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Abstract— Wireless sensor networks are characterized investigating energy conservation at every layer in the
by multihop wireless lossy links and resource constrained traditional protocol stack, from the radio layer up to the
nodes. Energy efficiency is a major concern in such transport layer and application layer.

”?ttk‘:"gksf' In thif lpgper, wSe St‘fd3£Gi‘E°£;‘;‘phig Routing A common approach at the network layer to the energy
with Environmenta’ =nergy Supply and propose - oficiency problem is energy aware routing [1], [2], [3],
two protocols, GREES-L and GREES-M, which combine ) .

geogpraphic routing and energy-aware routing techniques [4], [5], [6], [7] in Wh'(_:h SEIT]SOIjS/r]OdE'.S are assumed to
and take into account the realistic lossy wireless channel P& Powered by batteries with limited/fixed capacity and
condition and the renewal capability of environmental then routing decisions are made based on the residual
energy supply when making routing decisions. Simulation energy of each neighbor node. The objective of those
results show that GREESs are more energy efficient than protocols is either minimizing the energy consumption
the corresponding residual energy based protocols and or maximizing the network lifetime. A new observation
geographic routing protocols without energy awareness. related to energy aware routing is the availability of the
GREESs can maintain higher mean residual energy on o cajled energy scavengers which are devices able to
nodes, and achieve better load balancing in terms of harvest small amount of energy from ambient sources

having smaller standard deviation of residual energy on . . .
nodes. Both GREES-L and GREES-M exhibit graceful such as light, heat or vibration [8], [9], [10], [11]. The

degradation on end-to-end delay, but do not compromise first work to take environmental energy into account
the end-to-end throughput performance. for routing was [12], followed by [13] A distributed

framework for the sensor network to adaptively learn

its energy environment was presented in [12] and local-

. INTRODUCTION ized algorithms to use this information for task sharing
mong nodes was given. An example study of routing
owed that the proposed framework is able to utilize
extra knowledge about the environment to increase

tem lifetime. Voigt, et al. [13] designed two solar-

Wireless sensor networks are characterized by m
tihop lossy wireless links and severely resource cornj-
strained nodes. Among the resource constraints, ene

is probably the most crucial one since sensor no i tocols that torabl ¢ ket
are typically battery powered and the lifetime of thgWare routing protocois that preferably route packets

battery imposes a limitation on the operation hours g solar powered nodes and showed that the routing

the sensor network. Unlike the microprocessor indust thOCdOC:S pI’O\éldtﬁ S|gn|l1;||cant (fanergy savings. L![n et ?tlh
or the communication hardware industry, where comptj- ] addressed the problem of power-aware routing wi

tation capability or the line rate has been continuous jstributed energy repI(_enishment for multihop Wire_less
improved (regularly doubled every 18 months), batte tW?rkS. A cost .metrlc was proposed that. considers
technology has been relatively unchanged for ma d(_es battery residual energy, energy requwement_for
years. Energy efficiency has been a critical concern i uting the packet along the path from source to destina-

wireless sensor network protocol design. Researchers 8 a_nd energy replenishing rate. More.comprehenswe
study is necessary to understand how this emerging bat-

This work was supported in part by a research grant from AirSpri@ry_ technology may impact the energy efficient protocol
Technologies, Inc., Marlborough, Massachusetts, USA. design.



Another approach to energy efficiency is geographimne of them takes into account the energy constraint on
routing [15], [16], [17], [18], [19] in which each nodenodes. While some geographic routing protocol accounts
makes routing decision locally based on its own, if®r nodes’ residual energy information such as GEAR
neighbors’ and the destination’s location informatior{Geographic and Energy Aware Routing) [27], which
Geographical routing technique is particularly applieablses energy awareness and geography-based neighbor
in wireless sensor networks because many sensing aetection heuristics to route a packet towards the target
monitoring applications of sensor networks require seregion, it does not take into account the realistic wireless
sors to be aware of their physical locations. One of tlelannel conditions.
advantages of geographic routing is that the routing over-In this paper, we take a cross-layer approach and carry
head is minimized — neither route establishment floodirmyt a more comprehensive study on energy efficiency
nor per-destination state is required. Other propertissue. We propose two Geographic Routing with Envi-
such as scalability, statelessness and low maintenangemental Energy Supply (GREES) protocols, GREES-L
overhead also make it an attractive technigue especiallyd GREES-M, which make routing decision locally by
in large-scale sensor networks. For traditional geog@aplwintly taking into account multiple factors — the realesti
routing schemes, packets are routed/forwarded localijreless channel condition, packets advancement to the
and greedily to the one-hop neighbor that provides madgstination, the residual battery energy level of the node,
positive advancement to the destination. In greedy moded the environmental energy supply. Simulation results
Cartesian routing [15] chooses the neighbor closest to tigow that our protocols are more energy efficient than
destination as the next hop while MFR (Most Forwarthe corresponding residual energy based protocols and
within Radius) [16] prefers the neighbor with the shortegieographic routing protocols without considering the
projected distance (on the straight line joining the curreproperty of the energy renewal. In particular, given
node and the destination) to the destination. Greethe same network, energy, and traffic models, GREESs
forwarding is very efficient but it can fail when a com-imaintain higher mean residual energy of nodes and
munication void happens, namely, when the current nodehieve better load balancing in terms of having a smaller
is distance-wise closest to the destination than any of s&ndard deviation of residual energy among nodes. Both
neighbors, but has no direct connection to the destinatiGREES-L and GREES-M exhibit graceful degradation
to deliver the packets. A number of techniques have beem end-to-end delay, but do not compromise the end-to-
proposed, such as face/perimeter routing, to complementl throughput performance.
and enhance greedy forwarding [17], [18], [19] in the The rest of the paper is organized as follows. We
face of communication voids. explain GREES-L and GREES-M in detail in Section I,

Several recent experimental studies on wireless ahd present and analyze our simulation results in Section
hoc and sensor networks [20], [21] have shown thHt. Section IV presents our conclusions.
wireless links can be highly unreliable and that this
must be explicitly taken into account when considerindl' GEOGRAPHICROUTING WITH ENVIRONMENTAL
higher-layer protocols. [22] showed the existence of a ENERGY SuPPLY (GREES)
large “transitional region” where link quality has highA. System Model
variance. More recent works on geographic routing areFirst we describe the system model on which our
aware of this more realistic lossy channel situatioprotocol design is based.

Seada, et al. [23] articulated the distance—hop energywe assume that each network node is aware of its own
trade-off for geographic routing. They concluded thaind its one-hop neighbors’ positions and the source of a
PRR (Packet Reception Rate) x Distance is an message knows the position of the destination. This as-
optimal metric for making localized geographic routingumption is reasonable in a wireless sensor network due
decisions in lossy wireless networks with ARQ (Autoto its sensing and monitoring application nature — nodes
matic Repeat reQuest) mechanisms. Zorzi and Armaraked to be aware of their own locations when reporting
also independently proposed the same link metric [24heir sensing data; the data are usually sent back to a
Lee, et al. [25] presented a more general framewokkown “sink” location, or to a location specified in a
called normalized advance (NADV) to minimize variousroadcast query message. The distance between any two
types of link cost. Li, et al. [26] proposed a local powenodes,: and j, is the Euclidian distance between them,
efficiency metric,%, for geographic routing denoted as Dist(j).

such that at each step the transmitter picks as the nexEach network node is equipped with energy renewable
hop the neighbor for which this metric is maximizedbatteries that can harvest energies from their working
The focus of these works is performance gain therefoeavironment [8], [9], [10], [11].



e . For nodej:
A MAC protocol that allows retransmission _|s used, When I/ event happens
such as802.11 [28]. The 802.11 ACK mechanism re- Ny = currentseq — lastseq — 1
sends lost data frames, making all but the worst 802.11 lastseq = currentseq
links appear loss-free to the network layer. lastHello = current time
. S . l = Max(Ny, — Ng,0)
Each node is informed with its own and its one- N, =0
hop neighbors’ battery residual energy levgl and the FDR;; = FDR;; -+
short-term energy harvesting rai@,, periodically. The FDRij = FDRij - v+ (1 —7)
residual energy in a battery can be estimated from its WhenT" event happens .
. . . Ny = (current time — lastHello) x —
discharge function and measured voltage supplied [1]. =N, T
Neighbor nodes exchange these information with each FDR;; = FDR;; -+
other by piggybacking them in the periodically broadcast TABLE |

“Hello” messages.
The network is dense enough so that no holes exist

Pseubo CobE FOREWMA

B. Link quality estimation learns itsF'DR to i whenever it receives a probe from

We denote the Frame Delivery Ratio (FBRjom a ;.
nodei to its neighborj, F'DR;;. It is measured using The pseudo code of nodg using EWMA algo-
“Hello” message$which are broadcast periodically evrithm estimatingFDR;; is described in table |, where
ery T time unit. Because the probes are broadcast, 802d4rents., and lasts., denote the sequence numbers
does not acknowledge or retransmit them. of the currently received “Hello” message and the last

Two events will drive the updating df DR;; on node received “Hello” message respectively, abick v < 1
J: one is the periodical updating event set by the nodse the weight parameter.

for example, everyt, seconds; will update FDR;;.

We denote this event dB; the other is the event that

receives a “Hello” packet fromi. We denote this event

asH. In this paper, the cost for a node to send or receive a
Exponentially Weighted Moving Average (EWMA)packet is modelled as a linear function similar to [30],

function [29] is used as the link quality estimation a|gowhich represents a fixed cost associated with channel

rithm which is often used in statistical process contr@cquisition and an incremental cost proportional to the

applications. Let" DR;; be the current estimation madesizeé of the packet:

by nodej, lastHello be the time stamp of the lagf,

N, be the number of known missed “Hello” packets Cost = ¢ X Sizeppy +b (1)

between the current/ and lastff based on SEQUENCE, here ¢ denotes the energy needed for sending or

numper difference, andv, be “a gue"ss on the numbel}eceiving one byte of date§ize,;; denotes the size of
of missed packets based on “Hello” message broadCﬁﬁ data in bytes andl is a constant. In this paper, we

frequency; over a time window between the currefit only consider the energy consumption when a node sends

event and lasf{ or T" event.N,,, and N, are initialized - -
e or receives data as most energy aware routing protocols
to be 0, andF DR;; is initialized to be 1. ay gp

This technique allowg to measureF'DR;; and: to
measurel'DR;;. Each probe sent by a nodecontains _
FDR measured byi from each of its neighborsy; D. Energy Harvesting Model
during the lastv seconds. Then each neighboripfV;, Depending on the deployment conditions, such as
whether or not directly exposed to sun light, the intensity

1Communication void problem is out of the scope of this paperof the sun light, the speed of air flow and so on,

2We use Frame Delivery Ratio instead of Packet Delivery Rat'@lere is an uncertainty associated with environmental

here to differentiate the data delivery ratio observed from the MA . -
layer and the network layer. As mentioned before, due to the losS{*€r9Y harvesting capablllt_y. We use a random process to
links, some MAC protocols such as 802.11 retransmit lost daraodel the energy harvesting rate of nadeNe model

frames to guarantee high delivery ratio at network layer. That is, oflge mean harvesting rate with a uniformly distributed

successful packet transmission at network layer may be the resuli . . ‘ . .
a number of transmissions (including retransmissions) at MAC lay f?lhdom variable with meap;, varying betweenPipi

3In our proposed protocols, “Hello” message is used for boNd Pimaz. The energy harveSti_n_g capability is not ho-
exchanging neighbor nodes’ information and probing link quality. mogeneous at all nodes. In addition, energy collected by

C. Energy Consumption Model



the scavengers can be stored in some energy reservoirs

such as batteries, fuel cells, capacitors, etc. However Yy, = = (7)
there is a capacity limit of such an energy reservoir, T

beyond which environmentally available energy cannathere E. (N;) is the energy consumed in the last
be stored. We use constah}, to denote such a batteryinterval 7.

capacity limit for each node. Note that due to the lossy wireless channel, the up-
dated information, such asy,, ¢y, and £, , may not
E. Algorithm Description be received by nodeeveryr. So the energy availability

In our routing protocols, each node locally mainSSUMatoNE(N:) of the neighbor with worsé”D Ry,
gp ' y is less accurate than that of the neighbor with better

ins i ne-hop neighbors’ information h . )
ta . S Its ,0 € qp €9 _bo S ormation such as t.h]gDRNﬂ. However this non-accuracy will not affect the
neighbor’s location, residual energy, energy harvestln%Xt hop selection much iy, andwy, do not change

. . . . .Nn
rate, energy consuming rate, wireless link quality (lrr%uch between the interva, — #). Furthermore the
worse theF DRy,; is, the smaller theP RO(i, N;, D)

terms of FDR). We assume that nodes forwarding
a packetM, whose destination i$. Node: forwards is. So the probability of choosing; with low F'D Ry,

M progressively towards the destination, and at the same . :

. . . as the next hop will become lower according to Eg. (2).

time tries to balance the energy consumption across a X ) L '
he rationale to define and minimize the cost function

its neighborsV;. We propose two local cost metric base%q. (2) is as follows. Minimizing the cost in Eq. (2) is

protocols to achieve the goals. . o .
1) GREES-L: Node i forwards the packet to the.equwalen'[ to maximizing the denominator. The denom-

. . . inator is a linear combination of two parts. The first
neighbor that minimizes the co8y,(N;, D) value which . , )
is dgeﬁned as follows: ( ) part is NPRO(i, N;, D) which represents how much

progress one frame can make towards the destination.
1 In Eq. (4), the factorF' DRy, - FDRy;,; is the inverse
. of the ETX (expected transmission count) defined in
a-NPRO(, Ni, D)+ (1~ a) - NE(](\%? [20]. The physical meaning of Eq. (4) is the expected
where0 < « < 1 is a tunable weightN PRO(i, N;, D) progress towards the destination per packet transmis-
is the normalized progressive distance per data fraffig@n: Maximizing it means maximizing the efficiency of
from i to N; towardsD, and N E(N;) is the normalized transmitting a packet. When we assume the transmission

effective energy on nodeV;. NPRO(i, Ni,D) and power is fixed, maximizing Eqg. (4) also decreases the
NE(N;) are defined as f0||OZ\}VS' T energy consumed per packet, as each transmission or

retransmission increases a node’s energy consumption.
The second part isVE(N;) which represents the esti-

CL(N;, D) =

NPRO(i, N;, D) = PRO(Z’NZ"D) (3) mated energy availability on nod¥;. From Eg. (6), we
MazPRO(, Ni, D) know the energy availability is represented by the linear
where combination of harvesting energy, consuming energy and
PRO(i, N;, D) = (Dist(i, D) — Dist(N;, D)) 4 the residual energy on the battery. The key difference
-FDR;n, - FDRy,; 4)  from the traditional energy aware routing proposed in [1]

which only considers the residual energy on nodes is that
E(N;) : -
i S (5) we also consider the environmental energy. So Eq. (2)
MazE(N;) provides us with a clear guideline of how to balance the
where importance of progress per packet transmission (related
to delay and energy consumption), energy replenishment
E(Ni) =8 (une = ¥w) - (be = 1) + Br(Ne) - (6) 4 residual energy (related to load balancing).
where 3 is a tunable weight. Recall thaiy, is the Suppose that each neighbor of nodéas the same
last received expected energy harvesting rate on naergy harvesting rate and the same residual energy,
N; by nodei. ¢y, is the last received expected energgode ¢ will forward the packets to the neighbor with
consuming rate on nod@&’; by node:. t. is the time larger PRO to the destination.
when the node is forwarding the packet; is the last  In an environment where the energy source distribu-
time when “Hello” message broadcast B, is heard tion is heterogeneous, the defined cost function in Eq. (2)
by i, anduy, and E,.(N;) are updatedyy, is updated will direct traffic to nodes with a faster energy renewal
every T (“Hello” interval) at nodeN; according to Eq. rate. Consider nodés neighbors having similar residual
(7) when it broadcasts “Hello” message. energy as well as similaPRO to the destination.

NE(N;)



Among these neighbors, the one which can replenishThis cost function also directs traffic to the neighbor
their batteries at a higher rate will advertise a cheapsith larger PRO to the destination when neighbors
cost and will be selected as the next hop of nade  have similar residual battery energy and environmental
Whena=1, GREES-L degenerates to geographic routhergy harvesting rate, and directs traffic to the neighbor
ing similar to [25]. Whem=3=0, GREES-L degenerateswith larger environmental energy harvesting rate when
to traditional energy aware routing based on residua¢ighbors have similar residual battery energy level and
energy only similar to [1]. PRO.
In this paper, we assume there is no holes, so therelhe cost should be positive, which mea#sRO
is always at least one neighbor of nodesatisfying should be larger than zero. Then this cost function
PRO(i, N;, D) > 0. While selecting the next hop, weimplicitly eliminates the neighbor that give negative
only consider the neighbors wit'kDR;y, > 0.2 and progress to the destination. The candidate neighbor se-
FDRy,; > 0.2 as the candidates of nodés next lection criteria is the same as GREES-L.
hop, since it will cause a lot of retransmissions if we
choose neighbors having bad link quality from/to néde I1l. PERFORMANCE EVALUATION
Retransmissions will not only consume sender’s energy
but also increase the interference to other nodes. When
E(N;) in Eq. (6) is smaller thar2( Cost) in Eq. (1), N; All the simulations are implemented within the Glo-
should not be selected as the next hop of ngdgince MoSim library [31], which is a scalable simulation en-
it does not have enough energy to receive and transiiltonment for wireless network systems. The simulated
a packet. sensor network ha®d = 196 stationary nodes uniformly
2) GREES-M:GREES-L uses linear combination tcistributed in ad x d m? square region, with nodes
balance the geographical advance efficiency per packaving identical fixed transmission power. We ubke-
transmission and the energy availability on receivingp0,210, 180,160 to achieve various node densities in

nodes, while GREES-M uses multiplication to baland€rms of neighborhood size @6, 15,20, 25. To simulate
these factors. The local cost functiafiy,(N;, D) is @ random lossy channel, we assume Ground Reflection

defined as follows: (Two-Ray) path loss model and Ricean fading model [32]
1 for signal propagation. The packet reception decision is

S , (8) based on the SNR threshold. When the SNR is larger
- p, - PRO(i, N, D) than a defined threshold, the signal is received without

where ) is appropriately chosen constar,, is the €rror. Otherwise the packet is dropped. We set proper
battery capacity,PRO(i, N;, D) is defined in Eq. (4) parameters to make the maximum transmission range as
and )‘Nz is the fraction of energy remained at noﬂe 35m. EWMA, described in section 1-B, is used as the
defined in Eq. (9). link estimation algorithm, where is chosen to bé.9.

IEEE 802.11 [28] is used as the MAC layer protocol.
Each node was initialized with a fixed amount of en-
ergy/battery reserver|, mJ) before network deployment.
The energy consumption model is described in section
Node : forwards the packet to the neighbor thall-C, wherec = 1.9uJ/byte for sending and receiving
minimizes the local cost’y;(V;, D). The cost function packets and = 450u.J for sending packets antd =
is different from the one in [14] in that we take int260u.J for receiving packets. The energy harvesting
account the link quality and packet progress efficieneyodel is described in section 1I-D. Three nodal energy
by using the facto®® RO (i, N;, D). harvesting rates are assumed in Table Il. Each node’s
The rationale for minimizing the cost function Eq. (8harvesting rate is randomly chosen to be one of the three
is as follows. Note that the cost function is an inverselgvels and is fixed on the level in one simulation run.
exponential function of the nodal residual energy, aWe apply two types of application traffic: (1) peer-to-
inversely linear function of the replenishment rate amaeer application traffic, which consists of 15 randomly
the expected geographical progress per packet traokesen communication pairs in the simulation area, and
mission. So Eq. (8) provides us another guideline @) multiple-to-one application traffic, which consists of
how to balance the importance of progress per pacKet application sessions from randomly selected 15 nodes
transmission (related to delay and energy consumptiotg, the sink node at the center of the simulation area.
energy replenishment and residual energy (related to IoBae sources are CBR (constant bit rate) with one packet
balancing). per second and each packet being 512 bytes long. Each

Simulation Setup

Ay, = L (
N, = b,




High | Medium | Low - .
Min (mw) | 10 T 01 factor, because the throughput is indeed relative to

Max (mw) | 20 | 5 1 the distance between the communication pair due
to the lossy property of multi-hop wireless links in
wireless sensor networks.

« Normalized end-to-end delajt is measured as the
per packet delay fromS to D over Dist(S, D)
in second per packet-meter (sppm), as the delay

point in the plotted results represents an average of ten iS also proportional to the distance between the

simulation runs with different seeds. communication pair.

TABLE Il
LEVEL OF ENERGY HARVESTING RATE

B. Evaluation Metrics C. Simulations results and analysis
We define the following two metrics to evaluate the 1) Peer-to-peer traffic:Figs. 1, 2, and 3 show the

performance of the proposed routing protocols in termgnulation results under randomly distributed peer-to-
of the energy efficiency. peer application traffic. In this simulation, we set the
« Mean residual energy;4): This metric calculates “Hello” interval = to 50s, o in Eq. (2) to 0.5 for GREES-
the average residual energy at the end of simulationthe battery capacity, to 5,000m.J, 3 in Eq. (6) to
for all the sensor nodes. It is an indicator of energd0, andn to 100,000 in Eq. (8) for GREES-M. The
efficiency in the sense that it represents the levélis chosen as 40 to make the first part in the right
of remaining energy in the network. The higheside of Eq. (6) comparable to the second gartV;) so
the value is, the more the energy remains in thhat the energy changing rate (including harvesting and
network, and the better the performance is. Not®nsuming rates) plays an effective role in Eq. (6). In the
that due to the presence of the renewable enerfigures, “Greedy” denotes the geographic routing without
sources, this metric cannot be replaced by a metdaergy awareness but taking into account the wireless
that measures the total energy consumed. A betiannel conditions, which is an extreme situation for
ter routing protocol with renewable energy supplGREES-L by settingy to 1 in Eq. (2). “Residual-based-
should achieve better residual energy when totd! denotes the energy aware routing protocol that only
energy consumption is the same or even higher. considers the residual energy level on nodes, which is
« Standard deviation of residual energy,f: This also an extreme situation of GREES-L by settihim Eq.
metric measures the standard deviation of the res{@) to 0. “Residual-based-M”", corresponding to GREES-
ual energy of all nodes. This quantity indicates howl, denotes the energy aware routing protocol that only
evenly the remaining energy is distributed amongpnsiders the residual energy level on nodes, which is
nodes. The smaller the value is, the better thest by eliminating the factony, in Eq. (8).
capability the routing protocol has in balancing the Fig. 1 shows that under randomly distributed peer-to-
energy consumption. peer application traffic, a) Both GREES-L and GREES-
The following performance metrics are also measurddl are more energy efficient than the corresponding
to evaluate the quality of service provided by the prgesidual energy based protocols in terms of having higher
posed routing protocols. mean residual energy and smaller standard deviation
« Normalized end-to-end throughputhis metric is Of residual energy; b) GREES-M performs better than
measured in bit-meters per second (bmps) as in [3§REES-L on efficiency and load balancing; and c)
It is calculated as in Eq. (10), The “Greedy” routing without energy awareness has
the lowest mean residual energy and largest standard
(10) deviation of residual energy.
tsession This results can be explained by the fact that GREES-
where T'(S, D) denotes the normalized throughi and GREES-M take into account the environmental
put from source nodeS to destination nodeD, energy harvesting rate as well as the residual energy
Nyeivereqa denotes the number of packets delivereah node, so they have more accurate energy availabil-
from S to D in the communication sessiofjze,;; ity estimation than the corresponding residual energy
denotes the packet size in biDist(S, D) denotes based protocols, therefore they are able to distribute the
the Euclidean distance betwee$) and D, and load better based on the energy level. Since “Greedy”
tsession denotes the communication session duratigouting considers neither the residual energy on node
from S to D in second. We account for the distancaor environmental energy harvesting, it has the worst

T(S, D) _ Ndelivered . Sizepkt : DiSt(Sv D)
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Fig. 1. Simulation results under peer-to-peer traffic

performance on energy efficiency and load balancinige decreased, ang will be again selected as the next
It is worth to mention that if there is no environmentahop of A. Suppose the nodal information is exchanged
energy supply, “Greedy” routing may achieve high meavery 2 secondB and C are alternately selected as
residual energy, since it locally maximizésRO to the the next hop ofA. Then after relaying 10 packets3(
destination. In our model, the transmission power rglays 6 and” relays 4),B depletes 2 units of energy
fixed, so maximizing the progress per packet transmis- the sense that it consumes 12 units for receiving
sion is equivalent to maximizing the progress per packatd forwarding packets meanwhile harvesting 10 units,
per unit of energy consumption. However, when theend C' depletes 0 units in the sense that it consumes 8
is environmental energy supply, it is not necessary tmits for receiving and forwarding packets meanwhile
maximize theP RO for every packets. Some packets caharvesting 8 units. That's the reason why energy aware
be routed to the neighbor that makes smalfdRO but routing protocols achieve better load balancing and at
has more energy availability in order to avoid overusindpe same time achieve higher mean residual energy than
some node. For example, suppose that nddeas two “Greedy” routing protocol.
neighborsB andC, and A is going to send ten packets
to the destinatiorD with one packet per seconf®. hasa  We further explain why GREES-L and GREES-M
little larger PRO to D thanC, but the expected energyhave better energy efficiency and load balancing than the
consumption per packet transmission frofnto B and corresponding residual energy based routing protocols.
A to C are the same. AssumB and C' have the same We still use the communication settings of the former
energy harvesting rate of 1 unit of energy per secongkample, except that’ has already depleted 5 units of
and B and C' consume the same energy, say 2 units, energy before the starting of the communication session,
receive a packet and forward the packet to their next hdp.has high energy harvesting rate of 4 units per second,
For “Greedy” routing,B is always chosen to relay thewhile B has lower harvesting rate of 0.5 units per second.
packets, then after relaying 10 packeis,will deplete Suppose the battery capacity is 50 units and the nodal
10 units of energy from its battery in the sense thétformation is exchanged locally every 5 second. For
it consumes 20 units for receiving and forwarding theesidual energy based routing protocdl, will first be
packets while harvesting 10 unit§. depletes 0 unit of selected to relay packets. After five seconfisgepletes
energy and harvests 0 unit of energy because its batt@éry units of energy in the sense that it consumes 10 units
is always fully charged. For energy aware routing, whéar communication meanwhile harvesting 2.5 units, and
B depletes its energy after sending several packets, thavill be fully charged. TherC' is selected to relay the
cost for B to forward the packet is increased accordingext five packets. At the end of the communicatiéh,
to Egs. (2) and (8), the@ will be chosen as the next-hopdepletes 5 units since it harvests 2.5 units in the last
of A. When(C is forwarding the packetd? will harvest 5 seconds, and’ is fully charged because its energy
energy from environment and recharge its battery, barvesting rate is larger than the consuming rate. For
after a while, the cost foB to forward the packet will GREES-L and GREES-M{' will be selected all the
time according to Egs. (2) and (8). Then at the end of
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the communication, the batteries &f and C are both peer case, except that the communication pattern is
fully charged. from sensor nodes to the sink which is located in the

Figs. 2 and 3 show the QoS performance of trgenter of the network, and the battery capacity is set to
five protocols. We can see that GREES-L and GREE®-000m.J to accommodate the more demanding energy
M have longer delay than the corresponding residug@nsumption of nodes close to the sink. The sink is not
energy based protocols since in order to achieve bet@fergy constrained.
load balancing, some packets may travel along someFig. 4 shows the same trend as Fig. 1 does that
links of worse quality or travel more hops to geboth GREES-L and GREES-M achieve better energy
to the destination. However the delay performance éfficiency and load balancing than the corresponding
not compromised much. In our simulation, GREES-tesidual energy based protocols under multiple-to-one
has 19% longer delay than the Residual-based-L aagplication traffic. The reason is the same as explained
GREES-M has 14% longer delay than the Residuai section II-C.1.
based-M. The delay performance is not changed muchFigs. 5 and 6 also show the same trend as in Figs. 2
with network density, as we already normalize the deland 3 respectively that both GREES-L and GREES-M
by dividing it by distance. The throughput performance ixhibit graceful degradation on end-to-end delay but do
nearly the same for all the five protocols under differemiot compromise the end-to-end throughput performance.
network density. It tells us although some packets spend3) The effect of “Hello” interval: The results shown
a little more time travelling to the destination, the packét this section are for uniformly distributed peer-to-peer
delivery ratio is not compromised at all. Throughpuipplication traffic. The simulation settings are similar
is smaller when nodes are closer (denser) since tgethe simulation in section 1lI-C.1, except that the
throughput is normalized by multiplying the sourceneighborhood size is fixed on 15, battery capacity is
destination distance. 9000mJ and 8 = 60. We vary the “Hello” inter-

2) Multiple-to-one traffic:Fig.4 shows the simulationval from 2s to 50s. As shown in Fig.7(a), the mean
results of energy efficiency and load balancing undegsidual energy on nodes increases when the “Hello”
randomly distributed multiple-to-one application trafficinterval increases. When the “Hello” interval is small,
The simulation settings are the same as the peertioe energy efficiency and load balancing performance
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of GREES-L and GREES-M are nearly the same #sroughput performance. These results imply that the
the corresponding residual energy based protocols, asighborhood information does not need to be exchanged
pecially when “Hello” interval is smaller thads, as the too frequently. The reduced broadcast frequency may
residual energy information on nodes reflects the energglp to reduce interference from local broadcast as
availability more accurately when the nodal informatiowell as reduce energy consumption for transmitting and
is exchanged more frequently. The reasoning also applieseiving broadcast messages.

to the observation in Fig.7(b), when the “Hello” interval

is small, the performance difference between GREESs IV. CONCLUSION AND FUTURE WORK

and the corresponding residual energy based protocolg\e proposed two energy aware geographic routing
is not obvious. Fig.7(c) shows the end-to-end delay pgjrotocols, GREES-L and GREES-M, which make rout-
formance. Generally the delay decreases as the “Hell@g decision locally by jointly taking into account the
interval increases, except for GREES-L when “Hellofealistic wireless channel condition, packet progress to
interval is larger thanl0Os. The reason behind that isthe destination, the residual battery energy level of
that the energy availability estimation in Eq. (6) mayhe node, and the environmental energy supply. The
play a more important role when the “Hello” interval iperformance of the proposed protocols are evaluated and
larger than a threshold, then the packets are distribuigshmpared with the corresponding residual energy based
more evenly and travel more hops. This can be seengibtocols and “Greedy” routing protocols under different
Fig.7(a) that the mean residual energy is till increasingaffic pattern. Simulation results show that GREES-L
when “Hello” interval is larger tharl0s for GREES-L and GREES-M are more energy efficient than the corre-
while other protocols remains nearly unchanged. Fig.7(&)onding residual energy based protocols and “Greedy”
also shows that the standard deviation of residual enefgyiting protocols in that they achieve higher mean resid-
is still decreasing for GREES-L when “Hello” intervalyal energy on nodes, and achieve more evenly distributed
is larger thanl0s while other protocols remains nearlyresidual energy on nodes. GREES-L and GREES-M have
unchanged. The throughput performance is not shogyraceful degradation on the performance of end-to-end
here since all the five protocols exhibit almost the sangelay, but do not compromise the end-to-end throughput
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performance. GREES-M performs better than GREESH7] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing
on energy efficiency and balancing. Our future work is

the theoretical analysis of the two protocols and a more

comprehensive simulation study which will be focusing

on the understanding and optimization of the tunabl&s]

parameters under various practical situations.
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