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Abstract— Maximizing the total mutual information of multi-
user multiple-input multiple-output (MIMO) systems with inter-
ference is a challenging problem. In this paper, we consider the
power control problem of finding the maximum sum of mutual
information for a multiuser network with mutually interfered
MIMO links. We propose a new and powerful global optimization
method using a branch-and-bound (BB) framework, coupled with
a novel reformulation-linearization technique (RLT). The pro-
posed BB/RLT guarantees finding a global optimum for multiuser
MIMO networks with interference. To reduce the complexity of
BB/RLT, we propose a modified BB variable selection strategy
to accelerate the convergence process. Numerical examples are
also given to demonstrate the efficacy of the proposed solution.

Index Terms— Global optimization, multiple input multiple
output, multiuser network, power control.

I. INTRODUCTION

MULTIPLE-INPUT Multiple-Output (MIMO) systems
have received extensive attention since Telatar [1] and

Foschini et al. [2] showed the potential of high spectral
efficiency provided by multiple antenna systems. The capacity
gain by MIMO is achieved at no cost of extra spectrum. Since
its introduction, MIMO has penetrated commercial wireless
markets and will likely become one of the key underlying
transmission technologies for future wireless systems. The
invention of the MIMO technology has also brought much
interest in a number of research areas, including channel
coding [3], [4], MAC [5], [6], routing [7], and, in particular,
in information-theoretic studies on the capacity of MIMO
systems for both single-user and multiple users [8].

Compared to the research on the capacity of single-user
MIMO, for which the “water-filling” solution was found in [1],
the capacity limit of multiuser MIMO systems is much less
studied and some fundamental problems remain unsolved [8].
There is a critical need to extend the MIMO communication
concept from single-user to multiuser systems. It has been
shown in [9], [10] that the sum-rate capacity of a multiuser
MIMO system can be significantly degraded if co-channel
interference is not managed carefully. Therefore, the problem
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of optimal power control and allocation in multiuser MIMO
systems is not only of theoretical interest, but is also important
in practice.

In this paper, we investigate this problem from a global
optimization perspective. In particular, this paper proposes
a solution procedure based on Branch-and-Bound frame-
work coupled with the Reformulation Linearization Technique
(BB/RLT). The main contributions of this paper include
the mathematical developments of the solution procedure to
solve the problem of finding the maximum sum of mutual
information (MSMI) for multiuser MIMO systems based on
BB/RLT technique, and its convergence speedup techniques.
Specifically, we derive tight upper and lower bounds for each
potential partitioning variable used for the problem. Each
nonlinear term is relaxed with a set of linear constraints based
on the bounds we develop to generate a higher dimensional
upper-bounding problem. We also utilize a polyhedral outer
approximation method to accurately approximate the loga-
rithmic function. During each iteration of the branch-and-
bound procedure, we propose a variable selection policy based
not only on the relaxation error, but also on the relative
significance of the variables in our problem. Our proposed
method guarantees the finding of a global optimal solution to
the MSMI of multiuser MIMO systems.

The remainder of this paper is organized as follows. We
will first briefly review related work in Section II. Section III
presents network model and problem formulation. Section IV
introduces the BB/RLT framework and key problem-specific
components, including factorization, linearization, and conver-
gence speedup techniques. Simulation results are presented in
Section V. Section VI concludes this paper.

II. RELATED WORK

In [11], Jorswieck and Boche analyzed the worst-case per-
formance of a multiuser MIMO system with interference. In
[5], [6], Demirkol and Ingram introduced an iterative method
based on stream control. This algorithm is based on a trial-
and-error scheme and only considers simple network con-
figurations, e.g., rectangular or hexagonal network topology.
An interesting work was reported in [12], where Chen and
Gans analyzed the network spectral efficiency of a MIMO ad
hoc network with L simultaneous transmission pairs. They
showed that, in the absence of channel state information
(CSI) at the transmitters, the network’s asymptotic spectral
efficiency is limited by nr nats/s/Hz as L → ∞, and at least
nt + nr + 2

√
ntnr nats/s/Hz when CSI is available at the

transmitters, where nt and nr are the numbers of transmitting
and receiving antenna elements of each node, respectively.
In contrast to such scaling law analysis, which shows trend
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for very large networks, in this paper, we are interested in
designing an algorithm that can compute exact maximum
capacity for a given (finite size) network topology.

In [9], Blum showed that the sum of mutual information of
a multiuser MIMO system is neither a convex nor a concave
function. Also, a change in the covariance matrix of one user
will result in a change of the mutual information of all users. It
is thus very difficult to solve the problem analytically. There-
fore, most researchers resort to iterative local optimization
methods for solving this problem. In [13], Yu et al. proposed
an “iterative water-filling” technique (IWF). This technique
was originally proposed for digital subscriber line (DSL)
systems. IWF was applied to MIMO multiple access channel
(MIMO-MAC) problems because of its simplicity, and its
provable convergence to global optimality due to the convexity
of MIMO-MAC channels. However, IWF experiences conver-
gence difficulties in MIMO ad hoc networks with mutually
interfered links due to the absence of convexity property.
Several variants of IWF were proposed by Jindal et al. for
MIMO broadcast (MIMO-BC) channels [14]. But they too
cannot be directly extended to MIMO ad hoc networks. IWF
can be viewed as a noncooperative game and its convergence
point is in essence a Nash equilibrium where no user can
increase self-utility function by unilaterally deviating from
this stationary point. Ye and Blum [15] introduced a “global
gradient projection” (GGP) method, which is an extension of
the well-known steepest descent method coupled with gradient
projection. Unlike the noncooperative game in IWF, all users
cooperate in determining covariance matrices by computing
the gradients at each iteration. GGP is more sensitive to the
choice of a starting point and it is easier to get trapped at a lo-
cal optimum than IWF. Moreover, GGP exhibits “zigzagging”
as it approaches a local optimal solution [16]. Both GGP and
IWF can be classified as local optimization techniques, which
can quickly find a local optimal solution, but cannot guarantee
global optimality for nonconvex optimization problems.

III. NETWORK MODEL AND PROBLEM FORMULATION

We begin by introducing mathematical notation for ma-
trices, vectors, and complex scalars in this paper. We use
boldface to denote matrices and vectors. For a matrix A, A†

denotes the conjugate transpose. Tr{A} denotes the trace of
A. We let I denote the identity matrix, whose dimension can
be determined from the context. A � 0 represents that A is
Hermitian and positive semidefinite (PSD). 1 and 0 denote
vectors whose elements are all ones and zeros, respectively.
The dimensions of 1 and 0 can be determined from context
and thus omitted for brevity. The scalar a(m,n) represents the
entry in the mth-row and nth-column of A. For a complex
scalar a, Re (a) and Im (a) represent the real and imaginary
parts of a, respectively, ‖a‖ represents the modulus of a,
and a represents the conjugate of a. We consider a network
consisting of L interfering concurrent MIMO transmission
pairs (links), which are indexed by 1, 2, . . . , L. In this paper, it
is assumed that the transmitters have full CSI. Let the matrix
Hjl ∈ C

nr×nt represent the wireless channel gain matrix
from the transmitting node of link j to the receiving node
of link l, where nt and nr are the numbers of transmitting

and receiving antenna elements of each node, respectively.
Denote ρjl the signal-to-noise ratio per unit transmit power
if j = l, or the interference-to-noise ratio per unit transmit
power if j �= l. Denote matrix Ql the covariance matrix
of a zero-mean Gaussian input symbol vector xl at link l,
i.e., Ql = E

{
xl · x†

l

}
. Assume, also, that all nodes in the

network are subject to the same maximum transmitting power
constraint, i.e., Tr {Ql} ≤ Pmax, where Pmax is the maximum
transmission power. Let Rl represent the covariance matrix
of interference plus noise. Define Il as the set of links that
can produce interference on link l. The interference-plus-
noise is Gaussian distributed and its covariance matrix can
be computed as

Rl =
∑
j∈Il

ρjlHjlQjH
†
jl + I. (1)

Hence, the mutual information of a MIMO link l
with co-channel interference can be computed as Il =
log2 det

(
ρllHllQlH

†
ll + Rl

)
− log2 detRl. Our goal is to

maximize the sum of mutual information (MSMI) of this L-
link MIMO interference system. Summarizing the previous
discussion, this optimization problem can be mathematically
formulated as follows:

max
∑L

l=1 Il

s.t. Il = log2 det
(
ρllHllQlH

†
ll + Rl

)
− log2 detRl

Rl =
∑

j∈Il
ρjlHjlQjH

†
jl + I

Tr{Ql} ≤ Pmax,Ql � 0, 1 ≤ l ≤ L.

In this paper, we consider a network where each antenna
element in a transmitting node employs equal power alloca-
tion. It is necessary to point out that, by saying “equal power
allocation”, we mean the total power at the same source node
is equally allocated to its antenna elements, while different
source nodes may have different total transmitting power.
The reason behind this approach is that an optimal power
allocation, wherein different antenna elements at the same
source node have different transmitting power level, puts a
high demand of linearity in transmit power amplifiers, which
is extremely costly from a practical standpoint [17]. Thus, for
low cost hardware implementation, an equal power allocation
scheme is more attractive.

Under the equal power allocation approach, the MSMI prob-
lem is translated into an optimal power control problem. That
is, we are interested in finding an L-dimension power vector
p = (p1, p2, . . . , pL)t, where 0 < pl ≤ Pmax, l = 1, 2, . . . , L,
such that this power vector p maximizes the sum of mutual
information of the links in the network. Mathematically, with
equal power allocation to each transmitter at the same node,
the input covariance matrix Ql becomes an nt-dimension
scaled identity matrix, i.e., Ql = pl

nt
I. Hence, the MSMI

problem formulation can be further re-written as follows:

max
∑L

l=1 Il

s.t. Il = log2 det
(

ρllpl

nt

(
HllH

†
ll

)
+ Rl

)
− log2 detRl

Rl = I +
∑

j∈Il

ρjlpj

nt

(
HjlH

†
jl

)
(2)

where 0 < pl ≤ Pmax, 1 ≤ l ≤ L.
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IV. SOLUTION PROCEDURE

A. Overview of BB/RLT Method

For a non-convex optimization problem, conventional non-
linear programming methods (e.g., GGP [15]) can at best
yield local optimal solutions. On the other hand, the proposed
BB/RLT procedure in this paper can find a provably global
optimal solution [18]–[20]. The basic idea of BB/RLT is
that, by using the RLT technique, we can construct a linear
programming (LP) relaxation for the original nonlinear pro-
gramming (NLP) problem, which can be used to efficiently
compute a global upper bound, UB, for the original NLP
problem. This relaxation solution is either a feasible solution
to the original NLP problem or, if not feasible, can be used as
a starting point for a local search algorithm to find a feasible
solution to the original NLP problem. This feasible solution
will then serve to provide a global lower bound, LB, and an
incumbent solution to the original NLP problem. However, it
is worth to point out that local search is not necessary in this
paper since the LP relaxation for our problem is still subject
to the same power constraint 0 ≤ pl ≤ Pmax of the original
problem. As a result, solving the LP relaxation of our problem
still gives us a feasible solution to the original NLP problem.
This will become clearer after we introduce the LP relaxation
in Section IV-E. The branch-and-bound process will proceed
by tightening UB and LB, and terminates when LB ≥
(1 − ε)UB is satisfied, where ε is the desired approximation
error. There is a formal proof that BB/RLT converges to a
global optimal solution as long as the partitioning intervals
are compact (see [18]–[20] for further details). The general
framework of BB/RLT is shown in Algorithm 1.

Algorithm 1 BB/RLT Solution Procedure
Initialization:

1. Let optimal solution ψ∗ = ∅. The initial lower bound LB = −∞.
2. Determine partitioning variables (variables associated with nonlinear

terms) and derive their initial bounding intervals.
3. Let the initial problem list contain only the original problem, denoted

by P1.
4. Introduce one new variable for each nonlinear term. Add linear

constraints for these variables to build a linear relaxation. Denote the
solution to linear relaxation as ψ̂1 and its objective value as the upper
bound UB1.

Main Loop:
1. Select problem Pz that has the largest upper bound among all

problems in the problem list.
2. Find, if necessary, a feasible solution ψz via a local search algorithm

for Problem Pz . Denote the objective value of ψz by LBz .
3. If LBz > LB then let ψ∗ = ψz and LB = LBz . If LB ≥

(1 − ε)UB then stop with the (1 − ε)-optimal solution ψ∗;
else, remove all problems P

z
′ having (1− ε)UB

z
′ ≤ LB from the

problem list.
4. Compute relaxation error for each nonlinear term.
5. Select a partitioning variable having the maximum relaxation error

and divide its bounding interval into two new intervals by partitioning
at its value in ψ̂z .

6. Remove the selected problem Pz from the problem list, construct two
new problems Pz1 and Pz2 based on the two partitioned intervals.

7. Compute two new upper bounds UBz1 and UBz2 by solving the
linear relaxations of Pz1 and Pz2, respectively.

8. If LB < (1 − ε)UBz1 then add problem Pz1 to the problem list.
If LB < (1 − ε)UBz2 then add problem Pz2 to the problem list.

9. If the problem list is empty, stop with the (1 − ε)-optimal solution
ψ∗. Otherwise, go to the Main Loop again.

In the remainder of this section, we develop the key
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Fig. 1. Polyhedral outer-approximation y = lnx.

components in the BB/RLT framework, which are problem-
specific.

B. Factorization and Linearization

Observe that in the MSMI problem formulation, the link
mutual information expressions in (2) are nonlinear. To lin-
earize these nonlinear constraints, we first introduce four new
variables Xl, Yl, Vl, and Wl as follows.{

Xl = det
(

ρllpl

nt

(
HllH

†
ll

)
+ Rl

)
� detDl,

Vl = detRl, Yl = lnXl, Wl = lnVl.
(3)

The link mutual information constraint in (2) can then be trans-
lated into Il = 1

ln 2 (Yl − Wl) , which is a linear constraint.
Also, four groups of new constraints in (3) are added to the
problem formulation.

C. Linear Relaxation to Nonlinear Logarithmic Functions

Next, we propose using a polyhedral outer approximation
for the curve of logarithmic function. As shown in Fig. 1,
the function y = lnx, over an interval defined by suitable
upper and lower bounds on x, can be upper-bounded by
three tangential segments I, II, and III, which are constructed
at (xL, ln xL), (xβ , ln xβ), and (xU , ln xU ), where xβ is
computed as follows:

xβ =
xLxU (ln xU − ln xL)

xU − xL
. (4)

Here xβ is the x-value for the point at the intersection of the
extended tangent segments I and III. Segment IV is the chord
that joins (xL, ln xL) and (xU , ln xU ). The convex region
defined by the four segments can be described by the following
four linear constraints:

xL · y − x ≤ xL(ln xL − 1),
xβ · y − x ≤ xβ(ln xβ − 1),
xU · y − x ≤ xU (ln xU − 1),

(xU − xL)y + (ln xL − ln xU )x ≥ xU · ln xL − xL · ln xU .
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D. Linearizing the Determinants

Substituting the expression for Rl into that for Dl, and
observing the similarity between the expressions for Dl and
Rl, we can write Dl and Rl in a more compact form by
introducing a notion called the “super interference set” of link
l, denoted by Îl, with Îl = Il ∪ {l}, as follows:

Dl =
∑

j∈Îl

ρjl

nt

(
HjlH

†
jl

)
pj + I,

Rl =
∑

j∈Il

ρjl

nt

(
HjlH

†
jl

)
pj + I.

(5)

It is evident from (5) that the determinants of Dl and Rl are in
essence nr-order polynomials of the variables p1, p2, . . . , pL.
To illustrate how to linearize determinants, let us consider a
multiuser MIMO network where every link has two receiving
antennas. This means that Dl and Rl are 2 × 2 square
matrices. The determinant Xl and Vl are shown in (6) and
(7), respectively.

We see that the product terms pjpk are the only nonlinear
terms, which need to be linearized. To show how linearization
works, let us consider a general second-order polynomial term
pjpk, for which we have the following bounding constraints:

pj − (pj)L ≥ 0, (pj)U − pj ≥ 0,
pk − (pk)L ≥ 0, (pk)U − pk ≥ 0,

(8)

where (pj)L and (pk)L denote the lower bounds of pj and pk,
respectively, and (pj)U and (pk)U denote the upper bounds of
pj and pk, respectively. Adopting RLT [18], we can derive the
following four so-called bounding-factor constraints:

pjpk − (pk)Lpj − (pj)Lpk ≥ −(pj)L(pk)L,

pjpk − (pk)Upj − (pj)Lpk ≤ −(pj)L(pk)U ,

pjpk − (pk)Lpj − (pj)Upk ≤ −(pj)U (pk)L,

pjpk − (pk)Upj − (pj)Upk ≥ −(pj)U (pk)U .

In particular, if j = k, pjpk is given by a general square term
p2

j . Using the following bounding constraints:

pj − (pj)L ≥ 0 and (pj)U − pj ≥ 0, (9)

we can derive the following three bounding-factor constraints:

p2
j − 2(pj)Lpj ≥ −(pj)2L, p2

j − 2(pj)Upj ≥ −(pj)2U ,

p2
j − ((pj)L + (pj)U )pj ≤ −(pj)U (pj)L.

We now introduce new variables Pjk to replace the product
terms pjpk, and Pjj to replace the square term p2

j , respectively.
By doing so, the determinant expressions of Xl and Vl become
linear constraints. Also, the equality relation Pjk = pjpk will
be relaxed by the above bounding-factor constraint relaxations.
All these newly introduced bounding-factor constraints will
be appended to the original problem, thus achieving a LP
relaxation for the constraints in the original NLP problem.

E. RLT-Based Relaxation for MSMI (R-MSMI)

For convenience, we define the right hand sides of (6) and
(7) as ΦXl

(p) and ΦVl
(p), respectively. From the discussions

in the previous sections, we have the final R-MSMI formula-
tion for a multiuser MIMO system as follows:

lX

lI

lV

lp

(4)

(5)

(1),(2)

(1),(3)

UB LB

Fig. 2. Relationship among BB variables in MSMI.

R-MSMI

max
∑L

l=1 Il

s.t. Il − 1
ln 2 (Yl − Wl) = 0, ∀l.

Three tangential supports for (Yl,Xl), ∀l.
Three tangential supports for (Wl, Vl), ∀l.
Xl − ΦXl

(p) = 1, Vl − ΦVl
(p) = 1, ∀l.

Bounding constraints for Pjk and Pjj .
Same power constraints for power variables pl, ∀l.

F. Partitioning Variables and Their Upper and Lower Bounds

The partitioning variables in the branch-and-bound process
are those that are involved in nonlinear terms, for which we
have therefore defined new variables, and whose bounding
intervals will need to be partitioned during the RLT-based
branch-and-bound algorithm [18]–[20]. In R-MSMI, these
partitioning variables include Xl, Vl, and pl, l = 1, 2, . . . , L.
The upper and lower bounds for pl are (pl)L = 0, (pl)U =
Pmax, for l = 1, . . . , L. From these expressions, we see that
the upper bounds for Xl and Vl can, respectively, be computed
as ΦXl

(Pmax × 1) and ΦVl
(Pmax × 1), with 1,0 ∈ R

L. The
lower bounds for Xl and Vl are: (Xl)L = 1, and (Vl)L = 1.

G. Convergence Speedup Techniques

In the worst case, BB/RLT has exponential complexity.
However, it is possible to exploit certain special structure of
the underlying problem to speedup convergence time. For our
problem, since the decrease of the global upper bound plays
the most critical role in the convergence process, partitioning
variables that are able to tighten the upper bound (i.e., Xl

and Vl as shown in Fig. 2) should be selected first. Hence,
we adopt the following convergence speedup technique, as
shown in Algorithm 2. In our numerical results, the threshold
value ε1 for ln(Z∗

l )U − ln(Z∗
l )L are set to 1 since we find

that threshold value less than 1 does not further improve the
accuracy of the final solution. The relaxation error refers to
the difference between the newly introduced variable and its
corresponding product terms (e.g., Pij − pipj). The threshold
value ε2 for testing the relaxation error is 10−3 in this paper.

Algorithm 2 Modified BB Variable Selection Strategy
1. Among all Xl and Vl, choose the one, say Z∗

l , having the largest
relaxation error.

2. If (ln(Z∗
l )U − ln(Z∗

l )L ≤ ε1) then
a) Among all pl, choose one, say p∗l , with the largest relaxation error.

Denote this relaxation error as Ep;
b) If Ep ≤ ε2, then remove this subproblem; else return p∗l ;

else return Z∗
l .
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Xl = 1 +
∑
j∈Îl

ρjl

nr

[(
HjlH

†
jl

)
(1,1)

+
(
HjlH

†
jl

)
(2,2)

]
pj +

∑
j∈Îl

∑
k∈Îl

ρjlρkl

n2
r

[(
HjlH

†
jl

)
(1,1)

(
HjlH

†
jl

)
(2,2)

−Re

((
HjlH

†
jl

)
(2,1)

)
Re

((
HklH

†
kl

)
(2,1)

)
− Im

((
HjlH

†
jl

)
(2,1)

)
Im

((
HklH

†
kl

)
(2,1)

)]
pjpk. (6)

Vl = 1 +
∑
j∈Il

ρjl

nr

[(
HjlH

†
jl

)
(1,1)

+
(
HjlH

†
jl

)
(2,2)

]
pj +

∑
j∈Il

∑
k∈Il

ρjlρkl

n2
r

[(
HjlH

†
jl

)
(1,1)

(
HjlH

†
jl

)
(2,2)

−Re

((
HjlH

†
jl

)
(2,1)

)
Re

((
HklH

†
kl

)
(2,1)

)
− Im

((
HjlH

†
jl

)
(2,1)

)
Im

((
HklH

†
kl

)
(2,1)

)]
pjpk. (7)

TABLE I

SNR- AND INR-VALUE FOR A HEAVILY INTERFERED 5-LINK NETWORK

(IN DB)

SNR INR (in dB)
(in dB) L0 Rx L1 Rx L2 Rx L3 Rx L4 Rx

L0 20.98 L0 Tx – 13.57 3.79 9.13 2.23
L1 27.04 L1 Tx 18.90 – 6.33 12.38 4.35
L2 20.67 L2 Tx 4.31 6.61 – 7.53 13.39
L3 21.03 L3 Tx 7.39 9.48 9.29 – 4.26
L4 22.57 L4 Tx 4.10 6.19 11.61 5.58 –
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Fig. 3. A 5-link heavily interfered network example.

V. NUMERICAL RESULTS

We first describe our simulation settings. L links are
uniformly distributed within a square region. Each node in
the network is equipped with two antennas. The maximum
transmit power for each node is set to Pmax = 10 dBm.
The network operates in 2.4 GHz ISM band. The channel
bandwidth is W = 30 MHz. The path loss index is chosen to
be α = 2.

We use two 5-link network examples to demonstrate the
convergence properties of BB/RLT. The first one is an example
of a heavily interfered network where each link is interfered
by every other link. The desired error bound is chosen to
be ε = 0.01. That is, the iterative process stops once LB ≥
(1−ε)UB. The network’s SNR- and INR-values are shown in
Table I. For example, a cell intersected by row i and column j
contains the INR (in dB) from link i to link j. The convergence
process is depicted in Fig. 3.

TABLE II

SNR- AND INR-VALUES FOR A LESS INTERFERED 5-LINK NETWORK

SNR INR (in dB)
(in dB) L0 Rx L1 Rx L2 Rx L3 Rx L4 Rx

L0 20.98 L0 Tx – 10.98 1.75 0.56 3.48
L1 27.04 L1 Tx 14.84 – 4.02 3.03 7.34
L2 20.67 L2 Tx 1.85 3.41 – 9.02 4.19
L3 21.03 L3 Tx 0.74 2.89 7.93 – 7.74
L4 22.18 L4 Tx 3.17 6.29 4.41 7.51 –

Fig. 3 illustrates the UB and LB in terms of the sum of
mutual information (b/s/Hz) at each iteration. In this heavily
interfered example, after 17000 iterations, the UB and LB
values are both driven to 26.51 b/s/Hz, meaning that the global
optimum for the MSMI is 26.51 b/s/Hz. In this example, the
optimal power vector is p =

[
p0 p1 p2 p3 p4

]t =[
8.904 0.071 2.83 1.096 2.83

]t
(in mW).

To see how significantly the system’s performance could be
degraded by interference, we compute the sum of total mutual
information for the same network as if there is no interference.
In this particular example, the total mutual information for the
case of no interference is obtained as 71.2 b/s/Hz. Thus, it
can be seen that, even after carefully choosing the optimal
power vector p, the spectral efficiency only accounts for
approximately 37% of that of the no interference case.

It can also be seen from Fig. 3 that the rate of decrease in
UB plays the major role in determining how fast the overall
BB/RLT process converges. In this example, UB starts out
from 68.47 b/s/Hz, and changes by 41.96 in magnitude by the
time the algorithm terminates. Comparatively, LB starts out
from 8.37 b/s/Hz. It only changes 18.14 in magnitude by the
end of the convergence process. Moreover, the rate of decline
of UB becomes slower as it approaches the global optimum.

Next, for comparison, we study another 5-link network
having less interference as compared to the previous example.
The network’s SNR- and INR-values are shown in Table II.
The convergence process is depicted in Fig. 4. In this example,
BB/RLT converges to the global optimal rather quickly (in
about 3810 iterations), yielding an optimum value of 37.65
b/s/Hz. This convergence speed is comparable to many fast
local search algorithm, such as GGP [15] and IWF [13].
For this particular example, we also compute the MSMI
assuming there is no interference, which gives a value of
74.59 b/s/Hz. That is, in this less interfered network, the
spectral efficiency is approximately 50% of that of the no
interference case. For this less interfered example, the op-
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TABLE III

SNR- AND INR-VALUES FOR A 10-LINK NETWORK

SNR INR (in dB)
(in dB) L0 Rx L1 Rx L2 Rx L3 Rx L4 Rx L5 Rx L6 Rx L7 Rx L8 Rx L9 Rx

L0 23.19 L0 Tx – -0.12 2.29 -2.34 8.01 -1.47 4.73 2.59 -0.28 -3.37
L1 23.99 L1 Tx 0.43 – 8.67 7.54 2.12 0.79 7.98 4.76 -1.53 1.85
L2 20.44 L2 Tx 2.75 8.69 – 2.79 3.58 -0.52 12.74 4.19 -1.77 -0.62
L3 22.41 L3 Tx -2.20 7.61 1.44 – -0.22 2.86 2.09 3.32 -1.21 8.34
L4 21.63 L4 Tx 9.11 1.21 1.76 -0.63 – 2.15 5.74 7.88 4.04 -1.08
L5 23.82 L5 Tx -0.90 1.83 -0.89 3.00 2.18 – 1.31 6.76 5.46 6.86
L6 26.59 L6 Tx 4.99 7.51 9.15 2.81 7.64 1.39 – 8.47 0.27 0.28
L7 23.58 L7 Tx 3.35 4.02 2.27 2.60 9.00 6.76 6.47 – 5.08 2.43
L8 25.23 L8 Tx 0.79 -1.25 -2.18 -1.51 3.90 5.88 0.22 4.44 – -0.07
L9 25.56 L9 Tx -3.33 1.97 -1.64 6.03 -1.24 5.56 -0.53 2.09 -0.09 –
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Fig. 4. A 5-link less interfered network example.
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Fig. 5. A 10-link network example.

timal power vector is p =
[

p0 p1 p2 p3 p4

]t =[
1.815 0.435 4.371 2.973 5.942

]t
(in mW). The rea-

son why convergence time is much shorter than the previous
heavily interfered network example is because the initial upper
bounds of (Xl)U and (Vl)U are much smaller. This means that
we have relatively a small interval for Xl and Vl variables
to partition, which contributes to a faster convergence speed.
Also, in a less interfered network, the initial gap between UB
and LB is smaller. In this particular example, LB reaches

36.65 b/s/Hz only after 49 iterations, which is already very
close to the final optimal value of 37.65 b/s/Hz. At the 49th

iteration, UB is at 56.15 b/s/Hz. This gap between LB and
UB is about 19.5, which is much smaller than that in the
first example. For these reasons, we can see that the less
interference in the network, the faster BB/RLT will converge
to find the global optimal solution.

To shed light on the huge effect of using the modified par-
titioning variable selection strategy, we consider the following
10-link network example, whose SNR- and INR-values are
shown in Table III. The convergence process is depicted in
Fig. 5. The global optimal value for this 10-link network
is 77.11 b/s/Hz. It takes approximately 1.5 × 106 iterations
to converge with the modified partitioning variable selection
strategy (Algorithm 2). On the other hand, if we solve the same
10-link example using BB/RLT without using this strategy,
the convergence time is much slower. Via rough estimate, we
find that our proposed speedup technique can accelerate the
convergence by at least 1000 times for this particular example.

VI. CONCLUSION

In this paper, we studied the maximum sum of mutual infor-
mation problem for multiuser MIMO network. We proposed
a powerful global optimization method using a branch-and-
bound framework coupled with the reformulation-linearization
technique (BB/RLT). We also proposed a modified branch-
and-bound variable selection strategy to accelerate the conver-
gence process. Numerical examples are given to demonstrate
the efficacy of the proposed solution.
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