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Abstract—Cognitive radio networks (CRNs) have the potential to utilize spectrum efficiently and are positioned to be the core
technology for the next-generation multi-hop wireless networks. An important problem for such networks is its capacity. We study
this problem for CRNs in the SINR (signal-to-interference-and-noise-ratio) model, which is considered to be a better characterization
of interference (but also more difficult to analyze) than disk graph model. The main difficulties of this problem are two-fold. First, SINR
is a non-convex function of transmission powers; an optimization problem in the SINR model is usually a non-convex program and
NP-hard in general. Second, in the SINR model, scheduling feasibility and the maximum allowed flow rate on each link are determined
by SINR at the physical layer. To maximize capacity, it is essential to follow a cross-layer approach; but joint optimization at physical
(power control), link (scheduling), and network (flow routing) layers with the SINR function is inherently difficult. In this paper, we give
a mathematical characterization of the joint relationship among these layers. We devise a solution procedure that provides a (1 − ε)

optimal solution to this complex problem, where ε is the required accuracy. Our theoretical result offers a performance benchmark
for any other algorithms developed for practical implementation. Using numerical results, we demonstrate the efficacy of the solution
procedure and offer quantitative understanding on the interaction of power control, scheduling, and flow routing in a CRN.

Index Terms—Theory, multi-hop cognitive radio network, non-linear optimization, SINR model, cross-layer, capacity.
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1 INTRODUCTION

COGNITIVE radio networks (CRNs) have great po-
tential to improve spectrum efficiency and will be

the core technology for the next-generation multi-hop
wireless networks. Within such a network, each node is
equipped with a cognitive radio (CR) for wireless com-
munications, which is capable of sensing the available
frequency bands (i.e., those bands that are currently not
used by primary users) and reconfiguring RF to switch
to newly-selected frequency bands.

From wireless networking perspective, CR offers a
whole new set of research problems in algorithm design
and protocol implementation. To appreciate such oppor-
tunity, we compare CR with a closely related wireless
technology called multi-channel multi-radio (MC-MR) [2],
[20], [21]. First, MC-MR employs traditional hardware-
based radio technology and thus each radio can only
operate on a single channel at a time. In contrast, the
radio technology in CR is software-based; a soft radio is
capable of switching frequency bands on a per-packet
basis. As a result, the number of concurrent frequency
bands utilized by a CR is typically much larger than by
MC-MR. Second, a common assumption for MC-MR is
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that there is a set of “common channels” available at ev-
ery node in the network. Such assumption is hardly true
for CRNs, where each node may have a different set of
available frequency bands. These important differences
between MC-MR and CR suggest that algorithm design
for CRNs is substantially more complex than that for
MC-MR networks. In some sense, an MC-MR network
can be considered as a special case of a CRN.

The capacity of a CRN is usually considered a key
problem in fundamental understanding. In this paper,
we aim to study this problem in the SINR (signal-to-
interference-and-noise-ratio) model. In this model, con-
current transmissions are allowed and interference (due
to transmissions by non-intended transmitter) is treated
as noise. A transmission is successful if and only if SINR
at the receiver is greater than or equal to a threshold.
Moreover, the achieved transmission capacity is also a
function of SINR (via Shannon’s formula). The current
understanding is that the SINR model is better than the
so-called “disk graph model” (or “protocol model” [15])
for interference characterization.

Although the SINR model is thought to be more
realistic than the protocol model, a number of problems
arise when trying to carry out mathematical analysis
in it. First, SINR at a receiver not only depends on
the transmission power at the corresponding transmitter,
but also depends on the transmission powers at other
transmitters. Mathematically, SINR is a non-convex func-
tion of multiple variables. Many optimization problems
in the SINR model are non-convex problems and NP-
hard. Second, since both scheduling feasibility and the
maximum allowed flow rate on each link are determined
by SINR, an optimal solution to maximize capacity must
be developed with joint consideration of network, link,
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and physical layers. Due to these difficulties, theoretical
results on CRNs in the SINR model remain limited.

In this paper, we investigate the network capacity
problem for multi-hop CRNs in the SINR model. For
a given instance where each node has access to a set
of available bands (likely heterogeneous), we study the
network capacity problem via a cross-layer optimization
approach. In particular, we consider how to maximize
the rates of a set of user communication sessions, with
joint consideration at physical layer (via power control),
link layer (via frequency band scheduling), and net-
work layer (via flow routing). We give a mathematical
characterization of these layers and formulate a mixed
integer nonlinear program (MINLP) problem. For this
optimization problem, we first identify core optimization
variables and core optimization space based on the phys-
ical significance of the variables. We devise an algorithm
based on the branch-and-bound framework to obtain a
(1− ε) optimal solution.

Although branch-and-bound framework is standard,
many components within this framework are not spec-
ified. We design the following problem-specific com-
ponents. (1) We propose a reformulation-linearization
technique (RLT) to develop a tight linear relaxation so as
to obtain a tight upper bound. (2) For the lower bound,
we design a local search algorithm by analyzing and
removing infeasibility in the linear relaxation solution.
(3) For problem partitioning, we propose to choose a
partition variable based on its physical significance. With
these problem-specific designs, the overall solution can
find a (1 − ε) optimal solution much faster than brute-
force exhaustive search.

Our theoretical result offers a solution for a given
network instance and can serve as a performance bench-
mark for a multi-hop CRN. Such a result is not yet
available in the literature. If the available bands at
each node in the network varies on a relatively larger
time scale than the execution of our solution, then our
solution can be used to compute a (1− ε) optimal result
for each time period during which the available bands
at each node is static. If the available bands at each node
in the network varies on a relatively smaller time scale,
then the performance benchmark can be obtained offline
by our solution. One can use our result as a reference
performance benchmark to measure the quality of some
other proposed algorithms (possibly heuristic, despite
distributed) that are developed for actual deployment.

The remainder of this paper is organized as follows.
In Section 2, we review related work on cross-layer
optimization. Section 3 gives a mathematical character-
ization of power control, scheduling, and routing in
the SINR model for multi-hop CRNs. In Section 4, we
reformulate the optimization problem and obtain a clean
and compact formulation. Section 5 analyzes the core
optimization space and describes the main algorithm to
obtain (1− ε) optimal solution. In Section 6, we develop
tight upper and lower bounds inside the main algorithm.
We discuss how to interpret and apply our theoretical
result in Section 7. Section 8 presents numerical results
and Section 9 concludes this paper.

2 RELATED WORK
There have been active research efforts on cross-layer
optimization for wireless networks. Many of these efforts
are based on the disk graph model (see, e.g., [2], [18],
[20], [24] for wireless networks with traditional radios
and [26], [28], [33], [34] for CRNs in particular). Under
this model, the impact of interference from neighboring
nodes is solely determined by whether or not a node
falls within the interference range of other transmit-
ting nodes. The controversy surrounding (or arguments
against) the protocol model is that a binary decision of
whether or not interference exists (based on interference
range) does not accurately capture physical layer charac-
teristics. As a result, the accuracy (and validity) of results
developed under protocol model remains unclear.

In contrast, the SINR model is widely regarded as a
better model for interference characterization. Although
such model is preferred, there are many difficulties in
carrying out analysis with this model due to the com-
putational complexity SINR involves, particularly when
we study cross-layer optimization in a multi-hop envi-
ronment. As a result, many previous efforts were done
on single-hop networks, e.g., [3], [10], [13], [14], [17]. For
multi-hop networks, various simplifications have been
employed. For example, in [4], the authors assumed
synchronized power control, where transmission power
at each node in the network is adjustable but is “synchro-
nized” (identical). Needless to say, such synchronization
in power control cannot offer optimal network perfor-
mance. There are also some efforts studying cross-layer
problems involving two layers instead of three layers
(physical, link, and network, as we do in this paper).
For example, in [6], Bhatia and Kodialam optimized
power control and routing, but assumed some frequency
hopping mechanism is in place for scheduling, which
helps simplify joint consideration of scheduling. In [9],
Elbatt and Ephremides optimized joint power control
and scheduling, but assumed routing was given a priori.
In [27], Shu and Krunz studied how to maximize the
total rate on all links in a CRN, with the consideration
of power control and channel assignment. For cross-layer
optimization in the SINR model involving three layers
(physical, link, and network), nearly all existing efforts
(e.g., [7], [8]) followed a “layer-decoupled” approach to
simplify analysis. Under such an approach, the final so-
lution is obtained by determining algorithm/mechanism
for one layer at a time and then piecing up them together
instead of solving a joint optimization problem. Due to
de-coupling in the solution procedure, these approaches
are heuristic at best and cannot offer any performance
guarantee.

On another line of research, various efforts have been
made to study asymptotic behavior (or scaling laws) of
wireless networks (see, e.g., [1], [5], [15], [16], [19], [21],
[22], [29], [30], [31], [32]). These efforts differ from ours
in this paper, which focuses on designing optimal cross-
layer algorithms for a finite-sized network.

3 MATHEMATICAL MODELS
We consider a multi-hop network with a set of CR nodes
N . Each node i ∈ N senses its environment and finds a
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set of available frequency bands Mi for the given time
instance (i.e., those bands that are currently not used
by primary users), which may not be the same as the
available frequency bands at other nodes. We assume
that the bandwidth of each frequency band (channel) is
W . Denote M the union of all frequency bands among
all the nodes in the network, i.e., M =

⋃
i∈N Mi. Denote

Mij = Mi

⋂Mj , which is the set of frequency bands
that is common between nodes i and j and thus can
be used for communication between these two nodes.
In the rest of this section, we present mathematical
characterization of each layer and obtain a formulation
for the capacity problem in this study.

3.1 Power Control, Scheduling, and Their Relation-
ship in the SINR Model
Power control on each transmitting node at the physical
layer affects SINR at a receiving node. These SINR values
in turn will affect scheduling decision at link layer. That
is, if a node is scheduled to receive, then its SINR must
be at least α (minimum requirement). Therefore, power
control and scheduling are tightly coupled via SINR and
cannot be modeled separately. In this section, we formu-
late power control, scheduling, and their relationship in
the SINR model.

Scheduling for transmission at each node in the net-
work can be done either in frequency domain or time
domain. In this paper, we consider scheduling in fre-
quency domain in the form of assigning frequency bands
(channels). Since time domain based formulation is sim-
ilar to that for frequency domain, our approach can be
extended to time domain based formulation and will
yield similar results.

To maximize the capacity, there may still be concurrent
transmissions within the same channel (and thus inter-
ference). Denote scheduling variables xm

ij as follows.

xm
ij =

{
1 If node i transmits data to node j on band m,
0 otherwise.

Due to interference, a node i can use a band m for
transmitting to only a single node j or receiving from
only a single node k. That is,

m∈Mk∑

k∈N ,k 6=i

xm
ki +

m∈Mj∑

j∈N ,j 6=i

xm
ij ≤ 1 (i ∈ N ,m ∈Mi) . (1)

For power control, we assume that the transmission
power at a node can be tuned to a finite number of
levels between 0 and Pmax. To model this discrete power
control, we introduce an integer parameter Q that repre-
sents the total number of power levels to which a trans-
mitter can be adjusted, i.e., transmission power can be
0, 1

QPmax,
2
QPmax, · · · , Pmax. Denote qm

ij ∈ {0, 1, 2, · · · , Q}
the integer levels for transmission power. Clearly, when
node i does not transmit data to node j on band m, qm

ij

is 0. Thus, power control and scheduling is coupled with
each other via the following relationship.

qm
ij

{ ∈ [1, Q] If xm
ij = 1,

= 0 otherwise. (i, j∈N , i 6=j, m∈Mij) (2)

Consider a transmission from node i to node j on band
m. When there is interference from concurrent transmis-
sions on the same band, SINR at node j, denoted as sm

ij ,
is

sm
ij =

gij
qm

ij

Q Pmax

ηW +
∑m∈Mk

k∈N ,k 6=i

∑m∈Mh

h∈N ,h 6=k gkj
qm

kh

Q Pmax

(i, j ∈ N , i 6= j,m ∈Mij) , (3)

where η is the ambient Gaussian noise density and gij

is the propagation gain from node i to node j.
Note that in theory, for any small SINR, the corre-

sponding capacity is still positive (by Shannon’s capacity
formula). But in practice, if SINR is too small, then the
achieved capacity will also be very small. In this case,
such a weak link will not be very useful to carry traffic
flow. Thus, we may use a threshold to remove such weak
links from considerations. In this regard, we introduce
a threshold for SINR, i.e., a transmission from node i
to node j on band m is considered successful if and
only if sm

ij ≥ α. Then we have the following coupling
relationship for scheduling (xm

ij ) and SINR (sm
ij ).

xm
ij = 1 ⇐⇒ sm

ij ≥ α (i, j∈N , i 6=j, m∈Mij) . (4)

3.2 Routing and Link Capacity
We assume there is a set of L active user communication
(unicast) sessions in the network. Denote s(l) and d(l) the
source and destination nodes of session l ∈ L and r(l)
the minimum rate requirement (in b/s) of session l. In
our study, we aim to maximize a common scaling factor
K for all session rates. That is, we aim to determine the
maximum K such that a rate of K·r(l) can be transmitted
from s(l) to d(l) for each session l ∈ L in the network.

To route each data flow from its source node to its
corresponding destination node, multi-hop relaying may
be necessary, due to limited transmission power at each
node. Further, for optimality and flexibility, it is desirable
to allow flow splitting and multi-path routing. This is
because a single-path flow routing for a session is overly
restrictive and is unlikely to offer optimal solution.

Mathematically, this can be modeled as follows. De-
note fij(l) the data rate on link i → j that is attributed
to session l. If node i is the source node of session l, i.e.,
i = s(l), then

Mij 6=∅∑

j∈N ,j 6=i

fij(l) = r(l)K (l∈L, i=s(l)) . (5)

If node i is an intermediate relay node for flow attributed
to session l, i.e., i 6= s(l) and i 6= d(l), then

Mij 6=∅∑

j∈N ,j 6=i,s(l)

fij(l) =
Mki 6=∅∑

k∈N ,k 6=i,d(l)

fki(l)

(l ∈ L, i ∈ N , i 6= s(l), d(l)) . (6)

If node i is the destination node of session l, i.e., i = d(l),
then

Mki 6=∅∑

k∈N ,k 6=i

fki(l) = r(l)K (l∈L, i=d(l)) . (7)
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In addition to the above flow balance equations at each
node i ∈ N for session l ∈ L, the aggregated flow rates
on each radio link cannot exceed this link’s capacity. For
a link i → j, we have

s(l)6=j,d(l)6=i∑

l∈L
fij(l) ≤

∑

m∈Mij

W log2(1 + sm
ij )

(i, j ∈ N , i 6= j,Mij 6= ∅) . (8)

This constraint shows the coupling relationship between
flow routing and SINR.

3.3 The Capacity Problem
In this paper, we study a capacity problem for multi-hop
CRNs. For capacity problem, the simplest objective is the
sum of throughput achieved by all sessions. However,
such an objective may lead to biased rate allocation
among sessions [23]. Another objective is maxmin, i.e.,
maximizing the minimum throughput among all ses-
sions. Maxmin has been used in a number of works (e.g.,
[15], [21]) to ensure fairness. In this work, we consider
how to maximize a common scaling factor K for all
sessions under some given minimum rate requirements
r(l), i.e., what is the maximum factor K such that a rate
of K · r(l) can be transmitted from s(l) to d(l) for each
session l ∈ L in the network. Note that this objective is
a more general form of maxmin in the sense that when
r(l) = 1 for each session l ∈ L, this objective becomes
the maxmin throughput objective. On the other hand,
when r(l) 6= 1, i.e., the minimum required rate for each
session l may be different from session to session, the
objective function becomes to maximize each session’s
rate proportional to its minimum rate requirement.

Putting together the objective and all the constraints
for power control, scheduling, and flow routing, we have
the following formulation.

Max K

s.t. constraints (1)–(8)

xm
ij ∈ {0, 1}, qm

ij ∈ {0, 1, 2, · · · , Q}, tm
i , sm

ij ≥ 0

(i, j ∈ N , i 6= j, m ∈Mij)

K, fij(l) ≥ 0 (l∈L, i, j∈N , i 6=j, i 6=d(l), j 6=s(l),Mij 6=∅) .

Note that we assume Mi, the set of current available
bands at node i, is given for a particular time instance.
The solution to the above optimization problem will
offer the best performance for this given instance. Since
Mi may change over time, the optimal solution may also
change over time.

4 REFORMULATION

The formulation in Section 3.3 is still in a “raw” form and
is the first step in setting up our cross-layer optimization
problem. Much work needs to be done to put it into
a more “clean” and compact form that is amenable
to mathematical operation. In this section, we analyze
each constraint carefully and perform this necessary and
important reformulation step.

• The constraint described in (2) is not suitable for
mathematical programming. We reformulate it with
the following linear constraint.

xm
ij ≤ qm

ij ≤ Qxm
ij (i, j∈N , i 6=j, m∈Mij) . (9)

It is easy to verify that this constraint is equivalent
to (2).
A closer look at (9), in conjunction with (3) and (4),
suggests that (9) can be further simplified to remove
redundancy. That is, we find that (3) and (4) yield
xm

ij ≤ qm
ij and thus the left-hand-side (LHS) of (9)

can be removed. To show this, we consider the two
cases for xm

ij . For the case when xm
ij = 0, xm

ij ≤ qm
ij

holds by the definition of qm
ij . For the case when

xm
ij = 1, by (4), sm

ij must be positive. Then by (3), qm
ij

must also be positive. By the definition of qm
ij , qm

ij ≥ 1
when it is positive. Therefore, qm

ij ≥ xm
ij . So (9) (or

(2)) can be replaced by the following constraint.

qm
ij ≤ Qxm

ij (i, j∈N , i 6=j,m∈Mij) . (10)

• Constraint (3) is in the form of a fraction. In a math-
ematical programming, product is a better form. We
can re-write it as

sm
ij =

gij
qm

ij

Q Pmax

ηW +
∑m∈Mk

k∈N ,k 6=i

∑m∈Mh

h∈N ,h 6=k gkj
qm

kh

Q Pmax

=
gijq

m
ij

ηWQ
Pmax

+
∑m∈Mk

k∈N ,k 6=i

∑m∈Mh

h∈N ,h 6=k gkjqm
kh

(i, j ∈ N , i 6= j,m ∈Mij) .

This is equivalent to

ηWQ

Pmax
sm

ij +
m∈Mk∑

k∈N ,k 6=i

m∈Mh∑

h∈N ,h 6=k

gkjq
m
khsm

ij − gijq
m
ij = 0

(i, j ∈ N , i 6= j, m ∈Mij) . (11)

Note that in (11), qm
kh and sm

ij are variables while all
other symbols are constants. Thus, we have a double
sum of nonlinear terms qm

khsm
ij in (11). To reduce the

number of nonlinear terms, denote

tmk =
m∈Mh∑

h∈N ,h6=k

qm
kh (k ∈ N , m ∈Mk) . (12)

Then (11) can be re-written as

ηWQ

Pmax
sm

ij +
m∈Mk∑

k∈N ,k 6=i

gkjt
m
k sm

ij − gijq
m
ij = 0

(i, j ∈ N , i 6= j,m ∈Mij) , (13)

which now only involves a single sum of nonlinear
terms tmk sm

ij . Note that by introducing new variables
tmk , we decrease the number of nonlinear terms from
O(|N |4 · |M|) in (11) to O(|N |3 · |M|) in (13).

• Similar to (2), the constraint described in (4) is not
suitable for mathematical programming. We now
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Max K

s.t.
∑m∈Mk

k∈N ,k 6=i
xm

ki +
∑m∈Mj

j∈N ,j 6=i
xm

ij ≤ 1 (i ∈ N , m ∈Mi)

qm
ij −Qxm

ij ≤ 0 (i, j ∈ N , i 6= j, m ∈Mij)

∑m∈Mj

j∈N ,j 6=i
qm
ij − tmi = 0 (i ∈ N , m ∈Mi)

ηWQ
Pmax

sm
ij +

∑m∈Mk

k∈N ,k 6=i
gkjtmk sm

ij − gijqm
ij = 0 (i, j ∈ N , i 6= j, m ∈Mij)

αxm
ij − sm

ij ≤ 0 (i, j ∈ N , i 6= j, m ∈Mij)

∑Mij 6=∅
j∈N ,j 6=i

fij(l)− r(l)K = 0 (l ∈ L, i = s(l))

∑Mij 6=∅
j∈N ,j 6=i,s(l)

fij(l)−
∑Mki 6=∅

k∈N ,k 6=i,d(l)
fki(l) = 0 (l ∈ L, i ∈ N , i 6= s(l), d(l))

∑s(l)6=j,d(l)6=i

l∈L fij(l)−
∑

m∈Mij
W log2(1 + sm

ij ) ≤ 0 (i, j ∈ N , i 6= j,Mij 6= ∅)

xm
ij ∈ {0, 1}, qm

ij ∈ {0, 1, 2, · · · , Q}, tmi , sm
ij ≥ 0 (i, j ∈ N , i 6= j, m ∈Mij)

K, fij(l) ≥ 0 (l ∈ L, i, j ∈ N , i 6= j, i 6= d(l), j 6= s(l),Mij 6= ∅)

Fig. 1. Problem formulation.

show that (4) can be eliminated once we have (10),
(13) and the following new constraint.

sm
ij ≥ αxm

ij (i, j∈N , i 6=j, m∈Mij) . (14)

We now verify that (10), (13), and (14) can lead to
the following two relationships described in (4), i.e.,

xm
ij = 1 ⇒ sm

ij ≥ α (i, j∈N , i 6=j,m∈Mij) (15)

sm
ij ≥ α ⇒ xm

ij = 1 (i, j∈N , i 6=j,m∈Mij) (16)

First we consider the case when xm
ij = 1. By (14), we

have sm
ij ≥ α, i.e., (15) holds. Now consider the case

when sm
ij ≥ α. By (13), since tmk ’s are non-negative

variables and η, W,Q, Pmax, gkj , gij are all positive
constants, qm

ij must be positive. Then by (10), xm
ij

must be positive when qm
ij is positive. Since xm

ij can
only take 0 or 1 by its definition, xm

ij must be 1. That
is, (16) holds.

• Finally, we can prove that (7) is redundant once we
have (5) and (6). Thus, we will leave (5) and (6) in
the formulation and remove constraint (7).

With these careful reformulations, we now have a
cleaner and more compact problem formulation, which
is shown in Fig. 1.

5 SOLUTION OVERVIEW
For the optimization problem in Fig. 1, Q, η, W,α, Pmax,
gij , and r(l) are constants and K,xm

ij , qm
ij , tmi , sm

ij , and
fij(l) are optimization variables. This formulation is a
mixed integer non-linear program (MINLP), which is
NP-hard in general [11] and cannot be solved by CPLEX.
In Section 5.1, we first analyze the intricate relationship
among the variables and identify the core variables
among all the variables. We show that the dependent
variables can be derived once these core variables are
fixed. We call the optimization space for the core vari-
ables as the core optimization space. In Section 5.2, we
present the main algorithm on how to determine an
optimal solution in the core optimization space.

5.1 Core Variables and Their Optimization Space
For the complex MINLP problem, its variables include
xm

ij , qm
ij , tmi , sm

ij , fij(l), and K, which collectively con-
tribute a seemingly huge optimization space. However,
a closer investigation of these variables show that they
are inter-dependent. In particular, we find that xm

ij and
qm
ij variables are “core” variables and other variables can

all be derived by core variables. As a result, we can focus
our study on an optimization space by the core variables,
which is a much smaller space.

We now show how to derive dependent variables
from core variables. For tmi and sm

ij variables, they can
be derived by (12) and (13), respectively, once xm

ij and
qm
ij are given. For fij(l) variables and K variable, their

optimal values can be determined by a linear program
(LP). That is, once we have the values for all xm

ij and
qm
ij variables and we have computed the values for

all tmi and sm
ij variables by (12) and (13), respectively,

the optimization problem reduces to a network flow
problem, which is an LP.

With this new understanding of optimization vari-
ables, we can now focus our efforts on the core variables
xm

ij and qm
ij .

5.2 Main Algorithm
In this section, we describe our main algorithm, which is
based on the branch-and-bound framework [25]. Those
readers who are familiar with branch-and-bound can
skip this section and go to Section 6, where we de-
sign problem specific algorithms for each component of
branch-and-bound.

Under branch-and-bound, we aim to provide a (1− ε)
optimal solution, where ε is a small positive constant
reflecting our desired accuracy in the final solution. In
case we set ε = 0, an optimal solution can be obtained.

We can start by developing upper and lower bounds
(UB and LB) for the objective function (see Fig. 2(a)
for an example). Branch-and-bound requires to develop
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(c) Iteration 3.
Fig. 2. Illustration of branch-and-bound.

Initialization:
1. Let the initial best solution ψε = ∅ and the initial lower

bound LB = −∞.
2. Determine initial value set for each core variable.
3. Initialize the problem list to include the original problem,

denoted this problem as problem 1.
4. Obtain an upper bound UB1 for problem 1.
Iteration:
5. Select problem z that has the maximum UBz among all

problems in the problem list.
6. Update upper bound UB = UBz .
7. Find a feasible solution ψz with a lower bound LBz .
8. If (LBz > LB) {
9. Update ψε = ψz and LB = LBz .
10. If LB ≥ (1− ε)UB, we stop with a (1− ε) optimal

solution ψε.
11. Otherwise, remove all problems z′ with LB ≥

(1− ε)UBz′ from the problem list. }
12. Build two new problems z1 and z2 from problem z.
13. Remove problem z from the problem list.
14. Obtain UBz1 and UBz2 for problems z1 and z2.
15. If LB <(1−ε)UBz1, add problem z1 into the problem list.

If LB <(1−ε)UBz2, add problem z2 into the problem list.
16. Go to the next iteration.

Fig. 3. Main algorithm.

problem specific algorithms for finding upper and lower
bounds, which will be described in Section 6. After we
obtain the two bounds, we compare the gap between
them. If the upper and lower bounds are close to each
other, i.e., LB ≥ (1 − ε)UB, then the feasible solution
corresponding to the current lower bound LB is (1− ε)
optimal and we are done.

Otherwise, we need to further narrow the gap between
UB and LB. To do this, branch-and-bound partitions
the original problem 1 into two new problems 2 and 3
(see Fig. 2(b)). This is accomplished by choosing an
appropriate core variable xm

ij or qm
ij and dividing its value

set into two smaller sets. The choice of specific core
variables is important as its affects complexity. We will
show how to do this in Section 6.

After partitioning, the core optimization space is di-
vided into two sub-spaces for problems 2 and 3, re-
spectively. We again obtain upper bounds UB2 and UB3

and lower bounds LB2 and LB3 for problems 2 and 3,
respectively. Since the optimization space of problems 2
and 3 are both smaller than that of problem 1, we
can have tighter upper bounds, i.e., max{UB2, UB3} ≤
UB1, which in turn yield better lower bounds with
max{LB2, LB3} ≥ LB1 for our maximization problem
(see Fig. 2(b)). Then the upper bound of the original

problem is updated as UB = max{UB2, UB3} and the
lower bound is updated as LB = max{LB2, LB3}. As
a result, we now have a smaller gap between UB and
LB. Then we either have a (1 − ε) optimal solution (if
LB ≥ (1− ε)UB) or continue to choose a problem with
the maximum upper bound (Problem 3 in Fig. 2(b)) and
perform partitioning for this problem. By choosing a
problem with the maximum upper bound for partition,
we can ensure that UB is decreased after each partition.

An important technique in branch-and-bound is that
we can remove some problems from further consider-
ation and thus reduce complexity. In particular, if we
find a problem z with LB ≥ (1− ε)UBz (see problem 4
in Fig. 2(c)), we conclude that this problem can be re-
moved from further consideration without loss of (1−ε)
optimality.

Figure 3 shows the main algorithm. Since our core
optimization space is finite (with finite number of core
variables xm

ij and qm
ij , and each core variable has a finite

integer value set), the branch-and-bound algorithm is
guaranteed to converge (even for ε = 0) [25]. Here,
branch-and-bound is much faster than brute-force ex-
haustive search because non-improving problems are
being removed during the process to avoid wasting
precious cycle time in future computation. As a result,
for all the network instances studied in Section 8, brute-
force exhaustive search cannot find an optimal solution,
while our algorithm can find near-optimal solutions for
all network instances (with various network sizes and
user sessions).

6 DETERMINING BOUNDS AND PARTITIONING
PROBLEMS

The main algorithm was presented in Fig. 3. Several
components (i.e., determining upper and lower bounds,
partitioning problems) in this main algorithm are yet to
be developed. These algorithms should exploit problem
specific properties to optimize performance. In this sec-
tion, we design algorithms for these components.

6.1 Determining Upper Bound

To find an upper bound for a problem in branch-and-
bound (see lines 4 and 14 in Fig. 3), we propose to
construct a linear relaxation. That is to say, we linearize
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Max K

s.t.
∑m∈Mk

k∈N ,k 6=i
xm

ki +
∑m∈Mj

j∈N ,j 6=i
xm

ij ≤ 1 (i ∈ N , m ∈Mi)

qm
ij −Qxm

ij ≤ 0 (i, j ∈ N , i 6= j, m ∈Mij)

∑m∈Mj

j∈N ,j 6=i
qm
ij − tmi = 0 (i ∈ N , m ∈Mi)

ηWQ
Pmax

sm
ij +

∑m∈Mk

k∈N ,k 6=i
gkjum

ijk − gijqm
ij = 0 (i, j ∈ N , i 6= j, m ∈Mij)

Linear constraints for um
ijk (i, j, k ∈ N , i 6= j, m ∈Mij , m ∈Mk)

αxm
ij − sm

ij ≤ 0 (i, j ∈ N , i 6= j, m ∈Mij)

∑Mij 6=∅
j∈N ,j 6=i

fij(l)− r(l)K = 0 (l ∈ L, i = s(l))

∑Mij 6=∅
j∈N ,j 6=i,s(l)

fij(l)−
∑Mki 6=∅

k∈N ,k 6=i,d(l)
fki(l) = 0 (l ∈ L, i ∈ N , i 6= s(l), d(l))

∑s(l)6=j,d(l)6=i

l∈L fij(l)−
∑

m∈Mij

W
ln 2

cm
ij ≤ 0 (i, j ∈ N , i 6= j,Mij 6= ∅)

Linear constraints for cm
ij (i, j ∈ N , i 6= j, m ∈Mij)

tmi , sm
ij , cm

ij , um
ijk ≥ 0 (i, j, k ∈ N , i 6= j, m ∈Mij , m ∈Mk)

K, fij(l) ≥ 0 (l ∈ L, i, j ∈ N , i 6= j, i 6= d(l), j 6= s(l),Mij 6= ∅)

(x,q) ∈ Ωz

Fig. 5. Linear relaxation.
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ij
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ij
m

Fig. 4. A convex hull for cm
ij = ln(1 + sm

ij ).

all constraints in Fig. 1 so that the relaxed problem can be
solved by an LP. This solution provides an upper bound.

Note that in Fig. 1, tmk sm
ij and log2(1+sm

ij ) are nonlinear
terms. For product tmk sm

ij , we apply a novel method
based on Reformulation-Linearization Technique (RLT) [25].
This is done by introducing a new variable um

ijk = tmk sm
ij

and add linear constraints for the new variable. Suppose
tmk and sm

ij are bounded by (tmk )L ≤ tmk ≤ (tmk )U and
(sm

ij )L ≤ sm
ij ≤ (sm

ij )U , respectively. Thus, we have

[tmk − (tmk )L] · [sm
ij − (sm

ij )L] ≥ 0 ,

[tmk − (tmK)L] · [(sm
ij )U − sm

ij ] ≥ 0 ,

[(tmk )U − tmk ] · [sm
ij − (sm

ij )L] ≥ 0 ,

[(tmk )U − tmk ] · [(sm
ij )U − sm

ij ] ≥ 0 .

Substituting um
ijk = tmk sm

ij , we have the following linear
constraints for um

ijk.

(tmk )L · sm
ij + (sm

ij )L · tmk − um
ijk ≤ (tmk )L · (sm

ij )L ,

(tmk )U · sm
ij + (sm

ij )L · tmk − um
ijk ≥ (tmk )U · (sm

ij )L ,

(tmk )L · sm
ij + (sm

ij )U · tmk − um
ijk ≥ (tmk )L · (sm

ij )U ,

(tmk )U · sm
ij + (sm

ij )U · tmk − um
ijk ≤ (tmk )U · (sm

ij )U .

For the nonlinear term log2(1+sm
ij ) = 1

ln 2 ln(1+sm
ij ), we

propose to employ three tangential supports for ln(1 +
sm

ij ), which is a convex hull linear relaxation (see Fig. 4).
Suppose that we have the bounds for sm

ij , i.e., (sm
ij )L ≤

sm
ij ≤ (sm

ij )U . We introduce a variable cm
ij = ln(1+sm

ij ) and
consider how to get a linear relaxation for cm

ij . The curve
of cm

ij = ln(1+sm
ij ) can be bounded by four segments (or a

convex hull), where segments I, II, and III are tangential
supports and segment IV is the chord (see Fig. 4). In
particular, the three tangent segments are tangential at
points (1 + (sm

ij )L, ln(1 + (sm
ij )L)), (1 + β, ln(1 + β)), and

(1 + (sm
ij )U , ln(1 + (sm

ij )U )), where

β =
[1+(sm

ij )L] · [1+(sm
ij )U ] · [ln(1+(sm

ij )U )−ln(1+(sm
ij )L)]

(sm
ij )U − (sm

ij )L
−1

is the horizontal location for the point that is intersected
by extending segments I and III; segment IV is the
segment that joins points (1 + (sm

ij )L, ln(1 + (sm
ij )L)) and

(1+(sm
ij )U , ln(1+(sm

ij )U )). The convex region defined by
the four segments can be described by the following four
linear constraints.

[1+(sm
ij )L] · cm

ij−sm
ij ≤ [1+(sm

ij )L] · [ln(1+(sm
ij )L)−1]+1 ,

(1 + β) · cm
ij − sm

ij ≤ (1 + β) · [ln(1 + β)− 1] + 1 ,

[1+(sm
ij )U ] · cm

ij−sm
ij ≤ [1+(sm

ij )U ] · [ln(1+(sm
ij )U )−1]+1 ,

[(sm
ij )U−(sm

ij )L] · cm
ij + [ln(1+(sm

ij )L)−ln(1+(sm
ij )U )] · sm

ij

≥ (sm
ij )U · ln(1 + (sm

ij )L)− (sm
ij )L · ln(1 + (sm

ij )U ) .

As a result, the nonlinear ln (or log) term is relaxed into
linear constraints.
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After relaxing all nonlinear terms for a problem, say
problem z, we have a relaxed problem ẑ in Fig. 5, which
is an LP. In problem ẑ, x and q are the vectors for all
xm

ij and qm
ij variables, respectively, (xm

ij )L, (xm
ij )U , (qm

ij )L,
and (qm

ij )U are constant bounds, and Ωz = {(x,q) :
(xm

ij )L ≤ xm
ij ≤ (xm

ij )U , (qm
ij )L ≤ qm

ij ≤ (qm
ij )U} is the core

optimization space of (x,q).
A relaxed problem ẑ can be solved by an LP in

polynomial time. Denote its solution as LP (ẑ). This gives
us an upper bound to problem z.

6.2 Determining Lower Bound
To find a lower bound for problem z, it is sufficient to
find a feasible solution to this problem. By feasible solu-
tion, we mean that it satisfies all constraints for problem
z in Fig. 1, despite that the objective value corresponding
to the feasible solution may not be optimal (maximum).
Although any feasible solution to problem z can serve
as a lower bound, we strive to find one feasible solution
that can offer a tight lower bound. We can find such
a feasible solution (denoted as ψz) based on LP (ẑ) by
searching its neighborhood, which we call local search.

The local search algorithm begins with an initial fea-
sible solution. Such a solution may be far away from
the optimum and may not provide a tight lower bound.
Thus, we will iteratively improve the current solution to
achieve a better lower bound. Until we can no longer
improve (increase) the lower bound, we are done.

To obtain an initial feasible solution, we set xm
ij =

(xm
ij )L for scheduling and qm

ij = (qm
ij )L for power control.

Then we can compute SINR value sm
ij by (3). When an

SINR value is larger than or equal to α, the achieved
capacity is W log2(1 + sm

ij ). Otherwise (i.e., SINR < α),
the transmission is considered unsuccessful. Note that
although the flow rates fij(l) in the relaxed solution
LP (ẑ) guarantee flow balance at each node, such flow
rates may exceed the capacities on some links under
the initial xm

ij and qm
ij values. To find feasible flow rates

under current xm
ij and qm

ij , we compare the achievable
link capacity (under current xm

ij and qm
ij values) to the

aggregated flow rates fij(l) on each link i → j by
computing the ratio between the two (denoted as λij)
as follows.

λij =

∑
m∈Mij

W log2(1 + sm
ij )

∑s(l) 6=j,d(l) 6=i
l∈L fij(l)

. (17)

If λij < 1 for some link i → j, then the aggregated
flow rates exceed the link capacity and the link capacity
constraint on i → j is violated. In this case, we need to
scale down the flow rates on link i → j (to satisfy link
capacity constraint) and the flow rates on all other links
(to maintain flow balance in the network) by a value
λ ≤ λij . On the other hand, we want to have a λ as
large as possible so as to maximize the scaling factor
(our objective). Such a value is the bottleneck value λij

among all links (denoted as λmin = min{λij : i, j ∈
N , i 6= j,Mij 6= ∅}). We now have a complete solution
λmin · fij(l), (xm

ij )L, (qm
ij )L for routing, scheduling, and

power control, respectively. The achieved objective is

Initialization:
1. Set xm

ij = (xm
ij )L and qm

ij = (qm
ij )L.

2. Compute the ratio λij by (17) for each link i → j and
denote λmin = min{λij : i, j ∈ N , i 6= j,Mij 6= ∅}.

Iteration:
3. Suppose λij = λmin.
4. If we can increase qm

ij on a used band {
5. Suppose band m has the largest qm

ij values in solution
LP (ẑ) among these bands.

6. Increase qm
ij such that qm

ij ≤ (qm
ij )U and for any other

7. link k → h, their newly updated λkh > λmin. }
8. else, if we can increase qm

ij on an available and unused
band {

9. Suppose band m has the largest qm
ij values in solution

LP (ẑ) among these bands.
10. Increase qm

ij such that qm
ij ≤ (qm

ij )U and for any other
11. link k → h, their newly updated λkh > λmin.
12. If qm

ij increases, then xm
ij = 1. }

13. else the iteration terminates.

Fig. 6. Pseudocode of proposed local search algorithm.

λmin · K, where K is the objective value in the relaxed
solution LP (ẑ).

In the next iteration, we aim to improve the current
solution. Note that if we can increase λmin, then the
current solution is improved. Suppose link i → j is the
link with λij = λmin. To increase λij , we try to increase
transmission power qm

ij on some band m under the
constraint qm

ij ≤ (qm
ij )U . Based on the constraints in Fig. 1,

we may update the values of other variables to maintain
feasibility. For example, by the first constraint in Fig. 1,
we need to increase xm

ij from 0 to 1 if qm
ij is increased

form 0 to a positive value. Moreover, as a consequence
of increased qm

ij , the interference to other transmissions
on band m is increased and thus the achieved capacities
for other links are decreased. Thus, qm

ij can be success-
fully increased only if for any other link k → h, its
updated λkh will not fall below the current λmin. If the
current solution can be improved (with a larger λmin),
then we continue to the next iteration of improvement.
Otherwise, the local search algorithm terminates. The
pseudocode of our local search algorithm is given in
Fig. 6.

6.3 Partitioning Problem
Our proposed partitioning approach differs from that
in standard branch-and-bound procedure. In standard
branch-and-bound procedure, partitioning (see line 12
in Fig. 3) is done by choosing a variable with the largest
relaxation error and uses its value in the relaxed solution
LP (ẑ) to divide its value set into two smaller sets. The
reason of this approach (with the largest relaxation error)
is that such a variable is likely to lead to a larger gap
between upper and lower bounds. Thus, we should
partition its value set such that the relaxation error will
became smaller. This division (on value set) also divides
the optimization space for problem z into two smaller
spaces, which result in two new problems z1 and z2,
respectively.

Such standard partitioning technique, however, does
not explore any problem specific property on choosing
partition variables. We find that if we weigh the sig-
nificance of each variable when choosing a partitioning
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variable, the complexity of the overall algorithm can be
decreased significantly. For our problem, x variables are
more important than q variables. That is, we should first
decide whether or not a band is used for transmission.
Only if a band is used, then we further decide the
transmission power on this band. Thus, we first choose
one x variable for partitioning and after x variables are
all determined (either 0 or 1), we consider q variables
for partitioning.

When choosing a specific xm
ij variable for partitioning,

we pick the one with the maximum relaxation error,
which is defined as min{x̂m

ij , 1 − x̂m
ij}, where x̂m

ij is the
relaxed solution in LP (ẑ) and is not necessarily an
integer. Once partitioned, the value set for this x can
have element 0 or 1. This variable can be replaced by a
constant 0 or 1 in the two new subproblems.

We further observe that by fixing the value of xm
ij ,

some other variables may also be fixed. We note that
by (1), a node cannot transmit and receive on the same
band. Based on this observation, if the value of xm

ij is set
to 1, then we have xm

ki = 0 for k ∈ N , k 6= i,m ∈Mk and
xm

jh = 0 for h ∈ N , h 6= j,m ∈Mh. On the other hand, if
the value of xm

ij is set to 0, then we have qm
ij = 0 based

on (2).
After all x variables are fixed, we can start partition

on q variables. Again, we choose one q variable with
the maximum relaxation error for partitioning. The re-
laxation error of a variable qm

ij is defined as min{qm
ij −

bqm
ij c, bqm

ij c + 1 − qm
ij }, where qm

ij is the relaxed solution
in LP (ẑ) and is not necessarily integer. The value set
of qm

ij in problem z is {(qm
ij )L, (qm

ij )L + 1, · · · , (qm
ij )U}.

Then its new value set in the two subproblems will
be {(qm

ij )L, (qm
ij )L + 1, · · · , bqm

ij c} and {bqm
ij c + 1, bqm

ij c +
2, · · · , (qm

ij )U}, respectively.

7 DISCUSSION

We now discuss how to interpret and apply our theoret-
ical results. Note that in previous sections, the problem
setting under study and the proposed solution procedure
are concerned with an instance of CRN where the avail-
able bands at each node is given (static). Our theoretical
result offers a performance benchmark for a multi-hop
CRN. Such a result is not yet available in the literature.

We make no claim that our solution will be deployed
in its current form in the real world. Instead, we po-
sition our result to be used as a reference optimal re-
sult/performance benchmark for any other algorithms
that will be developed for deployment. To study the
performance of other proposed algorithm, we can record
its performance over a time period T . For performance
benchmarking/comparison, we can run our solution
offline by breaking up the time period T into smaller
time intervals where the available bands can be assumed
static within each small time interval t1, t2, · · ·. For each
time interval ti, our algorithm can provide a solution πi.
Then a complete solution Π for the entire time period
T is obtained by piecing up together all solutions πi.
Solution Π is either optimal (by setting ε = 0) or near-

optimal (if ε > 0).1 Then we can compare how far the
performance of the other proposed algorithm is from the
optimum.

8 NUMERICAL RESULTS

In this section, we present numerical results for the
proposed solution. Our goals are to demonstrate the
efficacy of the solution procedure and to offer quantita-
tive understanding on the joint optimization at different
layers in the SINR model.

8.1 Simulation Setting
We consider 20-, 30-, and 50-node CRNs with each node
randomly located in a 50x50 area (see Tables 1, 3, and
8). For the ease of exposition, we normalize all units for
distance, bandwidth, rate, and power based on (8) with
appropriate dimensions. We assume there are |M| = 10,
20, and 30 frequency bands in the network for the 20-,
30-, and 50-node CRNs and each band has a bandwidth
of W = 50. At each node, only a subset of these bands
is available. For the 20- and 30-node CRNs, we assume
there are 5 user communication sessions (see Tables 2
and 4) and for the 50-node CRN, the number of user
communication sessions is 10 (see Table 9). The source
node and destination node for each session are randomly
selected and the minimum rate requirement of each
session is randomly generated within [1, 10].

We assume gij = d−4
ij and the SINR threshold α = 3

[12]. We assume that under the maximum transmission
power, a node at distance 20 can receive data when there
is no interference. Thus, we have (20)−4Pmax

ηW = α, i.e., the
maximum transmission power is Pmax = α · (20)4 · ηW =
4.8 · 105ηW . We assume that power control can be done
in Q = 10 levels. For our proposed solution, we set ε to
0.1, which guarantees that the solution is at least 90%
optimal.

We note that the brute force approach cannot solve the
problem even for the 20-node CRN. The solution space of
the capacity problem in Section 3.3 includes all possible
sets of values for (xm

ij , qm
ij ,K, fij(l)). Thus, the number of

solutions examined in the brute force approach is clearly
more than the number of all possible sets of values for
qm
ij variables. We now analyze the number of all possible

sets of values for qm
ij variables for the 20-node CRN. The

number of qm
ij variables is about 20 · (20 − 1) · 5 = 1900,

where 5 is an approximation of the average number of
available bands on a link. Each qm

ij variable has (Q + 1)
or 11 possible values. Thus, the number of all possible
sets of values for qm

ij variables is about 111900. Therefore,
for the 20-node CRN, the number of solutions examined
in the brute force approach is at least 111900. Suppose

1. We discuss the case of ε = 0. The discussion for ε > 0 is similar
and thus is omitted. First of all, since available bands are static in any
time interval ti, solution πi is optimal as we discussed in Section 5.2.
That is, there is no solution π̂i that can achieve better performance than
πi in time interval ti. Since this claim holds for each time interval ti,
there is no solution Π̂ that can achieve better performance than Π for
any time interval. Therefore, solution Π is optimal.
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TABLE 1
Location and available frequency bands at each node for a 20-node network.

Node Location Available Bands Node Location Available Bands
1 (0.1, 9.9) 1, 2, 3, 4, 7, 8, 9, 10 11 (28.1, 25.6) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
2 (29.2, 31.7) 1, 2, 3, 4, 5, 7, 8, 10 12 (32.3, 38) 1, 8, 9, 10
3 (3, 31.1) 1, 4, 5, 6 13 (47.2, 2.6) 3, 5, 10
4 (11.8, 40.1) 1, 2, 3, 4, 6, 9, 10 14 (44.7, 15) 2, 3, 6, 7, 8
5 (15.8, 9.7) 1, 2, 3, 5, 6, 8, 9 15 (44.7, 24) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
6 (16.3, 19.5) 3, 5, 6, 8, 9 16 (47.9, 43.8) 1, 3
7 (0.6, 27.4) 1, 4, 8, 9, 10 17 (46.4, 16.8) 1, 7, 9
8 (22.6, 40.9) 1, 2, 3, 5, 7, 9, 10 18 (11.5, 12.2) 2, 5, 6, 10
9 (35.3, 10.3) 2, 9 19 (28.2, 14.8) 4, 5, 6, 7, 8, 9, 10
10 (31.9, 19.6) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 20 (2.5, 14.5) 1, 7, 10

TABLE 2
Source node, destination node, and minimum rate

requirement of each session in the 20-node network.

Session Source Node Dest. Node Min. Rate Req.
l s(l) d(l) r(l)
1 16 10 9
2 18 3 1
3 12 11 4
4 13 17 3
5 15 6 2
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Fig. 7. The routing topology for the 20-node 5-session
network.

one solution can be examined in 10−6 second. Then the
running time is 111900 · 10−6 > 111894 seconds, which
is 111894/(365 · 24 · 60 · 60) > 111894/108 > 111886 years.
Therefore, the brute force approach cannot be used to
solve our problem even for the 20-node CRN.

8.2 Results
For the 20-node network with 5 sessions, our so-
lution achieves a scaling factor K = 13.24. Then,
based on the minimum rate requirement r(l) in Ta-
ble 2, the flow rates K · r(l) for the five sessions
are 119.16, 13.24, 52.96, 39.72, 26.48, respectively. Figure 7
shows the routing topology in the final solution. The
flow rates for each session on the links along its path

are as follows.
Session l = 1: f16,12(1) = 119.16, f12,8(1) = 103.30,
f12,11(1) = 15.86, f8,2(1) = 103.30, f11,10(1) = 15.86,
f2,10(1) = 103.30;
Session l = 2: f18,20(2) = 13.24, f20,1(2) = 13.24,
f1,7(2) = 13.24, f7,3(2) = 13.24;
Session l = 3: f12,11(3) = 52.96;
Session l = 4: f13,14(4) = 39.72, f14,17(4) = 39.72;
Session l = 5: f15,19(5) = 26.48, f19,6(5) = 26.48.
It is easy to verify that flow balance holds at source
and destination nodes for each session, as well as at
all relay nodes. Note that flow splitting and multi-path
routing are used for session 1, which has the largest rate
requirement.

Our solution also solves the scheduling variables xm
ij

as follows. Note that it is sufficient to list only non-zero
xm

ij variables.
Band m = 1: x1

7,3 = 1, x1
16,12 = 1;

Band m = 2: x2
8,2 = 1;

Band m = 3: x3
13,14 = 1;

Band m = 4: x4
1,7 = 1, x4

2,10 = 1;
Band m = 5: x5

11,10 = 1;
Band m = 6: x6

15,19 = 1;
Band m = 7: x7

14,17 = 1, x7
20,1 = 1;

Band m = 8: x8
12,11 = 1;

Band m = 9: x9
12,8 = 1, x9

19,6 = 1;
Band m = 10: x10

18,20 = 1.
The transmission power levels on their respective fre-
quency bands are as follows.
Band m = 1: q1

7,3 = 1, q1
16,12 = 7;

Band m = 2: q2
8,2 = 2;

Band m = 3: q3
13,14 = 2;

Band m = 4: q4
1,7 = 7, q4

2,10 = 2;
Band m = 5: q5

11,10 = 1;
Band m = 6: q6

15,19 = 9;
Band m = 7: q7

14,17 = 1, q7
20,1 = 1;

Band m = 8: q8
12,11 = 3;

Band m = 9: q9
12,8 = 1, q9

19,6 = 3;
Band m = 10: q10

18,20 = 1.
Note that the same frequency band may be used by
concurrent transmissions. For example, since x1

7,3 = 1
and x1

16,12 = 1, we have that both nodes 7 and 16 are
transmitting on band 1. Such concurrent transmissions
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TABLE 3
Location and available frequency bands at each node for a 30-node network.

Node Location Available Bands Node Location Available Bands
1 (7, 0.7) 1, 2, 6, 7, 16, 17, 19, 20 16 (30.3, 28.1) 7, 8, 11, 16, 17, 19, 20
2 (5, 4) 3, 5, 9, 12, 14, 15 17 (32, 41.1) 7, 11, 16, 17, 19, 20
3 (6.8, 14) 1, 2, 6, 7, 8, 11, 16, 17, 19, 20 18 (14.1, 33.7) 3, 4, 5
4 (15.7, 3.3) 1, 2, 7, 16, 20 19 (23, 46.4) 3, 12, 15
5 (9.5, 17) 3, 4, 5, 9, 12 20 (30.3, 9.3) 5, 9
6 (19.4, 17.1) 1, 2, 6, 7, 8, 16, 19, 20 21 (17.6, 29.2) 1, 2, 6, 7, 8, 11, 16, 17, 19, 20
7 (34.7, 14.6) 3, 4, 5, 9, 12, 14 22 (27.1, 27.8) 9, 12, 14, 15
8 (4.9, 25.9) 3, 4, 12 23 (26.9, 45.9) 3, 4, 5, 9, 10, 12, 13, 14, 15, 17
9 (46.6, 42.1) 10, 18 24 (43.3, 32.4) 1, 2, 11, 16, 17, 20
10 (8.3, 38.3) 3, 4, 5, 9, 14 25 (45.4, 8.2) 3, 4, 5, 9, 12, 14
11 (26.7, 11.1) 1, 6, 7, 8, 11, 16, 17, 19, 20 26 (43.4, 35) 3, 5, 9, 15
12 (36.4, 47.3) 10, 13, 18 27 (41.3, 45.1) 1, 16, 20
13 (24.3, 21.2) 1, 2, 6, 8, 11, 19 28 (14.4, 30.3) 1, 2, 6, 7, 8, 11, 16, 17, 20
14 (23.1, 0.8) 3, 5, 9, 14 29 (41.6, 41.7) 3, 4, 5, 9, 10, 12, 14, 15, 18
15 (21.4, 19.2) 4, 9, 12, 14 30 (25.9, 12) 1, 2, 6, 7, 8, 11, 16, 17, 19, 20

TABLE 4
Source node, destination node, and minimum rate

requirement of each session in the 30-node network.

Session Source Node Dest. Node Min. Rate Req.
l s(l) d(l) r(l)
1 16 28 4
2 24 11 7
3 13 1 1
4 19 29 8
5 26 15 1
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Fig. 8. The routing topology for the 30-node 5-session
network.

are allowed as long as the SINR at each receiving
node is no less than α. For example, SINR at receiv-

ing node 12 on band 1 is s1
16,12 =

g
16,12

·q1
16,12

ηW Q
Pmax +g

7,12
·q1

7,3
=

(1.303·10−5)·7
2.083·10−5+(8.011·10−7)·1 = 4.22, which is larger than α = 3.
Thus, transmission 16 → 12 on band 1 is successful.
Following the same token, we can compute all SINR sm

ij

values as follows.
Band m = 1: s1

7,3 = 118.47, s1
16,12 = 4.22;

Band m = 2: s2
8,2 = 5.84;

Band m = 3: s3
13,14 = 3.75;

Band m = 4: s4
1,7 = 3.33, s4

2,10 = 3.14;
Band m = 5: s5

11,10 = 18.87;
Band m = 6: s6

15,19 = 3.39;
Band m = 7: s7

14,17 = 1261.14, s7
20,1 = 65.46;

Band m = 8: s8
12,11 = 4.90;

Band m = 9: s9
12,8 = 3.56, q9

19,6 = 4.74;
Band m = 10: s10

18,20 = 6.45.
As expected, we see that the achieved SINR at each
receiving node on each band is larger than α = 3 in
our solution.

For each link, we can further verify that flow rates
on this link do not exceed its capacity. For example, for
link 16 → 12, there is a flow rate f16,12(1) = 119.16 on
this link. The achieved capacity is W log2(1 + s1

16,12) =
W log2(1 + 4.22) = 119.21.

The above results are for 20-node network. The results
for 30- and 50-node networks are similar and we abbre-
viate our discussion. For the 30-node 5-session network,
the available bands at each node and the location of
each node are shown in Table 3. The source, destina-
tion, and minimum rate requirement of each session
are shown in Table 4. Our solution gives a routing
topology in Fig. 8. The achieved scaling factor is 31.18.
Then, based on the minimum rate requirement r(l) in
Table 4, the flow rates K · r(l) for the five sessions
are 124.72, 218.26, 31.18, 249.44, 31.18, respectively. The
flow rates for each session on links along its paths are
shown in Table 5. Our solution solves the scheduling
variables xm

ij and power control variables qm
ij . Again, we

list only non-zero xm
ij variables in Table 6 and non-zero

qm
ij variables in Table 7.

For the 50-node 10-session network, the available
bands at each node and the location of each node are
shown in Table 8. The source, destination, and minimum
rate requirement of each session are shown in Table 9.
Our solution gives a routing topology in Fig. 9. The
achieved scaling factor is 13.36. The detailed solution on
power control, scheduling, and routing are similar to the
20- and 30-node networks and are omitted to conserve
space.
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TABLE 5
Flow rates for each session in the 30-node 5-session network.

Session l Session rate K · r(l) Flow rates of session l on each link fij(l)
1 124.72 f16,21(1) = 124.72, f21,28(1) = 124.72;

f24,16(2) = 113.91, f24,17(2) = 104.36, f17,16(2) = 104.36, f16,21(2) = 24.22,
2 218.26 f16,13(2) = 194.05, f21,28(2) = 24.22, f28,13(2) = 24.22, f13,11(2) = 160.59,

f13,30(2) = 57.68, f30,11(2) = 57.68;
3 31.18 f13,30(3) = 31.18, f30,4(3) = 31.18, f4,1(3) = 31.18;
4 249.44 f19,23(4) = 167.49, f19,29(4) = 81.95, f23,26(4) = 81.26, f23,29(4) = 86.23,

f26,29(4) = 81.26;
5 31.18 f26,22(5) = 31.18, f22,15(5) = 31.18.

TABLE 6
Scheduling for the 30-node network.

Band Scheduling Band Scheduling Band Scheduling Band Scheduling
1 x1

4,1 =1, x1
21,28 =1; 6 x6

13,11 = 1; 11 x11
17,16 = 1; 16 x16

24,17 =1, x16
30,11 =1;

2 x2
28,13 = 1; 7 x7

16,21 = 1; 12 x12
19,23 = 1; 17 x17

24,16 = 1;
3 x3

19,29 = 1; 8 x8
16,13 = 1; 13 x13

ij = 0; 18 x18
ij = 0;

4 x4
23,29 = 1; 9 x9

26,22 = 1; 14 x14
22,15 = 1; 19 x19

13,30 = 1;
5 x5

26,29 = 1; 10 x10
ij = 0; 15 x15

23,26 = 1; 20 x20
30,4 = 1.

TABLE 7
Transmission power levels for the 30-node network.

Band Transmission power Band Transmission power Band Transmission power Band Transmission power
1 q1

4,1 =1, q1
21,28 =1; 6 q6

13,11 = 2; 11 q11
17,16 = 2; 16 q16

24,17 = 3, q16
30,11 = 1;

2 q2
28,13 = 3; 7 q7

16,21 = 4; 12 q12
19,23 = 1; 17 q17

24,16 = 7;
3 q3

19,29 = 9; 8 q8
16,13 = 2; 13 q13

ij = 0; 18 q18
ij = 0;

4 q4
23,29 = 4; 9 q9

26,22 = 7; 14 q14
22,15 = 1; 19 q19

13,30 = 1;
5 q5

26,29 = 1; 10 q10
ij = 0; 15 q15

23,26 = 10; 20 q20
30,4 = 4.

TABLE 8
Location and available frequency bands at each node for a 50-node network.

Node Location Available Bands Node Location Available Bands
1 (11.1, 21.7) 2, 3, 4, 8, 25 26 (25.2, 27.2) 10, 14, 20, 24, 26
2 (0.1, 4) 6, 7, 10, 13, 14, 20, 23, 24, 26, 28 27 (22.5, 42.2) 5, 9, 12, 16, 18, 27, 29, 30
3 (7.2, 16.6) 6, 10, 14, 20, 23, 24, 26 28 (30, 31.5) 6, 13, 24, 26, 28
4 (11, 32.2) 6, 7, 10, 13, 14, 20, 23, 24, 26, 28 29 (35, 22.1) 6, 10
5 (16.3, 3.6) 10, 13, 14, 20, 23 30 (25.7, 6.2) 5, 9, 12, 17, 18, 22, 27, 29, 30
6 (14.5, 24.7) 8, 11, 25 31 (34.1, 12.4) 9, 12, 16, 17, 30
7 (14.9, 13.7) 5, 9, 12, 16, 17, 18, 22, 27, 29, 30 32 (26.4, 30) 5, 9, 12, 16, 17, 18, 22, 27, 29, 30
8 (19.5, 14.9) 7, 24, 28 33 (14.1, 40.7) 1, 2, 25
9 (26.6, 13.4) 1, 19, 21, 25 34 (34.4, 46.5) 9, 17, 18, 30
10 (22.5, 29.3) 1, 3, 4, 8, 11, 15, 19 35 (19, 22.5) 1, 6, 7, 10, 13, 14, 20, 23, 24, 28
11 (24.6, 40.5) 3, 8, 25 36 (39.9, 25.1) 6, 13, 14, 20, 23, 24, 26, 28
12 (38.4, 13.1) 2, 8, 11, 15 37 (20.3, 18.2) 1, 2, 3, 4, 8, 11, 15, 19, 21, 27
13 (4, 3.9) 9, 12, 16, 22, 27, 29, 30 38 (10, 20.5) 6, 7, 10, 13, 14, 20, 23, 24, 26, 28
14 (6.1, 18.6) 9, 12, 16, 17, 18, 22, 27, 30 39 (20.5, 21.4) 1, 2, 3, 4, 8, 11, 15, 19, 21, 25
15 (38.5, 22.6) 2, 4, 11, 15, 19, 21, 25 40 (37.1, 28.6) 7, 10, 13, 14, 20, 23, 24, 26
16 (1.2, 24.3) 5, 9, 12, 17, 22, 29, 30 41 (44.1, 16.1) 1, 15, 21
17 (4.9, 42.3) 5, 27 42 (41.1, 6) 9, 29
18 (18.5, 1.4) 5, 9, 12, 17, 18, 27, 30 43 (43, 18.8) 5, 9, 12, 16, 18, 22
19 (16.9, 29.1) 3, 4, 10, 11, 12, 15 44 (45.4, 24.2) 9, 12, 16, 17, 18, 30
20 (33.5, 10.4) 7, 13, 14, 20, 23, 24, 26, 28 45 (36.2, 41.2) 5, 9, 17, 27, 29, 30
21 (25.6, 12.8) 6, 7, 20, 23, 24, 28 46 (27.5, 32.3) 12, 16, 17, 18, 29, 30
22 (45.2, 45.5) 2, 8, 15, 19 47 (47.8, 13.8) 22, 27, 29, 30
23 (43.6, 22.7) 1, 2, 3, 4, 11, 15, 19, 21 48 (8.9, 14.8) 5, 30
24 (10.6, 40.5) 4, 15, 19, 21, 25 49 (6.8, 6.2) 5, 9, 12, 16, 17, 27, 30
25 (18.2, 32.7) 9, 12, 18, 22, 27 50 (11.7, 35.8) 1, 2, 3, 4, 8, 11, 15, 19, 21, 25
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TABLE 9
Source node, destination node, and minimum rate

requirement of each session in the 50-node network.

Session Source Node Dest. Node Min. Rate Req.
l s(l) d(l) r(l)
1 21 4 4
2 5 26 7
3 19 20 6
4 33 6 10
5 37 10 9
6 23 11 2
7 25 46 3
8 42 43 9
9 44 27 8
10 47 30 1
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Fig. 9. The routing topology for the 50-node 10-session
network.

In summary, we have the following observations for
our numerical results. To maximize capacity, it is neces-
sary to consider multi-path routing (i.e., to allow flow
splitting) and to consider spatial reuse (i.e., to allow
concurrent transmissions to use the same band). Under
multi-path multi-hop routing, even the number of user
sessions are small, the number of nodes in the network
that will be affect by these sessions (i.e., multi-hop
relays) can be large.

9 CONCLUSION

In this paper, we investigated a capacity problem for
a multi-hop cognitive radio network under the SINR
model. We showed the complex inter-relationship among
power control, scheduling, and routing in this problem
and developed a mathematical formulation for joint
optimization. We presented a solution to this problem
based on branch-and-bound framework. The novelty of
our contribution is the determination of the core opti-
mization space for this problem, which is much smaller
than the whole optimization space, and the design of
several efficient algorithms within branch-and-bound
framework that exploit the physical significance of core
variables to obtain tighter upper and lower bounds. The

proposed solution is able to guarantee (1 − ε) optimal
solution and can be used as a performance benchmark
for other proposed algorithms in the future.
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