the same example of keyword “network” in
Fig. 2, where max=� ¼ 0:06 (i.e., the max score duplicates is
60 and the average length of the posting list is 1,000), one
can determine the ciphertext range size jRj ¼ 246, when the
relevance score domain is encoded as 128 different levels
and c is set to be 1.1, as indicated in Fig. 3. Note that smaller
size of range jRj is possible, when we replace the upper
bound 5 logM þ 12 by other relatively “loose” function of
M belonging to OðlogMÞ, e.g., 5 logM or 4 logM. Fig. 3
shows that the range jRj size can be further reduced to 234,
or 227, respectively. In Section 7, we provide detailed
experimental results and analysis on the performance and
effectiveness of these different parameter selections.

5 SECURITY ANALYSIS

We evaluate the security of the proposed scheme by
analyzing its fulfillment of the security guarantee described
in Section 2. Namely, the cloud server should not learn the
plaintext of either the data files or the searched keywords.
We start from the security analysis of our one-to-many
order-preserving mapping. Then, we analyze the security
strength of the combination of one-to-many order-preser-
ving mapping and SSE.

5.1 Security Analysis for One-to-Many Mapping

Our one-to-many order-preserving mapping is adapted
from the original OPSE, by introducing the file ID as the

WANG ET AL.: ENABLING SECURE AND EFFICIENT RANKED KEYWORD SEARCH OVER OUTSOURCED CLOUD DATA 1473

Fig. 3. Size selection of range R, given max=� ¼ 0:06, M ¼ 128, and
c ¼ 1:1. The LHS and RHS denote the corresponding side of the (4).
Two example choices of OðlogMÞ to replace 5 logM þ 12 in (4) are also
included.

additional seed in the final ciphertext chosen process. Since
such adaptation only functions at the final ciphertext
selection process, it has nothing to do with the randomized
plaintext-to-bucket mapping process in the original OPSE.
In other words, the only effect of introducing file ID as the
new seed is to make multiple plaintext duplicates m’s no
longer deterministically mapped to the same ciphertext c,
but instead mapped to multiple random values within the
assigned bucket in range R. This helps flatten the
ciphertext distribution to some extent after mapping.
However, such a generic adaptation alone only works well
when the number of plaintext duplicates are not large. In
case there are many duplicates of plaintext m, its
corresponding ciphertext distribution after mapping may
still exhibit certain skewness or peaky feature of the
plaintext distribution, due to the relative small size of
assigned bucket selected from range R.

This is why we propose to appropriately enlarge R in
Section 4.3. Note that in the original OPSE, size R is
determined just to ensure the number of different
combinations between D and R is larger than 280. But
from a practical perspective, properly enlarging R in our
one-to-many case further aims to ensure the low duplicates
(with high probability) on the ciphertext range after
mapping. This inherently increases the difficulty for
adversary to tell precisely which points in the range R

belong to the same score in the domain D, making the
order-preserving mapping as strong as possible. Note that
one disadvantage of our scheme, compared to the original
OPSE, is that fixing the range size R requires preknow-
ledge on the percentage of maximum duplicates among all
the plaintexts (i.e., max=� in (3)). However, such extra
requirement can be easily met in our scenario when
building the searchable index.

5.2 Security Analysis for Ranked Keyword Search

Compared to the original SSE, the new scheme embeds the
encrypted relevance scores in the searchable index in
addition to file ID. Thus, the encrypted scores are the only
additional information that the adversary can utilize against
the security guarantee, i.e., keyword privacy and file
confidentiality. Due to the security strength of the file
encryption scheme, the file content is clearly well protected.
Thus, we only need to focus on keyword privacy.

From previous discussion, we know that as long as data
owner properly chooses the range size R sufficiently large,
the encrypted scores in the searchable index will only be a
sequence of order-preserved numeric values with very low
duplicates. Though adversary may learn partial information
from the duplicates (e.g., ciphertext duplicates may indicate
very high corresponding plaintext duplicates), the fully
randomized score-to-bucket assignment (inherited from
OPSE) and the highly flattened one-to-many mapping still
makes it difficult for the adversary to predict the original
plaintext score distribution, let alone reverse engineer the
keywords. Also note that we use different order-preserving
encryption keys for different posting lists, which further
reduces the information leakage from an overall point of
view. Thus, the keyword privacy is also well preserved in
our scheme.

6 FURTHER ENHANCEMENTS AND INVESTIGATIONS

Above discussions have shown how to achieve an efficient
RSSE system. In this section, we give further study on how
to make the RSSE system more readily deployable in
practice. We start with some practical considerations on the
index update and show how our mechanism can gracefully
handle the case of score dynamics without introducing
recomputation overhead on data owners. For enhanced
quality of service assurance, we next study how the RSSE
system can support ranked search result authentication.
Finally, we uncover the reversible property of our one-to-
many order-preserving mapping, which may find indepen-
dent use in other interesting application scenarios.

6.1 Supporting Score Dynamics

In Cloud Computing, outsourced file collection might not
only be accessed but also updated frequently for various
application purposes (see [19], [20], [21], for example).
Hence, supporting the score dynamics in the searchable
index for an RSSE system, which is reflected from the
corresponding file collection updates, is thus of practical
importance. Here, we consider score dynamics as adding
newly encrypted scores for newly created files, or modify-
ing old encrypted scores for modification of existing files in
the file collection. Ideally, given a posting list in the inverted
index, the encryption of all these newly changed scores
should be incorporated directly without affecting the order
of all other previously encrypted scores, and we show that
our proposed one-to-many order-preserving mapping does
exactly that. Note that we do not consider file deletion
scenarios because it is not hard to infer that deleting any file
and its score does not affect the ranking orders of the
remaining files in the searchable index.

This graceful property of supporting score dynamics is
inherited from the original OPSE scheme, even though we
made some adaptations in the mapping process. This can be
observed from the BinarySearchð�Þ procedure in Algorithm 1,
where the same score will always be mapped to the same
random-sized nonoverlapping bucket, given the same
encryption key and the same parameters of the plaintext
domain D and ciphertext range R. Because the buckets
themselves are nonoverlapping, the newly changed scores
indeed do not affect previously mapped values. Thus, with
this property, the data owner can avoid the recomputation of
the whole score encryption for all the file collection, but
instead just handle those changed scores whenever neces-
sary. Note that the scores chosen from the same bucket are
treated as ties and their order can be set arbitrarily.

Supporting score dynamics is also the reason why we do
not use the naive approach for RSSE, where data owner
arranges file IDs in the posting list according to relevance
score before outsourcing. As whenever the file collection
changes, the whole process, including the score calculation,
would need to be repeated, rendering it impractical in case
of frequent file collection updates. In fact, supporting score
dynamics will save quite a lot of computation overhead
during the index update, and can be considered as a
significant advantage compared to the related work [18],
[22], as will be discussed in Section 8.

1474 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 8, AUGUST 2012

6.2 Authenticating Ranked Search Result

In practice, cloud servers may sometimes behave beyond
the semihonest model. This can happen either because
cloud server intentionally wants to do so for saving cost
when handling large number of search requests, or there
may be software bugs, or internal/external attacks. Thus,
enabling a search result authentication mechanism that can
detect such unexpected behaviors of cloud server is also of
practical interest and worth further investigation.

To authenticate a ranked search result (or Top-k
retrieval), one need to ensure: 1) the retrieved results are
the most relevant ones; 2) the relevance sequence among the
results are not disrupted. To achieve this two authentication
requirements, we propose to utilize the one way hash chain
technique, which can be added directly on top of the
previous RSSE design. Let Hð�Þ denote some cryptographic
one-way hash function, such as SHA-1. Our mechanism
requires one more secret value u in the Setup phase to be
generated and shared between data owner and users. The
details go as follows:

In the Setup phase

1. When data owner calls BuildIndex(K; C), he picks
an initial seed si0 ¼ fuðwiÞ for each posting list of
keyword wi 2W . Then, he sorts the posting list
based on the encrypted scores.

2. Suppose idðFi1Þ; idðFi2Þ; . . . ; idðFivÞ denotes the or-
dered sequence of file identifiers based on the
encrypted relevance scores. The data owner gener-
ates a hash chain

Hi
1 ¼ HðidðFi1Þksi0Þ; Hi

2 ¼ HðidðFi2ÞkHi
1Þ; . . . ;

Hi
v ¼ HðidðFivÞkHi

v�1Þ:

3. For each corresponding entry h0‘0 kidðFijÞkEzðSijÞi,
0 � j � v, in the posting list of keyword wi, the data
owner inserts the corresponding hash value of the
hash chain and gets h0‘0 kidðFijÞkHi

jkEzðSijÞi. All other
operations, like entry encryption and entry permuta-
tion remain the same as previous RSSE scheme.

In the Retrieval phase

1. Whenever the cloud server is transmitting back top-
k most relevant files, the corresponding k hash
values embedded in the posting list entries should
also be sent back as a correctness proof.

2. The user simply generates the initial seed si0 ¼ fuðwiÞ
and verifies the received portion of the hash chain
accordingly.

Discussion. It is easy to see that the secret seed shared
between data owner and user ensures the authentication
requirement 1, while the one-way property of hash chain
guarantees the authentication requirement 2. The hash chain
itself is a lightweight technique, which can be easily
incorporated in our RSSE system with negligible computa-
tion/performance overhead on both data owner and users.
The only tradeoff for achieving this high quality of data
search assurance is the storage overhead on cloud, due to the
augmented size of posting list. But we believe this should be
easily acceptable because of the cheap storage cost today.

6.3 Reversing One-to-Many Order-Preserving
Mapping

For any order-preserving mapping process, being reversible
is very useful in many practical situations, especially when

the underlying plaintext values need to be modified or
utilized for further computation purposes. While OPSE,

designed as a block cipher, by default has this property, it is
not yet clear whether our one-to-many order-preserving

mapping can be reversible too. In the following, we give a
positive answer to this question.

Again, the reversibility of the proposed one-to-many

order-preserving mapping can be observed from the
BinarySearchð�Þ procedure in Algorithm 1. The intuition is

that the plaintext-to-bucket mapping process of OPSE is
reversible. Namely, as long as the ciphertext is chosen from

the certain bucket, one can always find through the
BinarySearchð�Þ procedure to uniquely identify the plaintext

value, thus making the mapping reversible. For complete-
ness, we give the details in Algorithm 2, which again we

acknowledge that is adapted from [14]. The corresponding
reversed mapping performance is reported in Section 7.2.

Algorithm 2. Reversing One-to-many Order-preserving

Mapping-ROPM
1: procedure OPMKðD;R; c; idðF ÞÞ
2: while jDj! ¼ 1 do

3: fD;Rg BinarySearch(K;D;R; c);
4: end while

5: m minðDÞ;
6: coin �R TapeGenðK; ðD;R; 1km; idðF ÞÞÞ;
7: w �coin R;

8: if w ¼ c then return m;
9: end if

10: return ?;

11: end procedure

12: procedure BinarySearchðK;D;R; cÞ;
13: M jDj; N jRj;
14: d minðDÞ � 1; r minðRÞ � 1;

15: y rþ dN=2e;
16: coin �R TapeGenðK; ðD;R; 0kyÞÞ;
17: x �R dþHYGEINVðcoin;M;N; y� rÞ;
18: if c � y then

19: D fdþ 1; . . . ; xg;
20: R frþ 1; . . . ; yg;
21: else

22: D fxþ 1; . . . ; dþMg;
23: R fyþ 1; . . . ; rþNg;
24: end if

25: return fD;Rg;
26: end procedure

7 PERFORMANCE ANALYSIS

We conducted a thorough experimental evaluation of the
proposed techniques on real data set: Request for comments

(RFC) database [23]. At the time of writing, the RFC
database contains 5,563 plain text entries and totals about

277 MB. This file set contains a large number of technical

WANG ET AL.: ENABLING SECURE AND EFFICIENT RANKED KEYWORD SEARCH OVER OUTSOURCED CLOUD DATA 1475

keywords, many of which are unique to the files in which
they are discussed. Our experiment is conducted using C
programming language on a Linux machine with dual Intel
Xeon CPU running at 3.0 GHz. Algorithms use both openssl
and MATLAB libraries. The performance of our scheme is
evaluated regarding the effectiveness and efficiency of our
proposed one-to-many order-preserving mapping, as well
as the overall performance of our RSSE scheme, including
the cost of index construction as well as the time necessary
for searches. Note that though we use a single server in the
experiment, in practice we can separately store the search-
able index and the file collections on different virtualized
service nodes in the commercial public cloud, such as the
Amazon EC2 and Amazon S3, respectively. In that way,
even if data owners choose to store their file collection in
different geographic locations for increased availability, the
underlying search mechanism, which always takes place
based on the searchable index, will not be affected at all.

7.1 Effectiveness of One-to-Many Order Preserving
Mapping

As indicated in Section 4.2, applying the proposed one-to-
many mapping will further randomize the distribution of
the encrypted values, which mitigates the chances of reverse
engineering the keywords by adversary. Fig. 4 demonstrates
the effectiveness of our proposed scheme, where we choose
jRj ¼ 246. The two figures show the value distribution after
one-to-many mapping with as input the same relevance
score set of keyword “network,” but encrypted with two
different random keys. Note that due to our safe choice of jRj
(see Section 4.3) and the relative small number of total scores
per posting list (up to 1,000), we do not have any duplicates
after one-to-many order-preserving score mapping. How-
ever, for easy comparison purposes, the distribution in Fig. 4
is obtained with putting encrypted values into 128 equally
spaced containers, as we do for the original score. Compared
to previous Fig. 2, where the distribution of raw score is
highly skewed, it can be seen that we indeed obtain two
differently randomized value distribution. This is due to
both the randomized score-to-bucket assignment inherited
from the OPSE, and the one-to-many mapping. The former
allows the same score mapped to different random-sized
nonoverlapping bucket, while the latter further obfuscates
the score-to-ciphertext mapping accordingly. This confirms

with our security analysis that the exposure of frequency
information to the adversaries (the server in our case),
utilized to reverse engineer the keyword, can be further
minimized.

7.2 Efficiency of One-to-Many Order-Preserving
Mapping

As shown in Section 4.3, the efficiency of our proposed one-
to-many order-preserving mapping is determined by both
the size of score domain M and the range R. M affects how
many rounds (OðlogMÞ) the procedure BinarySearchð�Þ or
HGDð�Þ should be called. Meanwhile, M together with R
both impact the time consumption for individual HGDð�Þ
cost. That’s why the time cost of single one-to-many
mapping order-preserving operation goes up faster than
logarithmic, as M increases. Fig. 5 gives the efficiency
measurement of our proposed scheme. The result repre-
sents the mean of 100 trials. Note that even for large range
R, the time cost of one successful mapping is still finished
in 200 milliseconds, when M is set to be our choice 128.
Specifically, for jRj ¼ 240, the time cost is less than
70 milliseconds. This is far more efficient than the order-
preserving approach used in [18], [22], where [22] needs to
keep lots of metadata to prebuild many different buckets on
the data owner side, and [18] requires the presampling and
training of the relevance scores to be outsourced. However,
our approach only needs the pregeneration of random keys.

As shown in Section 6.3, our one-to-many order-
preserving mapping is in fact a reversible process. For
completeness, the corresponding reverse mapping perfor-
mance results are reported in Fig. 6. Compared to Fig. 5, the
reverse mapping process is almost as fast as the original
mapping process. This can be explained from the Algo-
rithms 1 and 2 of the two approaches. Namely, for the same
prefixed system parameters, both processes share the same
number of recursive calls for the BinarySearchð�Þ procedure,
thus resulting the similar performance.

7.3 Performance of Overall RSSE System

7.3.1 Index Construction

To allow for ranked keyword search, an ordinary inverted
index attaches a relevance score to each posting entry. Our
approach replaces the original scores with the ones after

1476 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 8, AUGUST 2012

Fig. 4. Demonstration of effectiveness for one-to-many order-preserving
mapping. The mapping is derived with the same relevance score set of
keyword “network,” but encrypted with two different random keys.

Fig. 5. The time cost of single one-to-many order-preserving mapping
operation, with regarding to different choice of parameters: the domain
size of relevance score M and the range size of encrypted score jRj.

one-to-many order-preserving mapping. Specifically, it only
introduces the mapping operation cost, additional bits to
represent the encrypted scores, and overall entry encryption
cost, compared to the original inverted index construction.
Thus, we only list in Table 3 our index construction
performance for a collection of 1,000 RFC files. The index
size and construction time listed were both perkeyword,
meaning the posting list construction varies from one
keyword to another. This was chosen as it removes the
differences of various keyword set construction choices,
allowing for a clean analysis of just the overall performance
of the system. Note that the additional bits of encrypted
scores is not a main issue due to the cheap storage cost on
nowadays cloud servers.

Our experiment shows the total per list building time is
5.44 s, while the raw-index only consumes 2.31 s on average.
Here, the raw-index construction corresponds to the steps 1
and 2 of the BuildIndex Algorithm in Table 2, which
includes the plaintext score calculations and the inverted
index construction but without considering security. To have
a better understanding of the extra overhead introduced by
RSSE, we also conducted an experiment for the basic
searchable encryption scheme that supports only single
keyword-based Boolean search. The implementation is
based on the algorithm in Table 2, excluding the score
calculations and the corresponding score encryptions. Build-
ing such a searchable index for secure Boolean search costs
1.88 s per posting list. In both comparisons, we conclude that
the score encryption via proposed one-to-many order-
preserving mapping is the dominant factor for index
construction time, which costs about 70 ms per valid entries
in the posting list. However, given that the index construc-
tion is the one-time cost before outsourcing and the enabled
secure server side ranking functionality significantly im-
proves subsequent file retrieval accuracy and efficiency, we
consider the overhead introduced is reasonably acceptable.

Please note that our current implementation is not fully
optimized. Further improvement on the implementation
efficiency can be expected and is one of our important future
work.

7.3.2 Efficiency of Search

The search time includes fetching the posting list in the
index, decrypting, and rank ordering each entries. Our
focus is on top-k retrieval. As the encrypted scores are order
preserved, server can process the top-k retrieval almost as
fast as in the plaintext domain. Note that the server does not
have to traverse every posting list for each given trapdoor,
but instead uses a tree-based data structure to fetch the
corresponding list. Therefore, the overall search time cost is
almost as efficient as on unencrypted data. Fig. 7 list our
search time cost against the value of k increases, for the
same index constructed above.

8 RELATED WORK

Searchable encryption. Traditional searchable encryption
[8], [9], [10], [11], [12], [24], [25] has been widely studied as a
cryptographic primitive, with a focus on security definition
formalizations and efficiency improvements. Song et al. [8]
first introduced the notion of searchable encryption. They
proposed a scheme in the symmetric key setting, where
each word in the file is encrypted independently under a
special two-layered encryption construction. Thus, a
searching overhead is linear to the whole file collection
length. Goh [9] developed a Bloom filter-based per-file
index, reducing the workload for each search request
proportional to the number of files in the collection. Chang
and Mitzenmacher [11] also developed a similar per-file
index scheme. To further enhance search efficiency,
Curtmola et al. [12] proposed a per-keyword-based
approach, where a single encrypted hash table index is
built for the entire file collection, with each entry consisting
of the trapdoor of a keyword and an encrypted set of related
file identifiers. Searchable encryption has also been con-
sidered in the public-key setting. Boneh et al. [10] presented
the first public-key-based searchable encryption scheme,
with an analogous scenario to that of [8]. In their
construction, anyone with the public key can write to the
data stored on the server but only authorized users with the
private key can search. As an attempt to enrich query
predicates, conjunctive keyword search over encrypted data

WANG ET AL.: ENABLING SECURE AND EFFICIENT RANKED KEYWORD SEARCH OVER OUTSOURCED CLOUD DATA 1477

Fig. 6. The time cost of single reverse one-to-many order-preserving
mapping operation, with regarding to different choice of parameters:
the domain size of relevance score M and the range size of encrypted
score jRj.

Fig. 7. The time cost for top-k retrieval.

TABLE 3
Per Keyword Index Construction Overhead for 1,000 RFC Files

have also been proposed in [26], [27], [28]. Aiming at
tolerance of both minor typos and format inconsistencies in
the user search input, fuzzy keyword search over encrypted
cloud data has been proposed by Li et al. in [29]. Very
recently, a privacy-assured similarity search mechanism
over outsourced cloud data has been explored by Wang et
al. in [34]. Note that all these schemes support only Boolean
keyword search, and none of them support the ranked
search problem which we are focusing on in this paper.

Following our research on secure ranked search over
encrypted data, very recently, Cao et al. [30] propose a
privacy-preserving multikeyword ranked search scheme,
which extends our previous work in [1] with support of
multikeyword query. They choose the principle of “coordi-
nate matching,” i.e., as many matches as possible, to capture
the similarity between a multikeyword search query and data
documents, and later quantitatively formalize the principle
by a secure inner product computation mechanism. One
disadvantage of the scheme is that cloud server has to linearly
traverse the whole index of all the documents for each search
request, while ours is as efficient as existing SSE schemes with
only constant search cost on cloud server.

Secure top-k retrieval from Database Community [18],
[22] from database community are the most related work to
our proposed RSSE. The idea of uniformly distributing
posting elements using an order-preserving cryptographic
function was first discussed in [22]. However, the order-
preserving mapping function proposed in [22] does not
support score dynamics, i.e., any insertion and updates of the
scores in the index will result in the posting list completely
rebuilt. Zerr et al. [18] use a different order-preserving
mapping based on presampling and training of the relevance
scores to be outsourced, which is not as efficient as our
proposed schemes. Besides, when scores following different
distributions need to be inserted, their score transformation
function still needs to be rebuilt. On the contrary, in our
scheme the score dynamics can be gracefully handled, which
is an important benefit inherited from the original OPSE. This
can be observed from the BinarySearchð�Þ procedure in
Algorithm 1, where the same score will always be mapped
to the same random-sized nonoverlapping bucket, given the
same encryption key. In other words, the newly changed
scores will not affect previous mapped values. We note that
supporting score dynamics, which can save quite a lot of
computation overhead when file collection changes, is a
significant advantage in our scheme. Moreover, both works
above do not exhibit thorough security analysis which we do
in the paper.

Other related techniques. Allowing range queries over
encrypted data in the public key settings has been studied
in [31], [32], where advanced privacy-preserving schemes
were proposed to allow more sophisticated multiattribute
search over encrypted files while preserving the attributes’
privacy. Though these two schemes provide provably
strong security, they are generally not efficient in our
settings, as for a single search request, a full scan and
expensive computation over the whole encrypted scores
corresponding to the keyword posting list are required.
Moreover, the two schemes do not support the ordered
result listing on the server side. Thus, they cannot be
effectively utilized in our scheme since the user still does
not know which retrieved files would be the most relevant.

Difference from conference version. Portions of the
work presented in this paper have previously appeared as
an extended abstract in [1]. We have revised the paper a lot
and improved many technical details as compared to [1].
The primary improvements are as follows: First, we
provide new Section 6.1 to study and address some
practical considerations of the RSSE design. Second,
we provide Section 6.2 to thoroughly study the result
completeness authentication. The mechanism design incur
negligible overhead on data users, and further enhances the
quality of data search service. Third, we extend our
previous result on order-preserving one-to-many mapping
and show in Section 6.3 that this mapping process is indeed
reversible, which can be very useful in many practical
applications. For completeness, we provide the correspond-
ing algorithm for the reverse mapping and also include its
performance results. Finally, the related work has been
substantially improved, which now faithfully reflects many
recent advancements on privacy-preserving search over
encrypted data.

9 CONCLUDING REMARKS

In this paper, as an initial attempt, we motivate and solve
the problem of supporting efficient ranked keyword search
for achieving effective utilization of remotely stored
encrypted data in Cloud Computing. We first give a basic
scheme and show that by following the same existing
searchable encryption framework, it is very inefficient to
achieve ranked search. We then appropriately weaken the
security guarantee, resort to the newly developed crypto
primitive OPSE, and derive an efficient one-to-many order-
preserving mapping function, which allows the effective
RSSE to be designed. We also investigate some further
enhancements of our ranked search mechanism, including
the efficient support of relevance score dynamics, the
authentication of ranked search results, and the reversibility
of our proposed one-to-many order-preserving mapping
technique. Through thorough security analysis, we show
that our proposed solution is secure and privacy preser-
ving, while correctly realizing the goal of ranked keyword
search. Extensive experimental results demonstrate the
efficiency of our solution.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation (NSF) under grants CNS-1054317, CNS-1116939,
CNS-1156318, and CNS-1117111, and by Amazon web
service research grant. The authors would like to thank
Nathan Chenette for helpful discussions. Thanks also to Reza
Curtmola for valuable suggestions in preparing the earlier
version of the manuscript. A preliminary version [1] of this
paper was presented at the 30th International Conference on
Distributed Computing Systems (ICDCS ’10).

REFERENCES

[1] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure Ranked
Keyword Search over Encrypted Cloud Data,” Proc. IEEE 30th Int’l
Conf. Distributed Computing Systems (ICDCS ’10), 2010.

[2] P. Mell and T. Grance, “Draft Nist Working Definition of Cloud
Computing,” http://csrc.nist.gov/groups/SNS/cloud-
computing/index.html, Jan. 2010.

1478 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 8, AUGUST 2012

[3] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A.
Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia, “Above the Clouds: A Berkeley View of Cloud Comput-
ing,” Technical Report UCB-EECS-2009-28, Univ. of California,
Berkeley, Feb. 2009.

[4] Cloud Security Alliance “Security Guidance for Critical Areas of
Focus in Cloud Computing,” http://www.cloudsecurityalliance.
org, 2009.

[5] Z. Slocum, “Your Google Docs: Soon in Search Results?” http://
news.cnet.com/8301-17939_109-10357137-2.html, 2009.

[6] B. Krebs, “Payment Processor Breach May Be Largest Ever,”
http://voices.washingtonpost.com/securityfix/2009/01/
payment_processor_breach_may_b.html, Jan. 2009.

[7] I.H. Witten, A. Moffat, and T.C. Bell, Managing Gigabytes:
Compressing and Indexing Documents and Images. Morgan Kauf-
mann, May 1999.

[8] D. Song, D. Wagner, and A. Perrig, “Practical Techniques for
Searches on Encrypted Data,” Proc. IEEE Symp. Security and
Privacy, 2000.

[9] E.-J. Goh, “Secure Indexes,” Technical Report 2003/216, Cryptol-
ogy ePrint Archive, http://eprint.iacr.org/, 2003.

[10] D. Boneh, G.D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public
Key Encryption with Keyword Search,” Proc. Int’l Conf. Advances
in Cryptology (EUROCRYP ’04), 2004.

[11] Y.-C. Chang and M. Mitzenmacher, “Privacy Preserving Keyword
Searches on Remote Encrypted Data,” Proc. Int’l Conf. Applied
Cryptography and Network Security (ACNS ’05), 2005.

[12] R. Curtmola, J.A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
Symmetric Encryption: Improved Definitions and Efficient Con-
structions,” Proc. ACM Conf. Computer and Comm. Security (CCS
’06), 2006.

[13] A. Singhal, “Modern Information Retrieval: A Brief Overview,”
IEEE Data Eng. Bull., vol. 24, no. 4, pp. 35-43, 2001.

[14] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-
Preserving Symmetric Encryption,” Proc. Int’l Conf. Advances in
Cryptology (Eurocrypt ’09), 2009.

[15] J. Zobel and A. Moffat, “Exploring the Similarity Space,” SIGIR
Forum, vol. 32, no. 1, pp. 18-34, 1998.

[16] O. Goldreich and R. Ostrovsky, “Software Protection and
Simulation on Oblivious Rams,” J. ACM, vol. 43, no. 3, pp. 431-
473, 1996.

[17] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and
Efficiently Searchable Encryption,” Proc. Ann. Int’l Cryptology
Conf. Advances in Cryptology (Crypto ’07), 2007.

[18] S. Zerr, D. Olmedilla, W. Nejdl, and W. Siberski, “Zerber+r: Top-k
Retrieval from a Confidential Index,” Proc. Int’l Conf. Extending
Database Technology: Advances in Database Technology (EDBT ’09),
2009.

[19] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling Public
Verifiability and Data Dynamics for Storage Security in Cloud
Computing,” IEEE Trans. Parallel and Distributed Systems, vol. 22,
no. 5, pp. 847-859, May 2011.

[20] C. Wang, Q. Wang, K. Ren, and W. Lou, “Towards Secure and
Dependable Storage Services in Cloud Computing,” IEEE Trans.
Service Computing, to appear.

[21] C. Wang, S. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-
Preserving Public Auditing for Secure Cloud Storage,” IEEE Trans.
Computers, to appear.

[22] A. Swaminathan, Y. Mao, G.-M. Su, H. Gou, A.L. Varna, S. He, M.
Wu, and D.W. Oard, “Confidentiality-Preserving Rank-Ordered
Search,” Proc. Workshop Storage Security and Survivability, 2007.

[23] RFC “Request for Comments Database,” http://www.ietf.org/
rfc.html, 2012.

[24] B. Waters, D. Balfanz, G. Durfee, and D. Smetters, “Building an
Encrypted and Searchable Audit Log,” Proc. Ann. Network and
Distributed Security Symp. (NDSS ’04), 2004.

[25] F. Bao, R. Deng, X. Ding, and Y. Yang, “Private Query on
Encrypted Data in Multi-User Settings,” Proc. Int’l Conf. Informa-
tion Security Practice and Experience (ISPEC ’08), 2008.

[26] P. Golle, J. Staddon, and B.R. Waters, “Secure Conjunctive
Keyword Search over Encrypted Data,” Proc. Second Int’l Conf.
Applied Cryptography and Network Security (ANCS ’04), pp. 31-45,
2004.

[27] L. Ballard, S. Kamara, and F. Monrose, “Achieving Efficient
Conjunctive Keyword Searches over Encrypted Data,” Proc. Int’l
Conf. Information and Comm. Security (ICICS ’05), 2005.

[28] Y.H. Hwang and P.J. Lee, “Public Key Encryption with Con-
junctive Keyword Search and Its Extension to a Multi-User
System,” Proc. Int’l Conf. Pairing-Based Cryptography (Pairing ’07),
pp. 31-45, 2007.

[29] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy
Keyword Search over Encrypted Data in Cloud Computing,” Proc.
IEEE INFOCOM ’10, 2010.

[30] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-Preserving
Multi-Keyword Ranked Search over Encrypted Cloud Data,” Proc.
IEEE INFOCOM ’11, 2011.

[31] D. Boneh and B. Waters, “Conjunctive, Subset, and Range Queries
on Encrypted Data,” Proc. Fourth Conf. Theory of Cryptography (TCC
’07), pp. 535-554, 2007.

[32] E. Shi, J. Bethencourt, H. Chan, D. Song, and A. Perrig, “Multi-
Dimensional Range Query over Encrypted Data,” Proc. IEEE
Symp. Security and Privacy, 2007.

[33] K. Ren, C. Wang, and Q. Wang, “Security Challenges for the
Public Cloud,” IEEE Internet Computing, vol. 16, no. 1, pp. 69-73,
2012.

[34] C. Wang, K. Ren, S. Yu, K. Mahendra, and R. Urs, “Achieving
Usable and Privacy-Assured Similarity Search over Outsourced
Cloud Data,” Proc. IEEE INFOCOM, 2012.

Cong Wang received the BE and ME degrees from Wuhan University,
China, in 2004 and 2007, respectively. He is currently working toward
PhD degree in the Electrical and Computer Engineering Department at
Illinois Institute of Technology. He has been a summer intern at Palo
Alto Research Centre in 2011. His research interests are in the areas of
applied cryptography and network security, with current focus on secure
data service outsourcing in Cloud Computing. He is a student member of
the IEEE.

Ning Cao received the BE and ME degrees from Xi’an Jiaotong
University, China, in 2002 and 2008, respectively. He is currently
working toward the PhD degree in the Electrical and Computer
Engineering Department at Worcester Polytechnic Institute. His re-
search interests are in the areas of security, privacy, and reliability in
Cloud Computing. He is a student member of the IEEE.

Kui Ren received the PhD degree from Worcester Polytechnic Institute.
He is currently an assistant professor in the Electrical and Computer
Engineering Department at the Illinois Institute of Technology. His
research expertise includes Cloud Computing and Security, Wireless
Security, and Smart Grid Security. His research is supported by US
National Science Foundation (NSF) (TC, NeTS, CSR, NeTS-Neco), US
Department of Energy (DoE), AFRL, and Amazon. He is a recipient of
National Science Foundation Faculty Early Career Development
(CAREER) Award in 2011. He received the Best Paper Award from
IEEE ICNP 2011. He serves as an associate editor for IEEE Wireless
Communications and IEEE Transactions on Smart Grid. He is a senior
member of the IEEE and a member of the ACM.

Wenjing Lou received the BE and ME degrees in computer science and
engineering from Xi’an Jiaotong University, China, in 1993 and 1996,
respectively. She received the MASc degree from Nanyang Technolo-
gical University, Singapore, in 1998 and the PhD degree in electrical and
computer engineering from University of Florida in 2003. She joined the
Computer Science Department at Virginia Polytechnic Institute and
State University in 2011 and has been an associate professor with
tenure since then. Prior to that, she had been on the faculty of the
Department of Electrical and Computer Engineering at Worcester
Polytechnic Institute, where she had been an assistant professor since
2003 and was promoted to associate professor with tenure in 2009. She
is currently serving on the editorial board of five journals: IEEE
Transactions on Wireless Communications, IEEE Transactions on
Smart Grid, IEEE Wireless Communications Letter, Elsevier Computer
Networks, and Springer Wireless Networks. She has served as TPC
cochair for the security symposium of several leading IEEE conferences.
She was named Joseph Samuel Satin Distinguished fellow in 2006 by
WPI. She was the recipient of the US National Science Foundation
(NSF) Faculty Early Career Development (CAREER) award in 2008.
She received the Sigma Xi Junior Faculty Research Award at WPI in
2009. She is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WANG ET AL.: ENABLING SECURE AND EFFICIENT RANKED KEYWORD SEARCH OVER OUTSOURCED CLOUD DATA 1479

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

