
1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2355202, IEEE Transactions on Parallel and Distributed Systems

1

Protecting Your Right: Verifiable Attribute-based
Keyword Search with Fine-grained

Owner-enforced Search Authorization in the
Cloud

Wenhai Sun, Student Member, IEEE, Shucheng Yu, Member, IEEE, Wenjing Lou, Senior Member, IEEE,
Y. Thomas Hou, Fellow, IEEE, Hui Li, Member, IEEE

Abstract —Search over encrypted data is a critically important enabling technique in cloud computing, where encryption-before-
outsourcing is a fundamental solution to protecting user data privacy in the untrusted cloud server environment. Many secure search
schemes have been focusing on the single-contributor scenario, where the outsourced dataset or the secure searchable index of
the dataset are encrypted and managed by a single owner, typically based on symmetric cryptography. In this paper, we focus on a
different yet more challenging scenario where the outsourced dataset can be contributed from multiple owners and are searchable by
multiple users, i.e. multi-user multi-contributor case. Inspired by attribute-based encryption (ABE), we present the first attribute-based
keyword search scheme with efficient user revocation (ABKS-UR) that enables scalable fine-grained (i.e. file-level) search authorization.
Our scheme allows multiple owners to encrypt and outsource their data to the cloud server independently. Users can generate their
own search capabilities without relying on an always online trusted authority. Fine-grained search authorization is also implemented
by the owner-enforced access policy on the index of each file. Further, by incorporating proxy re-encryption and lazy re-encryption
techniques, we are able to delegate heavy system update workload during user revocation to the resourceful semi-trusted cloud
server. We formalize the security definition and prove the proposed ABKS-UR scheme selectively secure against chosen-keyword
attack. To build confidence of data user in the proposed secure search system, we also design a search result verification scheme.
Finally, performance evaluation shows that the efficiency of our scheme.

Keywords —Cloud Computing, Attribute-based Keyword Search, Fine-grained Owner-enforced Search Authorization, Multi-user
Search, Verifiable Search

✦

1 INTRODUCTION

C LOUD computing has emerged as a new enter-
prise IT architecture. Many companies are moving

their applications and databases into the cloud and
start to enjoy many unparalleled advantages brought
by cloud computing, such as on-demand computing
resource configuration, ubiquitous and flexible access,
considerable capital expenditure savings, etc. However,
privacy concern has remained a primary barrier pre-
venting the adoption of cloud computing by a broader
range of users/applications. When sensitive data are
outsourced to the cloud, data owners naturally become
concerned with the privacy of their data in the cloud
and beyond. Encryption-before-outsourcing has been re-
garded as a fundamental means of protecting user data

• W. Sun is with the State Key Laboratory of Integrated Services Networks,
Xidian University, Shaanxi, China and Virginia Polytechnic Institute and
State University, Blacksburg, VA, USA. E-mail: whsun@xidian.edu.cn.

• S. Yu is with University of Arkansas at Little Rock, Little Rock, AR, USA.
E-mail: sxyu1@ualr.edu.

• W. Lou and Y. T. Hou are with Virginia Polytechnic Institute and State
University, Blacksburg, VA, USA. E-mail: {wjlou, thou}@vt.edu.

• H. Li is with the State Key Laboratory of Integrated Services Networks, Xi-
dian University, Xi’an, Shaanxi, China. E-mail: lihui@mail.xidian.edu.cn.

A preliminary version [1] of this paper was presented at the 33rd IEEE Inter-
national Conference on Computer Communications (IEEE INFOCOM’14).

privacy against the cloud server [2], [3], [4]. However,
how the encrypted data can be effectively utilized then
becomes another new challenge. Significant attention has
been given and much effort has been made to address
this issue, from secure search over encrypted data [5],
secure function evaluation [6], to fully homeomorphic
encryption systems [7] that provide generic solution to
the problem in theory but are still too far from being
practical due to the extremely high complexity.

This paper focuses on the problem of search over en-
crypted data, which is an important enabling technique
for the encryption-before-outsourcing privacy protection
paradigm in cloud computing, or in general in any
networked information system where servers are not
fully trusted. Much work has been done, with major-
ity focusing on the single-contributor scenario, i.e. the
dataset to be searched is encrypted and managed by
a single entity, which we call owner or contributor in
this paper. Under this setting, to enable search over
encrypted data, the owner has to either share the secret
key with authorized users [5], [8], [9], or stay online to
generate the search trapdoors, i.e. the “encrypted” form of
keywords to be searched, for the users upon request [10],
[11]. The same symmetric key will be used to encrypt
the dataset (or the searchable index of the dataset) and

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2355202, IEEE Transactions on Parallel and Distributed Systems

2

to generate the trapdoors. These schemes seriously limit
the users’ search flexibility.

Consider a file sharing system that hosts a large num-
ber of files, contributed from multiple owners and to be
shared among multiple users (e.g. 4shared.com, mymed-
wall.com). This is a more challenging multi-owner multi-
user scenario. How to enable multiple owners to encrypt
and add their data to the system and make it search-
able by other users? Moreover, data owners may desire
fine-grained search authorization that only allows their
authorized users to search their contributed data. By fine-
grained, we mean the search authorization is controlled at
the granularity of per file level. Symmetric cryptography
based schemes [5], [8], [9] are clearly not suitable for
this setting due to the high complexity of secret key
management. Although authorized keyword search can
be realized in single-owner setting by explicitly defining
a server-enforced user list that takes the responsibility
to control legitimate users’ search capabilities [12], [13],
i.e. search can only be carried out by the server with the
assistance of legitimate users’ complementary keys on
the user list, these schemes did not realize fine-grained
owner-enforced search authorization and thus are unable
to provide differentiated access privileges for different
users within a dataset. Asymmetric cryptography is bet-
ter suited to this dynamic setting by encrypting individ-
ual contribution with different public keys. For example,
Hwang et al. [14] implicitly defined a user list for each
file by encrypting the index of the file with all the public
keys of the intended users. However, extending such
user list approach to the multi-owner setting and on a
per file basis is not trivial as it would impose significant
scalability issue considering a potential large number
of users and files supported by the system. Additional
challenges include how to handle the updates of the user
lists in the case of user enrollment, revocation, etc., under
the dynamic cloud environment.

In this paper, we address these open issues and
present an authorized keyword search scheme over en-
crypted cloud data with efficient user revocation in the
multi-user multi-data-contributor scenario. We realize
fine-grained owner-enforced search authorization by exploit-
ing ciphertext policy attribute-based encryption (CP-
ABE) technique. Specifically, the data owner encrypts
the index of each file with an access policy created
by him, which defines what type of users can search
this index. The data user generates the trapdoor inde-
pendently without relying on an always online trusted
authority (TA). The cloud server (CS) can search over
the encrypted indexes with the trapdoor on a user’s
behalf, and then returns matching result if and only
if the user’s attributes associated with the trapdoor
satisfy the access policies embedded in the encrypted
indexes. We differentiate attributes and keywords in our
design. Keywords are actual content of the files while
attributes refer to the properties of users. The system
only maintains a limited number of attributes for search
authorization purpose. Data owners create the index

consisting of all keywords in the file but encrypt the in-
dex with an access structure only based on the attributes
of authorized users, which makes the proposed scheme
more scalable and suitable for the large scale file sharing
system. In order to further release the data owner from
the burdensome user membership management, we use
proxy re-encryption [15] and lazy re-encryption [16]
techniques to shift the workload as much as possible
to the CS, by which our proposed scheme enjoys ef-
ficient user revocation. Formal security analysis shows
that the proposed scheme is provably secure and meets
various search privacy requirements. Furthermore, we
design a search result verification scheme and make the
entire search process verifiable. Performance evaluation
demonstrates the efficiency and practicality of the ABKS-
UR. Our contributions can be summarized as follows:

1) We design a novel and scalable authorized keyword
search over encrypted data scheme supporting multiple
data users and multiple data contributors. Compared
with existing works, our scheme supports fine-grained
owner-enforced search authorization at the file level with
better scalability for large scale system in that the search
complexity is linear to the number of attributes in the
system, instead of the number of authorized users.

2) Data owner can delegate most of computationally
intensive tasks to the CS, which makes the user revo-
cation process efficient and is more suitable for cloud
outsourcing model.

3) We formally prove our proposed scheme selectively
secure against chosen-keyword attack.

4) We propose a scheme to enable authenticity check
over the returned search result in the multi-user multi-
data-contributor search scenario.

2 RELATED WORK

2.1 Keyword Search over Encrypted Data

2.1.1 Secret key vs. Public key

Encrypted data search has been studied extensively in
the literature. Song et al. [5] designed the first searchable
encryption scheme to enable a full text search over
encrypted files. Since this seminal work, many secure
search schemes have been proposed to boost the effi-
ciency and enrich the search functionalities based on
either secret-key cryptography (SKC) [8], [9], [10], [11] or
public-key cryptography (PKC) [17], [18], [19]. Curtmola
et al. [8] presented an efficient single keyword encrypted
data search scheme by adopting inverted index structure.
The authors in [9] designed a dynamic version of [8]
with the ability to add and delete files efficiently. To
enrich search functionalities, Cao et al. [10] proposed the
first privacy-preserving multi-keyword ranked search
scheme over encrypted cloud data using “coordinate
matching” similarity measure. Later on, Sun et al. [11]
presented a secure multi-keyword text search scheme
in the cloud enjoying more accurate search result by
“cosine similarity measure” in the vector space model

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2355202, IEEE Transactions on Parallel and Distributed Systems

3

and practically efficient search process using a tree-
based secure index structure. Compared with symmetric
search techniques, PKC-based search schemes are able
to generate more flexible and more expressive search
queries. In [17], Boneh et al. devised the first PKC-
based encrypted data search scheme supporting single
keyword query. The scheme from [18] supports search
queries with conjunctive keywords by explicitly indi-
cating the number of encrypted keywords in an index.
Predicate encryption [19], [20] is another promising tech-
nique to fulfill the expressive secure search functionality.
For example, the proposed scheme in [19] supports
conjunctive, subset, and range queries, and disjunctions,
polynomial equations, and inner products could be re-
alized in [20].

2.1.2 Authorized keyword search

To grant multiple users the search capabilities, user
authorization should be enforced. In [12], [13], the au-
thors adopt a server-enforced user list containing all
the legitimate users’ complementary keys that are used
to help complete the search in the enterprise scenario
to realize search authorization. But these SKC-based
schemes only allow one data contributor in the system.
Hwang et al. [14] in the public-key setting presented a
conjunctive keyword search scheme in multi-user multi-
owner scenario. But this scheme is not scalable under the
dynamic cloud environment because the size of the en-
crypted index and the search complexity is proportional
to the number of the authorized users, and to add a new
user, the data owner has to rewrite all the corresponding
indexes. By exploiting hierarchical predicate encryption,
Li et al. [21] proposed a file-level authorized private
keyword search (APKS) scheme over encrypted cloud
data. However, it incurs additional communication cost,
since whenever users want to search, they have to resort
to the attribute authority to acquire the search capa-
bilities. Moreover, this scheme is more suitable for the
structured database that contains only limited number
of keywords. The search time there is proportional to the
total number of keywords in the system, which would be
inefficient for arbitrarily-structured data search, e.g., free
text search, in the case of dynamic file sharing system.

2.2 Verifiable Search based on Authenticated Index
Structure

In the plaintext information retrieval, many schemes
have been proposed to achieve verifiable search using
authenticated data structures (e.g., Merkle hash tree and
cryptographic signature) [22], [23] in case the erroneous
or false search result returned by the server due to soft-
ware/hardware failure, data corruption, etc. In the en-
crypted data search scenario, Wang et al. [24] proposed a
single keyword search scheme with inverted index being
the index structure, upon which they use hash chain to
build a search result verification scheme. Recently, Sun et
al. [25] presented a search result verification scheme in

the multi-keyword text search scenario by turning the
proposed secure index tree into an authenticated one.
Note that these works are devised for the single-user
search setting. We cannot directly apply them in our
multi-user multi-data-contributor scenario.

2.3 Attribute-based Encryption

There has been a great interest in developing attribute-
based encryption [28], [29], [30], [31] due to its fine-
grained access control property. Goyal et al. [28] de-
signed the first key policy attribute-based encryption
(KP-ABE) scheme, where ciphertext can be decrypted
only if the attributes that are used for encryption satisfy
the access structure on the user private key. Under the
reverse situation, CP-ABE allows user private key to be
associated with a set of attributes and ciphertext asso-
ciated with an access structure. CP-ABE is a preferred
choice when designing an access control mechanism in
a broadcast environment. Since the first construction
of CP-ABE [29], many works have been proposed for
more expressive, flexible and practical versions of this
technique. Cheung et al. [30] proposed a selectively
secure CP-ABE construction in the standard model using
the simple boolean function, i.e. AND gate. By adopting
proxy re-encryption and lazy re-encryption techniques,
Yu et al. [31] also devised a selectively secure CP-ABE
scheme with the ability of attribute revocation, which is
perfectly suitable for the data-outsourced cloud model.

3 PROBLEM FORMULATION

3.1 System Model

The system framework of our proposed ABKS-UR
scheme involves three entities: cloud server, many data
owners, and many data users, as shown in Fig. 1. In
addition, a trusted authority is implicitly assumed to be
in charge of generating and distributing public keys, pri-
vate keys and re-encryption keys. To enforce fine-grained
authorized keyword search, the data owner generates
the secure indexes with attribute-based access policies
before outsourcing them along with the encrypted data
into the CS. Note that we can encrypt data by any secure
encryption technique, such as AES, which is outside the
scope of this paper. To search the datasets contribut-
ed from various data owners, a data user generates a
trapdoor of keyword of interest using his private key
and submits it to the CS. So as to accelerate the entire
search process, we first enforce the coarse-grained dataset
search authorization with the per-dataset user list such that
search does not need to go to a particular dataset if the
user is not on the corresponding user list. Next, the fine-
grained file-level search authorization is applied on the
authorized dataset in the sense that only users, who are
granted to access a particular file, can search this file for
the intended keyword. More precisely, the data owner
defines an access policy for each uploaded file. The CS
will search the corresponding datasets and return the

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2355202, IEEE Transactions on Parallel and Distributed Systems

4

Data user 1Data owner 1

Data owner 2

Data owner n

...

Cloud Server
Data user 2

Data user m

...

Access structure for an index:
attr1 AND attr2 AND ...

User attribute set:
{attr1, attr3, attr8, ...}

Encrypted files & secure indexes Trapdoor

Access policies
& user list

... ...

Fig. 1. Framework of authorized keyword search over
encrypted cloud data.

valid search result to the user if and only if the attributes
of the user on the trapdoor satisfy the access policies of
the secure indexes of the returned files, and the intended
keyword is found in these files.

3.2 Threat Model

We consider the CS honest-but-curious, which is also
employed by related works on secure search over en-
crypted data [10], [11], [21]. We assume that the CS
honestly follows the designated protocol, but curiously
infers additional privacy information based on the data
available to him. Furthermore, malicious data users may
collude to access files beyond their access privileges by
using their secret keys. Analogue to [31], as we delegate
most of the system update workload to the CS, we
assume that the CS will not collude with the revoked
malicious users to help them gain unauthorized access
privileges.

3.3 Design Goals

Our proposed ABKS-UR scheme in the cloud aims to
achieve the following functions and security goals:
Authorized Keyword Search: The secure search system
should enable data-owner-enforced search authorization,
i.e. only users that meet the owner-defined access policy
can obtain the valid search result. Besides achieving fine-
grained authorization, another challenge is to make the
scheme scalable for dynamic cloud environment.
Supporting Multiple Data Contributors and Data User-
s: The designed scheme should accommodate many da-
ta contributors and data users. Each user is able to search
over the encrypted data contributed from multiple data
owners.
Efficient User Revocation: Another important design
goal is to efficiently revoke users from the current system
while minimizing the impact on the remaining legitimate
users.
Authenticity of Search Result: To make the proposed
authorized keyword search scheme verifiable and enable
data user to check the authenticity of the returned search
result.

Security Goals: In this paper, we are mainly concerned
with secure search related privacy requirements, and
define them as follows. 1) Keyword semantic security:
Since we present a novel attribute-based keyword search
technique, we will formally prove it semantically secure
against chosen keyword attack under selective ciphertext
policy model (IND-sCP-CKA). The related security def-
inition and semantic security game used in the proof
are presented in Sect. 4.4. 2) Trapdoor unlinkability: this
security property makes the CS unable to visually distin-
guish two or more trapdoors even containing the same
keyword. Note that the attacker may launch dictionary
attack by using public key to generate arbitrary number
of indexes with keyword of his choice, and then search
these indexes with a particular trapdoor to deduce the
underlying keyword in the trapdoor, which is referred to
as predicate privacy and it cannot be protected inherently
in the PKC-based search scenario [32]. Consistent with
existing asymmetric secure search schemes [17], [21],
this paper does not consider protection of predicate
privacy. Moreover, we do not aim to hide access pattern
in our scheme due to the extremely high complexity,
i.e. to protect it, algorithm has to “touch” the whole
dataset [33].

4 THE PROPOSED AUTHORIZED KEYWORD
SEARCH

We exploit the CP-ABE [30], [31] technique to achieve
scalable fine-grained authorized keyword search over
encrypted cloud data supporting multiple data owners
and data users. Specifically, for each file, the data owner
generates an access-policy-protected secure index, where
the access structure is expressed as a series of AND gates.
Only authorized users with attributes satisfying the ac-
cess policies can obtain matching result. Moreover, we
should consider user membership management carefully
in the multi-user setting. A naı̈ve solution is to impose
the burden on each data owner. As a result, data owner
is required to be always online to promptly respond the
membership update request, which is impractical and
inefficient. By using proxy re-encryption [15], the data
owner can delegate most of the workload to the cloud
without infringing search privacy.

4.1 Algorithm Definition

We define the algorithms used in our ABKS-UR scheme
in this subsection with main notations listed in Tab.1.
Here we consider a series of AND gates

∧
i∈I i.

Definition 1: An attribute-based keyword search with
efficient user revocation scheme for keyword space W
and access structure space G consists of nine fundamen-
tal algorithms as follows:

• Setup(λ,N) → (PK,MK): The setup algorithm
takes as input the security parameter λ and an
attribute universe descriptionN . It defines a bilinear
group G of prime order p with a generator g. Thus, a

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2355202, IEEE Transactions on Parallel and Distributed Systems

5

TABLE 1
Notations

N
An universal attribute set {1, ..., n} for some nature
number n.

G Access structure space.
W Keyword space comprised of keywords w.

I
An attribute set used for an access structure GT ∈ G on
an encrypted index and I ⊆ N .

S An attribute set for a user secret key SK and S ⊆ N .

i
An attribute in N either refers to a positive attribute i

or its negation ¬i.
D An encrypted index for a file.
Q A trapdoor for an intended keyword w ∈ W .
rk A proxy re-encryption key set.
PSK A user’s partial secret key.
Φ An attribute set containing the attributes to be updated.

∆
An attribute set including all the attributes in D’s access
structure with the re-encryption keys not being 1 in rk.

Ω
An attribute set containing all the attributes in PSK

with the re-encryption keys not being 1 in rk.
ver A version number.

bilinear map is defined as e : G×G→ G1, which has
the properties of bilinearity, computability and non-
degeneracy. It outputs the public parameters PK and
the master secret key MK . The version number ver
is initialized as 1.

• CreateUL(PK, ID) → UL: The user list generation
algorithm takes as input PK and the user identity
ID. It outputs the user list UL for a dataset.

• EncIndex(PK,GT,w) → D: The index encryption
algorithm takes as input the current PK , the access
structure GT ∈ G, a keyword w ∈ W and outputs
the encrypted index D.

• KeyGen(PK,MK,S) → SK: The key generation
algorithm takes as input the current PK , the current
MK , and the attribute set S associated with a
particular user. It outputs the user’s secret key SK .

• ReKeyGen(Φ,MK) → (rk,MK ′, PK ′): The re-
encryption key generation algorithm takes as input
the attribute set Φ, and the current MK . It outputs
a set of proxy re-encryption keys rk for all the
attributes in N , the updated MK ′ and PK ′, where
all the version numbers are increased by 1. For the
attributes not in Φ, set their proxy re-encryption
keys as 1 in rk.

• ReEncIndex(∆, rk,D) → D′: It takes as input an
index D, rk and the attribute set ∆. Then it outputs
a new re-encrypted index D′.

• ReKey(Ω, rk, PSK) → PSK ′: It takes as input a
user’s partial secret key PSK , rk and the attribute
set Ω. Finally, it outputs a new PSK ′ for that user.

• GenTrapdoor(PK,SK,w′) → Q: The trapdoor gen-
eration algorithm takes as input the current PK ,
the user’s SK , a keyword of interest w′ ∈ W and
outputs the trapdoor Q for the keyword w′.

• Search(UL,D,Q) → search result or ⊥: The search
algorithm takes as input the user list UL, the index
D and the user’s trapdoor Q. It outputs valid search
result or returns a search failure indicator ⊥.

4.2 Construction for ABKS-UR

In this subsection, we will describe the concrete ABKS-
UR construction from the viewpoint of system level
based on the above defined algorithms. The system level
operations include System Setup, New User Enrollment,
Secure Index Generation, Trapdoor Generation, Search, and
User Revocation. Notice that each individual system level
operation may invoke one or more low level algorithms.

System Setup The TA calls the Setup algorithm to gener-
ate PK and MK . Specifically, it selects random elements
t1, ..., t3n. Define a collision-resistant keyed hash function
H : {0, 1}∗ → Zp, and its key is selected randomly
and securely shared between owners and users (for
simplicity, we use it without mentioning the secret key
hereafter). Let Tk = gtk for each k ∈ {1, ..., 3n} such
that for 1 ≤ i ≤ n, Ti are referred to as positive
attributes, Tn+i are for negative ones, and T2n+i are
thought of as don’t care. Let Y be e(g, g)y . The public
key is PK := 〈e, g, Y, T1, ..., T3n〉 and the master key is
MK := 〈y, t1, ..., t3n〉. The initial version number ver is
1. The TA publishes (ver, PK) with the signature of each
component of PK , and retains (ver,MK).

New User Enrollment When receiving a registration
request from a new legitimate user f , the TA first selects
a random xf ∈ Zp as a new MK component. Then,
the TA generates a new PK component Y ′

f = Y xf and
publishes it with its signature. After that, the KeyGen
algorithm is called to create secret key SK for this user.
For every i ∈ N , the TA selects random ri from Zp hence

r =
∑n

i=1 ri. K̂ is set as gy−r. For i ∈ S, set Ki = g
ri
ti

and Ki = g
ri

tn+i otherwise. Finally, let Fi be g
ri

t2n+i . The
secret key is SK := 〈ver, xf , K̂, {Ki, Fi}i∈N 〉.

In addition, the server maintains a user list UL con-
taining all the legitimate users’ identity information for
each dataset. Specifically, the data owner first selects a
random element s from Zp. When a new user f joins in
the system and is allowed to search the dataset, the data
owner calls CreateUL algorithm to set D̄f = Y ′

f
−s

and
asks the CS to add the tuple (IDf , D̄f) into the user list,
where IDf is the identity of the user f .

Secure Index Generation Before outsourcing a file to the
CS, the data owner calls EncIndex algorithm to generate
a secure index D for this file. In particular, set D̂ = gs

and D̃ to be Y s. Given an access policy GT =
∧

i∈I i,
for each i ∈ I, let Di = T s

i if i = i and Di = T s
n+i

if i = ¬i. For each i ∈ N\I, let Di = T s
2n+i. For some

attribute i′ ∈ N (this fixed position can be seen as part of
public parameter) and a keyword w ∈ W , the data owner

sets Di′ to be T
s

H(w)

i′ where without loss of generality,
attribute i′ is assumed to be positive. The encrypted
index D := 〈ver,GT, D̂, D̃, {Di}i∈N 〉.

Trapdoor Generation Every legitimate user in the sys-
tem is able to generate a trapdoor for any keyword of
interest by calling the algorithm GenTrapdoor. Specif-
ically, user f selects random u ∈ Zp. Let Q̂ = K̂u

and Q̃ = u + xf . Qi is denoted as Ku
i and Qfi =

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2355202, IEEE Transactions on Parallel and Distributed Systems

6

Fu
i . Thus, for the same i′ in secure index generation

phase, Qi′ is set to be K
H(w′)·u
i′ , where w′ is the key-

word of interest and Qfi′ = F
H(w′)·u
i′ . The trapdoor

Q := 〈ver, Q̂, Q̃, {Qi, Qfi}i∈N 〉, where ver is the version
number of SK used for generating this trapdoor.

Search Upon receipt of a trapdoor Q and the user
identity IDf , 1) the CS finds out if IDf exists on the
user list of the target dataset. If not, the user is not
allowed to search over the dataset; 2) otherwise, the
CS continues the Search algorithm with the input of
trapdoor Q, encrypted index D and D̄f from the user list.
We call this process dataset search authorization. Then, we
move onto the fine-grained file-level search authorization,
which includes three cases:

• If ver of Q is less than ver of D, it outputs ⊥.
• If ver of Q is greater than ver of D, the algorithm

ReEncIndex is called to update the index first.
• If ver of Q is equal to ver of D, the search process

is performed as follows. For each attribute i ∈ I, if
i = i and i ∈ S, then

e(Di, Qi) = e(gti·s, g
ri·u

ti) = e(g, g)s·u·ri .

If i = ¬i and i /∈ S, then

e(Di, Qi) = e(gtn+i·s, g
ri·u

tn+i) = e(g, g)s·u·ri .

For each i /∈ I,

e(Di, Qfi) = e(gt2n+i·s, g
ri·u

t2n+i) = e(g, g)s·u·ri.

For the attribute i′ ∈ N , e(Di′ , Qi′) is equal to
e(g, g)s·u·ri′ as well.

If the following equation holds, the user’s attributes
satisfy the access structure embedded in the index and
w′ = w,

D̃Q̃ · D̄f
?
= e(D̂, Q̂) ·

n∏

i=1

e(Di, Q
∗
i),

where Q∗
i = Qi if i ∈ I and Q∗

i = Qf i otherwise.
Correctness Provided that the user is authorized to access
the file and w′ = w, then

e(D̂, Q̂) ·
n∏

i=1

e(Di, Q
∗
i) = e(gs, gu·y−u·r) ·

n∏

i=1

e(g, g)s·u·ri

= e(g, g)s·u·y−s·u·r · e(g, g)s·u·r

= e(g, g)s·u·y

= Y s·u

= Y s·(xf+u) · Y −s·xf = D̃Q̃ · D̄f .

Discussion We can achieve scalable fine-grained file-level
search authorization by data-owner-enforced attribute-
based access structure on the index of each file. The
search complexity is linear to the number of attributes
in the system rather than the number of authorized
users. Hence, this one-to-many authorization mechanism
is more suitable for a large scale system, such as cloud.
Moreover, the dataset search authorization by using a

per-dataset user list may accelerate the search process,
since the CS can decide whether it should go into a
particular dataset or not. Otherwise, the CS has to search
every file at rest.

User Revocation To revoke a user from current system,
we re-encrypt the secure indexes stored on the server
and update the remaining legitimate users’ secret keys.
Note that these tasks can be delegated to the CS using
proxy re-encryption technique so that user revocation is
very efficient. In particular, the TA adopts the ReKeyGen
algorithm to generate the re-encryption key set rk :=
〈ver, {rki,val}i∈N ,val∈{+,−}〉. Let attribute set Φ consist of
the attributes that need to be updated, without which
the leaving user’s attributes will never satisfy the access

policy. If an attribute i ∈ Φ, rki,+ =
t′i
ti

is for the positive

attribute i, and for the negative rki,− is set to be
t′n+i

tn+i
,

where both t′i and t′n+i are randomly selected from Zp.
If i ∈ N\Φ, set rki,val = 1, where val ∈ {+,−}. Then the
TA refines the corresponding components in MK and
PK , and publishes the new PK ′ with the signatures.
The TA also sends rk and its signature to the CS.

After receiving rk from the TA, the server checks
whether the version number ver in rk is equal to current
ver of the system (or it can be greater than the current
system ver in the case of lazy re-encryption, see Discus-
sion below). If not, it discards this re-encryption key set.
Otherwise, the CS verifies rk. Then, the server calls the
ReEncIndex algorithm to re-encrypt the secure indexes
in its storage with valid rk. Let ∆ be the set including all
the attributes in the access structures of secure indexes
with the re-encryption keys not being 1 in rk. For each

positive i ∈ ∆, D′
i is set as D

rki,+

i , or D′
i = D

rki,−

i for neg-
ative ones. For i /∈ ∆, let D′

i be equal to Di. Finally, the
index is updated as D′ := 〈ver + 1, GT, D̂, D̃, {D′

i}i∈N 〉.
Furthermore, the server is able to update the remain-

ing legitimate users’ secret keys by the ReKey algorithm.
Suppose that SKL is a list stored on the CS containing
all the partial secret keys PSK’s of all the legitimate
users in the system. PSK is defined as (ver, {Ki}i∈N).
Note that the CS cannot generate a valid trapdoor with
PSK . Let Ω be the set including all the attributes in
PSK with the re-encryption keys not being 1 in rk.

For each attribute i in Ω, denote K ′
i to be K

rk
−1
i,+

i if i

is positive and K
rk

−1
i,−

i otherwise. For each i /∈ Ω, set
K ′

i = Ki. The updated PSK ′ = (ver+1, {K ′
i}i∈N), which

is returned to the legitimate user. User can also verify
whether his secret key is the latest version by checking
e(Ti,Ki) = (T ′

i ,K
′
i), where T ′

i is the attribute component
in the latest PK ′. Here we suppose all the attributes i
are positive. Otherwise, use Tn+i and T ′

n+i instead in the
equation.

Finally, the server may eliminate ID information of
the revoked user f , i.e. the tuple (IDf , D̄f), from all the
corresponding user lists.

Discussion To handle file index update efficiently, we
could adopt the lazy re-encryption technique [16]. The

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2355202, IEEE Transactions on Parallel and Distributed Systems

7

CS stores the re-encryption key sets rk’s and will not
re-encrypt indexes until they are being accessed. Specif-
ically, the CS could “aggregate” multiple rk’s and deal
with the index update in a batch manner. For instance,
ver = k in D, ver = j in the latest rk and k < j, to
re-encrypt the index, the CS just calls ReEncIndex once

with
∏j

ρ=k rk
(ρ)
i,val.

4.3 Conjunctive Keyword Search

Data user may prefer the returned files containing sev-
eral intended keywords with one search request, which
is referred to as conjunctive keyword search. Similar
to [13], [14], our proposed ABKS-UR scheme is able
to provide conjunctive keyword search functionality

readily as follows. Di′ is defined as g

s·t
i′∏

wj∈W H(wj)
or

g

s·t
i′

⊗wj∈WH(wj)
, where ⊗ denotes XOR operation. The com-

ponents Qi′ and Qfi′ in the trapdoor are generated
accordingly. It is worth noting that this method has
almost the same efficiency as the single-keyword ABKS-
UR scheme, regardless of the number of simultaneous
keywords.

4.4 Security Analysis

1) Keyword semantic security: In this paper, we formally
define a semantic security game for ABKS-UR. We first
give the cryptographic assumption that our scheme re-
lies on.

Definition 2 (The DBDH Assumption [34]): Let a, b, c, z
∈ Zp be chosen at random and g be a generator
of G. The DBDH assumption is that no probabilistic
polynomial-time adversary B can distinguish the tuple
A = ga, B = gb, C = gc, e(g, g)abc from the tuple
A = ga, B = gb, C = gc, e(g, g)z with non-negligible
advantage. The advantage of B is defined as follows,

|Pr[B(A,B,C, e(g, g)abc) = 0]−Pr[B(A,B,C, e(g, g)z) = 0]|

where the probability is taken over the random choice
of the generator g, the random choice of a, b, c, z in Zp,
and the random bits consumed by B.

The semantic security game between an adversary A
and a challenger B is defined as follows.
Init. The adversary A submits a challenge access policy
GT , a version number ver∗ and ver∗ − 1 attribute sets
{Φ(ρ)}1≤ρ≤ver∗−1 to the challenger B.
Setup. The challenger B runs Setup(λ,N) to obtain
PK and MK for version 1. For each version ρ ∈
{1, ..., ver∗ − 1}, B runs ReKeyGen(Φ,MK). Then he
publishes {rk(ρ)}1≤ρ≤ver∗−1 to A, where rk(ρ) is de-
fined as the re-encryption key set of version ρ. Given
{rk(ρ)}1≤ρ≤ver∗−1, the adversary A is able to compute
PK for the corresponding version ρ+ 1.
Phase 1. By submitting any keyword w ∈ W , the adver-
sary A is allowed to request the challenger B to generate
trapdoors of any version from 1 to ver∗ polynomial
times (in λ). The only restriction is that the attribute

set associated with each trapdoor query submitted by
A does not satisfy the challenge access structure GT .
Challenge. Upon receipt of challenge keyword w0, w1 ∈
W of the same length from the adversary A, B flips
a random coin µ ∈ {0, 1} and get a challenge index
Dµ ← EncIndex(PK,GT,wµ), where GT is the chal-
lenge access structure and PK is of version ver∗. B
returns Dµ to A.
Phase 2. Same as phase 1.
Guess. Adversary A submits his guess µ′ of µ.

Definition 3 (IND-sCP-CKA Security): The proposed
ABKS-UR scheme is IND-sCP-CKA secure if for
all probabilistic polynomial-time adversary A, the
advantage AdvIND−sCP−CKA

A in winning the semantic
security game is negligible.

AdvIND−sCP−CKA
A = Pr[µ′ = µ]−

1

2
.

Notice that the trapdoor query oracle in Phase 1
implicitly includes the secret key query oracle, which
may send the partial secret key (see Sect. 4.2) back
to the adversary. Since the adversary A is allowed to
obtain all the re-encryption keys, he is able to update
indexes, secret keys and trapdoors on his own such that
we do not let challenger answer these queries in Phase
1 and Phase 2. Moreover, in the selective model, our
semantic security game allows the adversary to query
any keywords at Phase 1 and Phase 2 as long as the
attribute sets associated with the queried trapdoors do
not satisfy the challenge access policy GT .

We give the following theorem, and then prove our
ABKS-UR construction IND-sCP-CKA secure in the s-
tandard model.

Theorem 1: If a probabilistic polynomial-time adver-
sary wins the IND-sCP-CKA game with non-negligible
advantage ǫ, then we can construct a simulator B to solve
the DBDH problem with non-negligible advantage ǫ

2 .
Proof: The DBDH challenger first randomly chooses

a, b, c, z ∈ Zp and a fair coin ν ∈ {0, 1}. It defines Z to
be e(g, g)abc if v = 0, and e(g, g)z otherwise. Then the
simulator B is given a tuple (A,B,C, Z) = (ga, gb, gc, Z)
and asked to output ν. The simulator B now plays the
role of challenger in the following game.
Init. In this phase, simulator B receives the challenge
access structure GT =

∧
i∈I i, a version number ver∗ and

ver∗ − 1 attribute sets {Φ(ρ)}1≤ρ≤ver∗−1 from adversary
A.
Setup. For PK of version 1, Simulator B sets Y to be
e(A,B) = e(g, g)a·b, which implicitly defines y = a · b.
Choose random x = θ ∈ Zp and define Y ′ to be
e(A,B)θ = e(g, g)a·b·θ. For each i ∈ N , B selects ran-
dom αi, βi, γi ∈ Zp, and outputs the following public
parameters.

For i ∈ I, Ti = gαi , Tn+i = Bβi , T2n+i = Bγi if i = i;
Ti = Bαi , Tn+i = gβi , T2n+i = Bγi if i = ¬i.

For i /∈ I, Ti = Bαi , Tn+i = Bβi , T2n+i = gγi .
For each attribute set Φ(ρ), 1 ≤ ρ ≤ ver∗ − 1,
B generates the re-encryption key rk(ρ) and the PK

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2355202, IEEE Transactions on Parallel and Distributed Systems

8

of that version. For each attribute i ∈ Φ(ρ), rk
(ρ)
i,val

where val ∈ {+,−}, is randomly selected from Zp.

T
(ρ+1)
i = (T

(ρ)
i)rk

(ρ)
i,+ , T

(ρ+1)
n+i = T

(ρ)
n+i, and T

(ρ+1)
2n+i = T

(ρ)
2n+i

if attribute i is positive. Otherwise, T
(ρ+1)
i = T

(ρ)
i ,

T
(ρ+1)
n+i = (T

(ρ)
n+i)

rk
(ρ)
i,− , and T

(ρ+1)
2n+i = T

(ρ)
2n+i. Then, for

each i /∈ Φ(ρ), set rk
(ρ)
i,val = 1 and the remaining public

parameters of version ρ + 1 are the same with those
of version ρ. Finally, simulator B publishes rk(ρ) =

〈ρ, {rk
(ρ)
i,val}i∈Φ(ρ),val∈{+,−}〉 to A.

Phase 1. Without loss of generality, assume that adver-
sary A submits a keyword wl and a set S ⊆ N to B
for version ρ, where 1 ≤ ρ ≤ ver∗ and S does not
satisfy GT . B uses the collision-resistant hash function
to output H(wl) = hl. Since S does not satisfy GT , a
witness attribute j ∈ I must exist. Thus, either j ∈ S and
j = ¬j, or j /∈ S and j = j. Without loss of generality,
we assume j /∈ S and j = j.

Simulator B chooses random {r′i}1≤i≤n ∈ Zp. Set
rj = a · b + r′j · b and ri = r′i · b if i 6= j. Denote
r =

∑n
i=1 ri = a·b+

∑n
i=1 r

′
i ·b. B defines u to be a random

nubmer λ selected from Zp. As such, Q̂ is defined to be
gy·u−r·u = g−

∑n
i=1 r′i·b·λ = B−

∑n
i=1 r′i·λ. The Q̃ component

of the trapdoor is defined to be x+ u = θ + λ.

By defining rk
(ρ)
i,val = 1 where val ∈ {+,−} if i /∈

Φ(ρ), B could compute the followings for each i ∈ N :

for 2 ≤ ρ ≤ ver∗, T
(ρ)
i = (T

(1)
i)rk

(1)
i,+·rk

(2)
i,+···rk

(ρ−1)
i,+ =

(T
(1)
i)

∏ρ−1
o=1 rk

(o)
i,+ , and T

(ρ)
n+i = (T

(1)
n+i)

rk
(1)
i,−·rk

(2)
i,−···rk

(ρ−1)
i,− =

(T
(1)
n+i)

∏ρ−1
o=1 rk

(o)
i,− .

B denotes R
(ρ)
i =

∏ρ−1
o=1 rk

(o)
i,+ and R

(ρ)
n+i =

∏ρ−1
o=1 rk

(o)
i,−.

Simulator B sets Qj = A

λ

βj ·R
(ρ)
j+1 · g

r′j ·λ

βj ·R
(ρ)
j+1 =

g

a·b+r′j ·b

b·βj ·R
(ρ)
j+1

·λ

= g

rj ·u

b·βj ·R
(ρ)
j+1 .

For i 6= j, 1) i ∈ S. Qi = B

r′i·λ

αi·R
(ρ)
i = g

ri·u

αi·R
(ρ)
i if i ∈ I∧i =

i; Qi = g

r′i·λ

αi·R
(ρ)
i = g

ri·u

b·αi·R
(ρ)
i if (i ∈ I ∧ i = ¬i) ∨ i /∈ I.

2) i /∈ S. Qi = B

r′i·λ

βi·R
(ρ)
n+i = g

ri·u

βi·R
(ρ)
n+i if i ∈ I ∧ i = ¬i;

Qi = g

r′i·λ

βi·R
(ρ)
n+i = g

ri·u

b·βi·R
(ρ)
n+i if (i ∈ I ∧ i = i) ∨ i /∈ I.

Similarly, let Qfj = A
λ
γj · g

r′j·λ

γj = g
a·b+r′j·b

b·γj
·λ

= g
rj·u

b·γj .

For {Qfi}i6=j , we have 1) i ∈ I. Qfi = g
r′i·λ

γi = g
ri·u

b·γi . 2)

i /∈ I. Qfi = B
r′i·λ

γi = g
ri·u

γi .
Without loss of generality, assume i′ ∈ S∩I and i′ = i′.

Simulator B sets Qi′ = B

r′
i′

·λ·hl

α
i′

·R
(ρ)

i′ = g

r
i′

·u·H(wl)

α
i′

·R
(ρ)

i′ .
Challenge. Upon receiving the challenge keywords
w0, w1 from adversary A, simulator B flips a random
coin µ ∈ {0, 1} and then encrypts wµ with the challenge
gate GT . From the collision-resistant hash function H ,
simulator B obtains H(wµ) = hµ. For version ver∗ and

i ∈ I, Di is defined to be Cαi·R
(ver∗)
i if i = i and

Cβi·R
(ver∗)
n+i if i = ¬i. For i /∈ I, let Di = Cγi . Without

loss of generality, assume i′ ∈ I and i′ = i′ such that

Di′ = C
α
i′

·R
(ver∗)

i′

hµ . Finally, B sets D̂ = C, D̃ = Z and
D̄ = Z−θ.
Phase 2. Same as phase 1.
Guess. Adversary A submits µ′ of µ. If ν = 1, adversary
A cannot acquire any advantage in this semantic security
game but a random guess. Therefore, we have Pr[µ 6=
µ′|ν = 1] = 1

2 . When µ 6= µ′, simulator B outputs ν′ = 1,
such that Pr[ν′ = ν|ν = 1] = Pr[ν′ = 1|ν = 1] = 1

2 . If
ν = 0, a valid D is given to adversary A. He can win this
game with non-negligible advantage ǫ. Hence, Pr[µ =
µ′|ν = 0] = 1

2 + ǫ. When µ = µ′, simulator B outputs ν′ =
0, we have Pr[ν′ = ν|ν = 0] = Pr[ν′ = 0|ν = 0] = 1

2 + ǫ.

The advantage AdvDBDH
A of simulator B in the DBDH

game is Pr[ν′ = ν] − 1
2 = Pr[ν′ = ν|ν = 1]Pr[ν = 1] +

Pr[ν′ = ν|ν = 0]Pr[ν = 0]− 1
2 = 1

2 ·
1
2 +(12 + ǫ) · 12 −

1
2 = ǫ

2 .

As per the above theorem, we can conclude that our
proposed scheme is semantically secure in the selective
model. Note that malicious users cannot launch collusion
attack to generate a new valid secret key or trapdoor,
which has been implicitly proved because the adversary
A in our security game has the same capability as the
malicious users, i.e. he can query different secret keys.

2) Trapdoor unlinkability: To generate a trapdoor, the
data user chooses a different random number u to ob-
fuscate the trapdoor such that the CS is visually unable
to differentiate two or more trapdoors even produced
with the same keyword. Thus, the ABKS-UR can provide
trapdoor unlinkability property.

5 AUTHENTICATED SEARCH RESULT

Data users may desire the authenticated search result
to boost their confidence in the entire ABKS-UR search
process, especially when the result contains errors that
may come from the possible storage corruption, soft-
ware malfunction, and intention to save computational
resources by the server, etc. Similar to [25], we are able
to assure data user of the authenticity of the returned
search result by checking its correctness (the returned
search result indeed exist in the dataset and remain
intact), completeness (no qualified files are omitted from
the search result), and freshness (the returned result is
obtained from the latest version of the dataset). The
main idea of the verification scheme is to allow the
CS to return the auxiliary information containing the
authenticated data structure other than the final search
result, upon which the data user is capable of doing
result authenticity check. In what follows, we elaborate
on the concrete scheme.

Authenticated data structure preparation In order to
let the user check if he is a legitimate user for a
particular dataset, the data owner can simply sign the
corresponding user list UL. Or, to avoid disclosing other
users’ membership information, the TA may generate the
keyed-hash value hxf

(IDf) for each authorized user f .
The data owner can insert the hash values into a bloom

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2355202, IEEE Transactions on Parallel and Distributed Systems

9

filter BFUL [26] based on these users’ membership, and
then signs it to σ(BFUL). Next, the data owner prepares
another bloom filter BFW for the keywords appearing
in the dataset to enable the data user quickly find out
the existence of the intended keyword. Specifically, the
TA generates a hash key k and gives it to the data
owner. He then encrypts it with symmetric key xf for
each legitimate user. Note that the output ciphertext
Exf

(k) can be signed and added into the user list UL
later by the data owner. Then, the data owner obtains a
keyword bloom filter BFW by inserting the keyed-hash
value hk(w) of every keyword w in the dataset, and signs
it to σ(BFW). When preparing the encrypted indexes
for the dataset to be outsourced, the data owner uses
inverted index [27] to organize the entire dataset, i.e. all
the encrypted files l with the secure indexes containing
the same keyword w are placed in the same file list
Lw = {< Dl1,w , l1 >,< Dl2,w , l2 >, ... < Dlq,w , lq >}.
Upon each list Lw, the data owner generates the list
signature as follows: first, for every tuple < Dli,w , li >
in Lw where 1 ≤ i ≤ q, he computes the hash value
hli = H(Dli,w ||H(li)). Then the data owner computes
the hash value hLw

for the list Lw. For example, there
are three files l1, l2 and l3 in this particular list. The
data owner calculates h1 = hl1 , h2 = H(hl2 ||h1), and
hLw

= h3 = H(hl3 ||h2). Finally, he outsources the BFUL,
BFW , all the file lists Lw and their signatures σ(BFUL),
σ(BFW), σ(hLw

) to the server.

Search phase In the search phase, the CS returns the
search result along with the auxiliary information for
result authenticity check later by the data user. The
auxiliary information includes all the user list bloom
filters BFUL of the datasets stored on the server (see the
discussion below), the keyword bloom filters BFW of
the datasets that the user is authorized to access, the file
list L′

w for the intended keyword w if the search result
contains files from this dataset, the tuple (D̄f , Exf

(k))
in each related UL and all the corresponding signatures.
Notably, if the search result does not contain files from
this dataset, it is not necessary to return the correspond-
ing file list. Otherwise, the CS generates L′

w as follows.
For the file li in Lw but not in the search result, the
CS merely computes its hash value h(li) and puts the
tuple < Di,w, h(li) > in L′

w. For example, when Lw =
{< Dl1,w , l1 >,< Dl2,w , l2 >,< Dl3,w , l3 >} and only l1 is
included in the final search result, the CS will sends back
L′
w = {< Dl1,w , l1 >,< Dl2,w , h(l2) >,< Dl3,w , h(l3) >} to

the user.

Result authentication On receipt of the search result,
the user can check its authenticity as follows. At first,
the user does the membership test with all the veri-
fied user list bloom filters BFUL. For each dataset that
the user is authorized to access, he verifies the tuple
(D̄f , Exf

(k)) from this dataset, and decrypts Exf
(k) with

xf . Then, he verifies the keyword bloom filter BFW of
this dataset and exploits the hash key k to check whether
the keyword of interest w indeed exists. If not, the user

turns to another keyword bloom filter of the next access-
granted dataset. Otherwise, he goes into the specific file
list L′

w. For simplicity, we still use the above mentioned
example. The user first computes tuple hash values hl1 ,
hl2 and hl3 respectively. He then generates the hash
chain to obtain the file list hash value hLw

, and verifies
σ(hLw

). Next, he can search this list with his trapdoor
and corresponding D̄f from the CS to check if all the
matching files have been returned. Thus, the data user
can ensure the authenticity of the returned search result.

Discussion Note that if it is the first time for a user
f to perform search operation, the CS will send the
tuples (D̄f , Exf

(k)) in all related UL and all the user
list bloom filters to this user and he may keep them
to avoid the communication overhead in the following
searches. To revoke a particular user, data owners will
update the corresponding user list bloom filters and send
them to the CS. After that, the legitimate user will replace
the corresponding bloom filters for the updated ones
received from the CS if he requires the server to search
again. On the other hand, if the user repeats the search
with the keyword queried before, it is not necessary
for the CS to return the auxiliary information1 and the
user merely needs to compare the result with the search
history. Otherwise, all the relevant BFW and L′

w should
be returned to user for result verification.

In this paper, we create an authenticated data structure
using bloom filter, inverted index, hash and signature
techniques to organize the outsourced data in the server.
The data user can search over this structure to verify the
returned search result, since all the signatures can only
be generated by data contributors. By checking verified
BFUL, BFW and Lw, the user is assured of the existence
and integrity of all the returned files, and search result
does not exclude any qualified matching files. Hence, we
can achieve the verification design goals, i.e. correctness
and completeness. Freshness can be simply realized by
adding time stamp into the corresponding signatures.
Thus, we make the ABKS-UR scheme verifiable and the
authenticity of the returned search result is guaranteed.

6 PERFORMANCE EVALUATION

In this section, we will evaluate the performance of our
proposed ABKS-UR scheme and search result verifica-
tion mechanism by real-world dataset and asymptotic
computation complexity in terms of the pairing opera-
tion P, the group exponentiation E and the group multi-
plication M in G, the group exponentiation E1, the group
multiplication M1 in G1 and hash operation H used in
bloom filters. Note that we can realize the encryption
and the signature operation by any secure symmetric
encryption and signature techniques respectively, e.g.,
AES encryption and RSA signature, which incur fixed
computation overhead, and here we do not consider
them. We also ignore the hash operation for ABKS-UR as

1. This is doable since the CS is able to track the access pattern.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2355202, IEEE Transactions on Parallel and Distributed Systems

10

it is much more efficient than other involved computa-
tions. As for search result verification, the hash operation
will be counted for it is the main computation cost
there. Suppose there exist n attributes in the proposed
scheme. The numerical performance evaluation is shown
in Tab. 2. Moreover, to evaluate the key operations of
the proposed scheme, we use the real-world dataset,
i.e. the Enron Email Dataset [35], which contains about
half million files contributed from 150 users approxi-
mately. In the literature, there are few existing works
on attribute-structure based authorized keyword search
with experimental results. We will compare our ABKS-
UR scheme with the predicate encryption based APKS
scheme [21] in terms of search efficiency. We conduct our
experiment using C and the Pairing-Based Cryptography
(PBC) Library [36] on a Linux Server with Intel Core i3
Processor 3.3GHz. We adopt the type A elliptic curve of
160-bit group order, which provides 1024-bit discrete log
security equivalently (our scheme can also be adapted
into any secure asymmetric pairing version).

6.1 System Setup

At this initial phase, the TA defines the public parameter,
and generates PK and MK . The main computation
overhead is 3n exponentiations in G, one exponentiation
in G1 and one pairing operation on the TA side. As
shown in Fig.2 (a), the time cost for system setup is very
efficient and is linear to the number of attributes in the
system.

6.2 New User Enrollment

When a new legitimate user wants to join in the system,
he has to request the TA to generate the secret key SK ,
which needs 2n + 1 exponentiations in G. The TA also
needs one exponentiation in G1 to generate a new PK
component for the user. A data owner may also allow
the user to access the dataset by adding him onto the
corresponding user list, which incurs one exponentiation
in G1. It is obvious that the time cost to enroll a new user
is proportional to the number of attributes in the system.

6.3 Secure Index Generation

The size of secure index is constant if the number of
attributes is pre-fixed in the system setup phase regard-
less of the actual number of keywords in a file for both
single keyword and conjunctive keyword search sce-
narios. Moreover, the data owner approximately needs
(n + 1)E + E1 to generate a secure index for a file. Fur-
thermore, we evaluate the practical efficiency of creating
secure indexes for 10000 files, as shown in Fig.2 (b).
It exhibits the expected linearity with the number of
attributes in the system. When there exist 30 attributes
in the system, the data owner would spend about 8
minutes encrypting the indexes for 10000 files. Note that
this computational burden on the data owner is a one-
time cost. After all the indexes outsourced to the CS, the

following index re-encryption operation is also delegated
to the server. Thus, the overall efficiency for encrypting
index is totally acceptable in practice.

6.4 Trapdoor Generation

With the secret key, data user is free to produce the
trapdoor of any keyword of interest, which requires
about 2n+ 1 group exponentiations in G. Moreover, the
experimental result in Fig.2 (c) shows that our proposed
authorized keyword search scheme enjoys very efficient
trapdoor generation. In accordance with the numerical
computation complexity analysis, the trapdoor genera-
tion will need more time with the increased number of
attributes.

TABLE 2
Numerical evaluation of ABKS-UR and result verification

Operation Computation complexity
System Setup 3nE + E1 + P
New User Enrollment (2n+ 1)E + 2E1

Secure Index Generation (n+ 1)E + E1

Trapdoor Generation (2n+ 1)E
Per-index Search (n+1)P+ (n+2)M1 +E1

ReKeyGen x(M + E), 1 ≤ x ≤ n
ReEncIndex yE, 1 ≤ y ≤ n
ReKey zE, 1 ≤ z ≤ n
Data preparation (ak1 + bk2 + (3q − 1)b)H
Search phase (q − t)H
Result authentication1 (mk1+k2+2q+t−1)H+tS2

1 This is for a new intended keyword search over one
authorized dataset.

2 S denotes the per-index search operation.

6.5 Search

To search over a single encrypted index, the dominant
computation of ABKS-UR is n + 1 pairing operations,
while APKS [21] needs n + 3 pairing operations. Fig.2
(d) shows the practical search time of ABKS-UR and
APKS on a single secure index with different number of
attributes respectively. With the same number of system
attributes, ABKS-UR is slightly faster than APKS. More-
over, compared with APKS, ABKS-UR allows users to
generate trapdoors independently without resorting to
an always online attribute authority, and it has a broader
range of applications due to the arbitrarily-structured
data search capability. Notice that the search complexity
of our scheme will varies a lot for different data users,
since the dataset search authorization only allows users on
the user lists to further access the corresponding dataset-
s. Assume that there exist 10000 files and 30 system
attributes. In the worse case of search over every file in
the storage, the CS, with the same hardware/softwore
specifications as our experiment, requires less than 5
minutes to complete the search operation. Thus, with
a more powerful cloud, our proposed ABKS-UR scheme
would be efficient enough for practical use.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2355202, IEEE Transactions on Parallel and Distributed Systems

11

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Number of attributes

S
y
s
te

m
 s

e
tu

p
 t
im

e
 (

s
)

(a)

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

Number of attributes

S
e

cu
re

 in
d

e
x

g
e

n
e

ra
tio

n
 t

im
e

 (
s)

(b)

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

Number of attributes

T
ra

p
d

o
o

r
g

e
n

e
ra

tio
n

 t
im

e
 (

s)

(c)

0 20 40 60 80 100
0

20

40

60

80

100

Number of attributes

P
e

r−
in

d
e

x
 s

e
a

rc
h

 t
im

e
 (

m
s
)

ABKS−UR
APKS

(d)

Fig. 2. Performance evaluation on ABKS-UR. (a) Time cost for system setup. (b) Secure index generation time for
10000 files. (c) Trapdoor generation time. (d) Time cost for search over a single index.

6.6 User Revocation

As the server can efficiently eliminate the revoked user’s
identity information from the corresponding user lists,
we do not show it in Tab.1. Instead, we calculate the
main computation complexity of ReKeyGen, ReEncIn-
dex and ReKey. To update the system, the TA uses
the algorithm ReKeyGen to produce the new version
of MK ′ and PK ′, and the re-encryption key set rk.
Depending on the number of attributes to be updated,
generating rk requires minimum M to maximum nM
operations. Likewise, the computation overhead for PK ′

is within the range from E to nE. Moreover, the CS
calls the ReEncIndex algorithm to re-encrypt the secure
indexes at its storage. Each index update needs E to nE
operations in G, which is also the computation overhead
range for the CS to update a legitimate user’s secret key
by algorithm ReKey.

6.7 Authenticated Search Result

Other than the computation cost for ABKS-UR, a data
owner still needs to prepare a user list bloom filter BFUL,
a keyword bloom filter BFW and file lists Lw for his
outsourced dataset. Assume for this dataset there are a
authorized users, b extracted keywords, and average q
files in each Lw. Let k1 and k2 be the number of hash
functions used to insert a user and a keyword into BFUL

and BFW respectively. Thus, the main computation cost
for these data preparation is ak1+bk2+(3q−1)b efficient
hash operations as shown in Tab. 2.

At the search phase, the CS only needs to computes
file list L′

w for each authorized dataset for the user. Tab.
2 shows that every file list can be generated by q−t hash
operations, where t is the average number of matching
files in L′

w.
If the data user queries a keyword searched before,

the CS will only return the search result and the user
will verify them by checking the search history (see the
discussion in Sect. 5). Therefore no extra communica-
tion and computation overhead is introduced in this
situation. Otherwise, in the worst case, the user should
checking all the returned BFUL, BFW and L′

w. As shown
in Tab. 2, suppose there are m datasets stored on the

server and the user is only authorized to access one
dataset, the verification cost is mk1 + k2 + 2q + t − 1
hash operations and t per-index search operations. In
order to save the communication cost between the CS
and the user, the user list bloom filters BFUL can be
stored on the user side after he receives them from the
server (see the discussion in Sect. 5). For the BFUL of
1% false positive rate and 100 outsourced datasets, the
corresponding storage cost is shown in Tab. 3. In this
worst case that 10000 authorized users are inserted to
each BFUL, the user only needs about 1 MB storage
space to keep the user list bloom filters of all the datasets.

To realize the verifiable ABKS-UR, except that the
user may need to search the verified data structure (the
computational complexity is much smaller than that of
search on the server), data owner and cloud server have
minimal extra computation overhead, i.e., efficient hash
function evaluation.

TABLE 3
Storage cost for 100 BFUL of 1% false positive rate

of inserted users 2000 4000 6000 8000 10000
Size (MB) 0.24 0.48 0.72 0.96 1.19

7 CONCLUSION

In this paper, we design the first verifiable attribute-
based keyword search scheme in the cloud environment,
which enables scalable and fine-grained owner-enforced
encrypted data search supporting multiple data owners
and data users. Compared with existing public key
authorized keyword search scheme [14], our scheme
could achieve system scalability and fine-grainedness
at the same time. Different from search scheme [21]
with predicate encryption, our scheme enables a flexible
authorized keyword search over arbitrarily-structured
data. In addition, by using proxy re-encryption and
lazy re-encryption techniques, the proposed scheme is
better suited to the cloud outsourcing model and enjoys
efficient user revocation. On the other hand, we make
the whole search process verifiable and data user can

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2355202, IEEE Transactions on Parallel and Distributed Systems

12

be assured of the authenticity of the returned search
result. We also formally prove the proposed scheme
semantically secure in the selective model.

ACKNOWLEDGMENTS

This work was supported in part by the NSFC 61272457,
the National Project 2012ZX03002003-002, the 863 Project
2012AA013102, the 111 Project B08038, the IRT1078, the
FRF K50511010001, the NSFC 61170251, and the U.S. NSF
grants CNS-1217889 and CNS-1338102.

REFERENCES

[1] W. Sun, S. Yu, W. Lou, Y. T. Hou, and H. Li, “Protecting Your
Right: Attribute-based Keyword Search with Fine-grained Owner-
enforced Search Authorization in the Cloud,” in IEEE INFOCOM,
pp. 226-234, 2014.

[2] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and fine-grained data access control in cloud computing,” in Proc.
of IEEE INFOCOM, pp. 1-9, 2010.

[3] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and secure
sharing of personal health records in cloud computing using
attribute-based encryption,” IEEE TPDS, vol. 24, no. 1, pp. 131-
143, 2013.

[4] S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Finan-
cial Cryptography and Data Security, pp. 136–149, 2010.

[5] D. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. of IEEE S&P, pp. 44-55, 2000.

[6] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster secure two-
party computation using garbled circuits,” in USENIX Security
Symposium, vol. 201, no. 1, 2011.

[7] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dis-
sertation, Stanford University, 2009.

[8] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient construc-
tions,” in Proc. of ACM CCS, pp. 79-88, 2006.

[9] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proc. of ACM CCS, pp. 965-976, 2012.

[10] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” in Proc.
of IEEE INFOCOM, pp. 829-837, 2011.

[11] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and H.
Li, “Privacy-preserving multi-keyword text search in the cloud
supporting similarity-based ranking,” in Proc. of ACM ASIACCS,
pp. 71-82, 2013.

[12] F. Bao, R. H. Deng, X. Ding, and Y. Yang, “Private query on en-
crypted data in multi-user settings,” in Information Security Practice
and Experience, Springer, pp. 71-85, 2008.

[13] Y. Yang, H. Lu, and J. Weng, “Multi-user private keyword search
for cloud computing,” in Proc. of IEEE CloudCom, pp. 264-271, 2011.

[14] Y. H. Hwang and P. J. Lee, “Public key encryption with conjunc-
tive keyword search and its extension to a multi-user system,” in
Proc. of Pairing, pp. 2-22, 2007.

[15] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and
atomic proxy cryptography,” in Proc. of EUROCRYPT, pp. 127-144,
1998.

[16] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu,
“Plutus: Scalable secure file sharing on untrusted storage,” in Proc.
of FAST, vol. 42, pp. 29-42, 2003.

[17] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Proc. of EUROCRYPT, pp.
506-522, 2004.

[18] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword
search over encrypted data,” in Proc. of ACNS, pp. 31-45, 2004.

[19] D. Boneh and B. Waters, “Conjunctive, subset, and range queries
on encrypted data,” in Theory of Cryptography, pp. 535-554, 2007.

[20] J. Katz, A. Sahai, and B. Waters, “Predicate encryption supporting
disjunctions, polynomial equations, and inner products,” in Proc.
of EUROCRYPT, pp. 146-162, 2008.

[21] M. Li, S. Yu, N. Cao, and W. Lou, “Authorized private keyword
search over encrypted data in cloud computing,” in Proc. of IEEE
ICDCS, pp. 383-392, 2011.

[22] H. Pang and K.-L. Tan, “Authenticating query results in edge
computing,” in Proc. of ICDE, pp. 560-571, 2004.

[23] H. Pang and K. Mouratidis, “Authenticating the query results of
text search engines,” in Proc. VLDB Endow., vol. 1, no. 1, pp. 126-
137, 2008.

[24] C. Wang, N. Cao, K. Ren and W. Lou, “Enabling secure and
efficient ranked keyword search over outsourced cloud data,” IEEE
TPDS, vol. 23, no. 8, pp. 1467-1479, 2012.

[25] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and H. Li,
“Verifiable privacy-preserving multi-keyword text search in the
cloud supporting similarity-based ranking,” IEEE TPDS, vol. 99,
no. PrePrints, pp. 1, 2013.

[26] B. H. Bloom, “Space/time trade-offs in hash coding with allow-
able errors,” Communications of the ACM, vol. 13, no. 7, pp. 422-426,
1970.

[27] NIST, “NIST’s dictionary of algorithms and data structures: in-
verted index,” [Online]. Available: http://xlinux.nist.gov/dads/
/HTML/invertedIndex.html.

[28] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,” in
Proc. of ACM CCS, pp. 89-98, 2006.

[29] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in Proc. of IEEE S&P, pp. 321-334, 2007.

[30] L. Cheung and C. Newport, “Provably secure ciphertext policy
ABE,” in Proc. of ACM CCS, pp. 456-465, 2007.

[31] S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute based data sharing
with attribute revocation,” in Proc. of ACM ASIACCS, pp. 261-270,
2010.

[32] E. Shen, E. Shi, and B. Waters, “Predicate privacy in encryption
systems,” in Theory of Cryptography, pp. 457-473, 2009.

[33] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private
information retrieval,” Journal of the ACM, vol. 45, no. 6, pp. 965-
981, 1998.

[34] D. Boneh and M. Franklin, “Identity-based encryption from the
Weil pairing,” in Proc. of CRYPTO, pp. 213-229, 2001.

[35] W. W. Cohen, “Enron Email Dataset.” [Online]. Available: https:
//www.cs.cmu.edu/∼enron/

[36] “Pairing-based cryptography libray.” [Online]. Available: http://
crypto.stanford.edu/pbc/

Wenhai Sun (S’14) received his B.S. degree
in Information Security from Xidian University,
Xi’an, China, in 2007. Since 2009, he has been a
Ph.D. student in a combined M.S./Ph.D. program
in the School of Telecommunications Engineer-
ing at Xidian University. From 2011 to 2013, he
was a visiting Ph.D student in the Cyber Security
Lab at Virginia Tech. His research interests are
applied cryptography, cloud computing security
and wireless network security. He is a Student
Member of the IEEE.

Shucheng Yu (S’07-M’10) received the BS de-
gree in computer science from Nanjing Univer-
sity of Post & Telecommunication in China, the
MS degree in computer science from Tsinghua
University, and the PhD degree in electrical and
computer engineering from Worcester Polytech-
nic Institute. He joined the Computer Science
Department at the University of Arkansas at
Little Rock as an assistant professor in 2010.
His research interests are in the general areas of
Network Security and Applied Cryptography. His

current research interests include secure data services in cloud comput-
ing, attribute-based cryptography, and security and privacy protection in
cyber physical systems. He is a Member of the IEEE.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2355202, IEEE Transactions on Parallel and Distributed Systems

13

Wenjing Lou (M’03 - SM’08) is a professor at
Virginia Polytechnic Institute and State Univer-
sity. Prior to joining Virginia Tech in 2011, she
was a faculty member at Worcester Polytechnic
Institute from 2003 to 2011. She received her
Ph.D. in Electrical and Computer Engineering
at the University of Florida in 2003. Her current
research interests are in cyber security, with
emphases on wireless network security and data
security and privacy in cloud computing. She
was a recipient of the U.S. National Science

Foundation CAREER award in 2008. She is a Senior Member of the
IEEE.

Y. Thomas Hou (S’91-M’98-SM’04-F’14) is a
professor in the Bradley Department of Electri-
cal and Computer Engineering, Virginia Tech,
Blacksburg, VA, USA. His research interests are
cross-layer optimization for wireless networks.
He is also interested in wireless security. He has
published extensively in leading journals and
top-tier conferences and received five best paper
awards from IEEE (including IEEE INFOCOM
2008 Best Paper Award and IEEE ICNP 2002
Best Paper Award) and one Distinguished Paper

Award from ACM. Prof. Hou is currently serving as an Area Editor of
IEEE Transactions on Wireless Communications, an Associate Editor
of IEEE Transactions on Mobile Computing, an Editor of IEEE Journal
on Selected Areas in Communications (Cognitive Radio Series), and
an Editor of IEEE Wireless Communications. He is the Chair of IEEE
INFOCOM Steering Committee. He is a Fellow of the IEEE.

Hui Li (M’10) received B.Sc. degree from Fudan
University in 1990, M.Sc. and Ph.D. degrees
from Xidian University in 1993 and 1998. In
2009, he was with Department of ECE, Uni-
versity of Waterloo as a visiting scholar. Since
2005, he has been a professor in the school
of Telecommunications Engineering, Xidian Uni-
versity, China. His research interests are in the
areas of cryptography, security of cloud com-
puting,wireless network security and information
theory. He served as TPC co-chair of ISPEC

2009 and IAS 2009, general co-chair of E-Forensic 2010, ProvSec 2011
and ISC 2011. He is a Member of the IEEE.

