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Abstract— Wireless sensor networks are characterized
by multihop wireless lossy links and resource constrained
nodes. Energy efficiency is a major concern in such
networks. In this paper, we study Geographic Routing
with Environmental Energy Supply (GREES) and propose
two protocols, GREES-L and GREES-M, which combine
geographic routing and energy-aware routing techniques
and take into account the realistic lossy wireless channel
condition and the renewal capability of environmental
energy supply when making routing decisions. Simulation
results show that GREESs are more energy efficient than
the corresponding residual energy based protocols and
geographic routing protocols without energy awareness.
GREESs can maintain higher mean residual energy on
nodes, and achieve better load balancing in terms of
having smaller standard deviation of residual energy on
nodes. Both GREES-L and GREES-M exhibit graceful
degradation on end-to-end delay, but do not compromise
the end-to-end throughput performance.

I. INTRODUCTION

Wireless sensor networks are characterized by mul-
tihop lossy wireless links and severely resource con-
strained nodes. Among the resource constraints, energy
is probably the most crucial one since sensor nodes
are typically battery powered and the lifetime of the
battery imposes a limitation on the operation hours of
the sensor network. Unlike the microprocessor industry
or the communication hardware industry, where compu-
tation capability or the line rate has been continuously
improved (regularly doubled every 18 months), battery
technology has been relatively unchanged for many
years. Energy efficiency has been a critical concern in
wireless sensor network protocol design. Researchers are
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investigating energy conservation at every layer in the
traditional protocol stack, from the radio layer up to the
transport layer and application layer.

A common approach at the network layer to the energy
efficiency problem is energy aware routing [1], [2], [3],
[4], [5], [6], [7] in which sensors/nodes are assumed to
be powered by batteries with limited/fixed capacity and
then routing decisions are made based on the residual
energy of each neighbor node. The objective of those
protocols is either minimizing the energy consumption
or maximizing the network lifetime. A new observation
related to energy aware routing is the availability of the
so-called energy scavengers which are devices able to
harvest small amount of energy from ambient sources
such as light, heat or vibration [8], [9], [10], [11]. The
first work to take environmental energy into account
for routing was [12], followed by [13]. A distributed
framework for the sensor network to adaptively learn
its energy environment was presented in [12] and local-
ized algorithms to use this information for task sharing
among nodes was given. An example study of routing
showed that the proposed framework is able to utilize
the extra knowledge about the environment to increase
system lifetime. Voigt, et al. [13] designed two solar-
aware routing protocols that preferably route packets
via solar powered nodes and showed that the routing
protocols provide significant energy savings. Lin et al.
[14] addressed the problem of power-aware routing with
distributed energy replenishment for multihop wireless
networks. A cost metric was proposed that considers
node’s battery residual energy, energy requirement for
routing the packet along the path from source to destina-
tion, and energy replenishing rate. More comprehensive
study is necessary to understand how this emerging bat-
tery technology may impact the energy efficient protocol
design.
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Another approach to energy efficiency is geographic
routing [15], [16], [17], [18], [19] in which each node
makes routing decision locally based on its own, its
neighbors’ and the destination’s location information.
Geographical routing technique is particularly applicable
in wireless sensor networks because many sensing and
monitoring applications of sensor networks require sen-
sors to be aware of their physical locations. One of the
advantages of geographic routing is that the routing over-
head is minimized – neither route establishment flooding
nor per-destination state is required. Other properties
such as scalability, statelessness and low maintenance
overhead also make it an attractive technique especially
in large-scale sensor networks. For traditional geographic
routing schemes, packets are routed/forwarded locally
and greedily to the one-hop neighbor that provides most
positive advancement to the destination. In greedy mode,
Cartesian routing [15] chooses the neighbor closest to the
destination as the next hop while MFR (Most Forward
within Radius) [16] prefers the neighbor with the shortest
projected distance (on the straight line joining the current
node and the destination) to the destination. Greedy
forwarding is very efficient but it can fail when a com-
munication void happens, namely, when the current node
is distance-wise closest to the destination than any of its
neighbors, but has no direct connection to the destination
to deliver the packets. A number of techniques have been
proposed, such as face/perimeter routing, to complement
and enhance greedy forwarding [17], [18], [19] in the
face of communication voids.

Several recent experimental studies on wireless ad-
hoc and sensor networks [20], [21] have shown that
wireless links can be highly unreliable and that this
must be explicitly taken into account when considering
higher-layer protocols. [22] showed the existence of a
large ”transitional region” where link quality has high
variance. More recent works on geographic routing are
aware of this more realistic lossy channel situation.
Seada, et al. [23] articulated the distance–hop energy
trade-off for geographic routing. They concluded that
PRR (Packet Reception Rate) × Distance is an
optimal metric for making localized geographic routing
decisions in lossy wireless networks with ARQ (Auto-
matic Repeat reQuest) mechanisms. Zorzi and Armaroli
also independently proposed the same link metric [24].
Lee, et al. [25] presented a more general framework
called normalized advance (NADV) to minimize various
types of link cost. Li, et al. [26] proposed a local power
efficiency metric, Prr∗·DP roj

P ∗

T rans+Pelec
, for geographic routing

such that at each step the transmitter picks as the next
hop the neighbor for which this metric is maximized.
The focus of these works is performance gain therefore

none of them takes into account the energy constraint on
nodes. While some geographic routing protocol accounts
for nodes’ residual energy information such as GEAR
(Geographic and Energy Aware Routing) [27], which
uses energy awareness and geography-based neighbor
selection heuristics to route a packet towards the target
region, it does not take into account the realistic wireless
channel conditions.

In this paper, we take a cross-layer approach and carry
out a more comprehensive study on energy efficiency
issue. We propose two Geographic Routing with Envi-
ronmental Energy Supply (GREES) protocols, GREES-L
and GREES-M, which make routing decision locally by
jointly taking into account multiple factors – the realistic
wireless channel condition, packets advancement to the
destination, the residual battery energy level of the node,
and the environmental energy supply. Simulation results
show that our protocols are more energy efficient than
the corresponding residual energy based protocols and
geographic routing protocols without considering the
property of the energy renewal. In particular, given
the same network, energy, and traffic models, GREESs
maintain higher mean residual energy of nodes and
achieve better load balancing in terms of having a smaller
standard deviation of residual energy among nodes. Both
GREES-L and GREES-M exhibit graceful degradation
on end-to-end delay, but do not compromise the end-to-
end throughput performance.

The rest of the paper is organized as follows. We
explain GREES-L and GREES-M in detail in Section II,
and present and analyze our simulation results in Section
III. Section IV presents our conclusions.

II. GEOGRAPHICROUTING WITH ENVIRONMENTAL

ENERGY SUPPLY (GREES)

A. System Model

First we describe the system model on which our
protocol design is based.

We assume that each network node is aware of its own
and its one-hop neighbors’ positions and the source of a
message knows the position of the destination. This as-
sumption is reasonable in a wireless sensor network due
to its sensing and monitoring application nature – nodes
need to be aware of their own locations when reporting
their sensing data; the data are usually sent back to a
known “sink” location, or to a location specified in a
broadcast query message. The distance between any two
nodes,i and j, is the Euclidian distance between them,
denoted as Dist(i,j).

Each network node is equipped with energy renewable
batteries that can harvest energies from their working
environment [8], [9], [10], [11].
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A MAC protocol that allows retransmission is used,
such as802.11 [28]. The 802.11 ACK mechanism re-
sends lost data frames, making all but the worst 802.11
links appear loss-free to the network layer.

Each node is informed with its own and its one-
hop neighbors’ battery residual energy levelEr and the
short-term energy harvesting rate,µh, periodically. The
residual energy in a battery can be estimated from its
discharge function and measured voltage supplied [1].
Neighbor nodes exchange these information with each
other by piggybacking them in the periodically broadcast
“Hello” messages.

The network is dense enough so that no holes exist1.

B. Link quality estimation

We denote the Frame Delivery Ratio (FDR)2 from a
node i to its neighborj, FDRij . It is measured using
“Hello” messages3 which are broadcast periodically ev-
ery τ time unit. Because the probes are broadcast, 802.11
does not acknowledge or retransmit them.

Two events will drive the updating ofFDRij on node
j: one is the periodical updating event set by the node,
for example, everytu secondsj will update FDRij .
We denote this event asT ; the other is the event thatj
receives a “Hello” packet fromi. We denote this event
asH.

Exponentially Weighted Moving Average (EWMA)
function [29] is used as the link quality estimation algo-
rithm which is often used in statistical process control
applications. LetFDRij be the current estimation made
by nodej, lastHello be the time stamp of the lastH,
Nm be the number of known missed “Hello” packets
between the currentH and lastH based on sequence
number difference, andNg be a guess on the number
of missed packets based on “Hello” message broadcast
frequency1

τ
over a time window between the currentT

event and lastH or T event.Nm andNg are initialized
to be 0, andFDRij is initialized to be 1.

This technique allowsj to measureFDRij and i to
measureFDRji. Each probe sent by a nodei contains
FDR measured byi from each of its neighborsNi

during the lastw seconds. Then each neighbor ofi, Ni,

1Communication void problem is out of the scope of this paper.
2We use Frame Delivery Ratio instead of Packet Delivery Ratio

here to differentiate the data delivery ratio observed from the MAC
layer and the network layer. As mentioned before, due to the lossy
links, some MAC protocols such as 802.11 retransmit lost data
frames to guarantee high delivery ratio at network layer. That is, one
successful packet transmission at network layer may be the result of
a number of transmissions (including retransmissions) at MAC layer.

3In our proposed protocols, “Hello” message is used for both
exchanging neighbor nodes’ information and probing link quality.

For nodej:
WhenH event happens

Nm = currentSeq − lastSeq − 1
lastSeq = currentSeq

lastHello = current time
l = Max(Nm − Ng, 0)
Ng = 0
FDRij = FDRij · γ

l

FDRij = FDRij · γ + (1 − γ)
WhenT event happens

Ng = (current time − lastHello) × 1

τ

l = Ng

FDRij = FDRij · γ
l

TABLE I

PSEUDOCODE FOREWMA

learns itsFDR to i whenever it receives a probe from
i.

The pseudo code of nodej using EWMA algo-
rithm estimatingFDRij is described in table I, where
currentSeq and lastSeq denote the sequence numbers
of the currently received “Hello” message and the last
received “Hello” message respectively, and0 < γ < 1
be the weight parameter.

C. Energy Consumption Model

In this paper, the cost for a node to send or receive a
packet is modelled as a linear function similar to [30],
which represents a fixed cost associated with channel
acquisition and an incremental cost proportional to the
size of the packet:

Cost = c× Sizepkt + b (1)

where c denotes the energy needed for sending or
receiving one byte of data,Sizepkt denotes the size of
the data in bytes andb is a constant. In this paper, we
only consider the energy consumption when a node sends
or receives data as most energy aware routing protocols
do.

D. Energy Harvesting Model

Depending on the deployment conditions, such as
whether or not directly exposed to sun light, the intensity
of the sun light, the speed of air flow and so on,
there is an uncertainty associated with environmental
energy harvesting capability. We use a random process to
model the energy harvesting rate of nodei. We model
the mean harvesting rate with a uniformly distributed
random variable with meanµi, varying betweenPimin

andPimax. The energy harvesting capability is not ho-
mogeneous at all nodes. In addition, energy collected by
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the scavengers can be stored in some energy reservoirs
such as batteries, fuel cells, capacitors, etc. However
there is a capacity limit of such an energy reservoir,
beyond which environmentally available energy cannot
be stored. We use constantEb to denote such a battery
capacity limit for each node.

E. Algorithm Description

In our routing protocols, each node locally main-
tains its one-hop neighbors’ information such as the
neighbor’s location, residual energy, energy harvesting
rate, energy consuming rate, wireless link quality (in
terms of FDR). We assume that nodei is forwarding
a packetM , whose destination isD. Node i forwards
M progressively towards the destination, and at the same
time tries to balance the energy consumption across all
its neighborsNi. We propose two local cost metric based
protocols to achieve the goals.

1) GREES-L: Node i forwards the packet to the
neighbor that minimizes the costCL(Ni, D) value which
is defined as follows:

CL(Ni, D) =
1

α ·NPRO(i,Ni, D) + (1 − α) ·NE(Ni)
(2)

where0 < α < 1 is a tunable weight,NPRO(i,Ni, D)
is the normalized progressive distance per data frame
from i to Ni towardsD, andNE(Ni) is the normalized
effective energy on nodeNi. NPRO(i,Ni, D) and
NE(Ni) are defined as follows:

NPRO(i,Ni, D) =
PRO(i,Ni, D)

MaxPRO(i,Ni, D)
(3)

where

PRO(i,Ni, D) = (Dist(i,D) −Dist(Ni, D))
· FDRiNi

· FDRNii
(4)

NE(Ni) =
E(Ni)

MaxE(Ni)
(5)

where

E(Ni) = β · (µNi
− ψNi

) · (tc − tl) + Er(Ni) (6)

where β is a tunable weight. Recall thatµNi
is the

last received expected energy harvesting rate on node
Ni by nodei. ψNi

is the last received expected energy
consuming rate on nodeNi by node i. tc is the time
when the nodei is forwarding the packet.tl is the last
time when “Hello” message broadcast byNi is heard
by i, andµNi

andEr(Ni) are updated.ψNi
is updated

every τ (“Hello” interval) at nodeNi according to Eq.
(7) when it broadcasts “Hello” message.

ψNi
=
Ecτ

(Ni)

τ
(7)

where Ecτ
(Ni) is the energy consumed in the last

interval τ .
Note that due to the lossy wireless channel, the up-

dated information, such asµNi
, ψNi

andErNi
, may not

be received by nodei everyτ . So the energy availability
estimationE(Ni) of the neighbor with worseFDRNii

is less accurate than that of the neighbor with better
FDRNii. However this non-accuracy will not affect the
next hop selection much ifµNi

andψNi
do not change

much between the interval(tc − tl). Furthermore the
worse theFDRNii is, the smaller thePRO(i,Ni, D)
is. So the probability of choosingNi with low FDRNii

as the next hop will become lower according to Eq. (2).
The rationale to define and minimize the cost function

Eq. (2) is as follows. Minimizing the cost in Eq. (2) is
equivalent to maximizing the denominator. The denom-
inator is a linear combination of two parts. The first
part is NPRO(i,Ni, D) which represents how much
progress one frame can make towards the destination.
In Eq. (4), the factorFDRiNi

· FDRNii is the inverse
of the ETX (expected transmission count) defined in
[20]. The physical meaning of Eq. (4) is the expected
progress towards the destination per packet transmis-
sion. Maximizing it means maximizing the efficiency of
transmitting a packet. When we assume the transmission
power is fixed, maximizing Eq. (4) also decreases the
energy consumed per packet, as each transmission or
retransmission increases a node’s energy consumption.
The second part isNE(Ni) which represents the esti-
mated energy availability on nodeNi. From Eq. (6), we
know the energy availability is represented by the linear
combination of harvesting energy, consuming energy and
the residual energy on the battery. The key difference
from the traditional energy aware routing proposed in [1]
which only considers the residual energy on nodes is that
we also consider the environmental energy. So Eq. (2)
provides us with a clear guideline of how to balance the
importance of progress per packet transmission (related
to delay and energy consumption), energy replenishment
and residual energy (related to load balancing).

Suppose that each neighbor of nodei has the same
energy harvesting rate and the same residual energy,
node i will forward the packets to the neighbor with
largerPRO to the destination.

In an environment where the energy source distribu-
tion is heterogeneous, the defined cost function in Eq. (2)
will direct traffic to nodes with a faster energy renewal
rate. Consider nodei’s neighbors having similar residual
energy as well as similarPRO to the destination.
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Among these neighbors, the one which can replenish
their batteries at a higher rate will advertise a cheaper
cost and will be selected as the next hop of nodei.

Whenα=1, GREES-L degenerates to geographic rout-
ing similar to [25]. Whenα=β=0, GREES-L degenerates
to traditional energy aware routing based on residual
energy only similar to [1].

In this paper, we assume there is no holes, so there
is always at least one neighbor of nodei satisfying
PRO(i,Ni, D) > 0. While selecting the next hop, we
only consider the neighbors withFDRiNi

> 0.2 and
FDRNii > 0.2 as the candidates of nodei’s next
hop, since it will cause a lot of retransmissions if we
choose neighbors having bad link quality from/to nodei.
Retransmissions will not only consume sender’s energy
but also increase the interference to other nodes. When
E(Ni) in Eq. (6) is smaller than (2 ·Cost) in Eq. (1),Ni

should not be selected as the next hop of nodei, since
it does not have enough energy to receive and transmit
a packet.

2) GREES-M:GREES-L uses linear combination to
balance the geographical advance efficiency per packet
transmission and the energy availability on receiving
nodes, while GREES-M uses multiplication to balance
these factors. The local cost functionCM (Ni, D) is
defined as follows:

CM (Ni, D) =
1

ηλNi · µNi
· PRO(i,Ni, D)

(8)

where η is appropriately chosen constant,EbNi
is the

battery capacity,PRO(i,Ni, D) is defined in Eq. (4)
andλNi

is the fraction of energy remained at nodeNi

defined in Eq. (9).

λNi
=
ErNi

EbNi

(9)

Node i forwards the packet to the neighbor that
minimizes the local costCM (Ni, D). The cost function
is different from the one in [14] in that we take into
account the link quality and packet progress efficiency
by using the factorPRO(i,Ni, D).

The rationale for minimizing the cost function Eq. (8)
is as follows. Note that the cost function is an inversely
exponential function of the nodal residual energy, an
inversely linear function of the replenishment rate and
the expected geographical progress per packet trans-
mission. So Eq. (8) provides us another guideline on
how to balance the importance of progress per packet
transmission (related to delay and energy consumption),
energy replenishment and residual energy (related to load
balancing).

This cost function also directs traffic to the neighbor
with larger PRO to the destination when neighbors
have similar residual battery energy and environmental
energy harvesting rate, and directs traffic to the neighbor
with larger environmental energy harvesting rate when
neighbors have similar residual battery energy level and
PRO.

The cost should be positive, which meansPRO
should be larger than zero. Then this cost function
implicitly eliminates the neighbor that give negative
progress to the destination. The candidate neighbor se-
lection criteria is the same as GREES-L.

III. PERFORMANCE EVALUATION

A. Simulation Setup

All the simulations are implemented within the Glo-
MoSim library [31], which is a scalable simulation en-
vironment for wireless network systems. The simulated
sensor network hasN = 196 stationary nodes uniformly
distributed in ad × d m2 square region, with nodes
having identical fixed transmission power. We used =
250, 210, 180, 160 to achieve various node densities in
terms of neighborhood size of10, 15, 20, 25. To simulate
a random lossy channel, we assume Ground Reflection
(Two-Ray) path loss model and Ricean fading model [32]
for signal propagation. The packet reception decision is
based on the SNR threshold. When the SNR is larger
than a defined threshold, the signal is received without
error. Otherwise the packet is dropped. We set proper
parameters to make the maximum transmission range as
35m. EWMA, described in section II-B, is used as the
link estimation algorithm, whereγ is chosen to be0.9.
IEEE 802.11 [28] is used as the MAC layer protocol.
Each node was initialized with a fixed amount of en-
ergy/battery reserve (Eb mJ) before network deployment.
The energy consumption model is described in section
II-C, where c = 1.9µJ/byte for sending and receiving
packets andb = 450µJ for sending packets andb =
260µJ for receiving packets. The energy harvesting
model is described in section II-D. Three nodal energy
harvesting rates are assumed in Table II. Each node’s
harvesting rate is randomly chosen to be one of the three
levels and is fixed on the level in one simulation run.
We apply two types of application traffic: (1) peer-to-
peer application traffic, which consists of 15 randomly
chosen communication pairs in the simulation area, and
(2) multiple-to-one application traffic, which consists of
15 application sessions from randomly selected 15 nodes
to the sink node at the center of the simulation area.
The sources are CBR (constant bit rate) with one packet
per second and each packet being 512 bytes long. Each
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High Medium Low
Min (mw) 10 1 0.1
Max (mw) 20 5 1

TABLE II

LEVEL OF ENERGY HARVESTING RATE

point in the plotted results represents an average of ten
simulation runs with different seeds.

B. Evaluation Metrics

We define the following two metrics to evaluate the
performance of the proposed routing protocols in terms
of the energy efficiency.

• Mean residual energy (µr): This metric calculates
the average residual energy at the end of simulation
for all the sensor nodes. It is an indicator of energy
efficiency in the sense that it represents the level
of remaining energy in the network. The higher
the value is, the more the energy remains in the
network, and the better the performance is. Note
that due to the presence of the renewable energy
sources, this metric cannot be replaced by a metric
that measures the total energy consumed. A bet-
ter routing protocol with renewable energy supply
should achieve better residual energy when total
energy consumption is the same or even higher.

• Standard deviation of residual energy (σr): This
metric measures the standard deviation of the resid-
ual energy of all nodes. This quantity indicates how
evenly the remaining energy is distributed among
nodes. The smaller the value is, the better the
capability the routing protocol has in balancing the
energy consumption.

The following performance metrics are also measured
to evaluate the quality of service provided by the pro-
posed routing protocols.

• Normalized end-to-end throughput:This metric is
measured in bit-meters per second (bmps) as in [33].
It is calculated as in Eq. (10),

T (S,D) =
Ndelivered · Sizepkt ·Dist(S,D)

tsession

(10)

where T (S,D) denotes the normalized through-
put from source nodeS to destination nodeD,
Ndelivered denotes the number of packets delivered
from S toD in the communication session,Sizepkt

denotes the packet size in bit,Dist(S,D) denotes
the Euclidean distance betweenS and D, and
tsession denotes the communication session duration
from S toD in second. We account for the distance

factor, because the throughput is indeed relative to
the distance between the communication pair due
to the lossy property of multi-hop wireless links in
wireless sensor networks.

• Normalized end-to-end delay:It is measured as the
per packet delay fromS to D over Dist(S,D)
in second per packet-meter (sppm), as the delay
is also proportional to the distance between the
communication pair.

C. Simulations results and analysis

1) Peer-to-peer traffic:Figs. 1, 2, and 3 show the
simulation results under randomly distributed peer-to-
peer application traffic. In this simulation, we set the
“Hello” interval τ to 50s, α in Eq. (2) to 0.5 for GREES-
L, the battery capacityEb to 5, 000mJ , β in Eq. (6) to
40, andη to 100, 000 in Eq. (8) for GREES-M. The
β is chosen as 40 to make the first part in the right
side of Eq. (6) comparable to the second partEr(Ni) so
that the energy changing rate (including harvesting and
consuming rates) plays an effective role in Eq. (6). In the
figures, “Greedy” denotes the geographic routing without
energy awareness but taking into account the wireless
channel conditions, which is an extreme situation for
GREES-L by settingα to 1 in Eq. (2). “Residual-based-
L” denotes the energy aware routing protocol that only
considers the residual energy level on nodes, which is
also an extreme situation of GREES-L by settingβ in Eq.
(6) to 0. “Residual-based-M”, corresponding to GREES-
M, denotes the energy aware routing protocol that only
considers the residual energy level on nodes, which is
just by eliminating the factorµNi

in Eq. (8).
Fig. 1 shows that under randomly distributed peer-to-

peer application traffic, a) Both GREES-L and GREES-
M are more energy efficient than the corresponding
residual energy based protocols in terms of having higher
mean residual energy and smaller standard deviation
of residual energy; b) GREES-M performs better than
GREES-L on efficiency and load balancing; and c)
The “Greedy” routing without energy awareness has
the lowest mean residual energy and largest standard
deviation of residual energy.

This results can be explained by the fact that GREES-
L and GREES-M take into account the environmental
energy harvesting rate as well as the residual energy
on node, so they have more accurate energy availabil-
ity estimation than the corresponding residual energy
based protocols, therefore they are able to distribute the
load better based on the energy level. Since “Greedy”
routing considers neither the residual energy on node
nor environmental energy harvesting, it has the worst
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Fig. 1. Simulation results under peer-to-peer traffic

performance on energy efficiency and load balancing.
It is worth to mention that if there is no environmental
energy supply, “Greedy” routing may achieve high mean
residual energy, since it locally maximizesPRO to the
destination. In our model, the transmission power is
fixed, so maximizing the progress per packet transmis-
sion is equivalent to maximizing the progress per packet
per unit of energy consumption. However, when there
is environmental energy supply, it is not necessary to
maximize thePRO for every packets. Some packets can
be routed to the neighbor that makes smallerPRO but
has more energy availability in order to avoid overusing
some node. For example, suppose that nodeA has two
neighborsB andC, andA is going to send ten packets
to the destinationD with one packet per second.B has a
little largerPRO to D thanC, but the expected energy
consumption per packet transmission fromA to B and
A to C are the same. AssumeB andC have the same
energy harvesting rate of 1 unit of energy per second,
andB andC consume the same energy, say 2 units, to
receive a packet and forward the packet to their next hop.
For “Greedy” routing,B is always chosen to relay the
packets, then after relaying 10 packets,B will deplete
10 units of energy from its battery in the sense that
it consumes 20 units for receiving and forwarding the
packets while harvesting 10 units.C depletes 0 unit of
energy and harvests 0 unit of energy because its battery
is always fully charged. For energy aware routing, when
B depletes its energy after sending several packets, the
cost forB to forward the packet is increased according
to Eqs. (2) and (8), thenC will be chosen as the next-hop
of A. WhenC is forwarding the packets,B will harvest
energy from environment and recharge its battery, so
after a while, the cost forB to forward the packet will

be decreased, andB will be again selected as the next
hop ofA. Suppose the nodal information is exchanged
every 2 second,B and C are alternately selected as
the next hop ofA. Then after relaying 10 packets (B
relays 6 andC relays 4),B depletes 2 units of energy
in the sense that it consumes 12 units for receiving
and forwarding packets meanwhile harvesting 10 units,
andC depletes 0 units in the sense that it consumes 8
units for receiving and forwarding packets meanwhile
harvesting 8 units. That’s the reason why energy aware
routing protocols achieve better load balancing and at
the same time achieve higher mean residual energy than
“Greedy” routing protocol.

We further explain why GREES-L and GREES-M
have better energy efficiency and load balancing than the
corresponding residual energy based routing protocols.
We still use the communication settings of the former
example, except thatC has already depleted 5 units of
energy before the starting of the communication session,
C has high energy harvesting rate of 4 units per second,
whileB has lower harvesting rate of 0.5 units per second.
Suppose the battery capacity is 50 units and the nodal
information is exchanged locally every 5 second. For
residual energy based routing protocol,B will first be
selected to relay packets. After five seconds,B depletes
7.5 units of energy in the sense that it consumes 10 units
for communication meanwhile harvesting 2.5 units, and
C will be fully charged. ThenC is selected to relay the
next five packets. At the end of the communication,B
depletes 5 units since it harvests 2.5 units in the last
5 seconds, andC is fully charged because its energy
harvesting rate is larger than the consuming rate. For
GREES-L and GREES-M,C will be selected all the
time according to Eqs. (2) and (8). Then at the end of
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Fig. 2. Normalized end-to-end delay under randomly distributed
peer-to-peer application traffic

Fig. 3. Normalized end-to-end throughput under randomly dis-
tributed peer-to-peer application traffic

the communication, the batteries ofB andC are both
fully charged.

Figs. 2 and 3 show the QoS performance of the
five protocols. We can see that GREES-L and GREES-
M have longer delay than the corresponding residual
energy based protocols since in order to achieve better
load balancing, some packets may travel along some
links of worse quality or travel more hops to get
to the destination. However the delay performance is
not compromised much. In our simulation, GREES-L
has 19% longer delay than the Residual-based-L and
GREES-M has 14% longer delay than the Residual-
based-M. The delay performance is not changed much
with network density, as we already normalize the delay
by dividing it by distance. The throughput performance is
nearly the same for all the five protocols under different
network density. It tells us although some packets spend
a little more time travelling to the destination, the packet
delivery ratio is not compromised at all. Throughput
is smaller when nodes are closer (denser) since the
throughput is normalized by multiplying the source-
destination distance.

2) Multiple-to-one traffic:Fig.4 shows the simulation
results of energy efficiency and load balancing under
randomly distributed multiple-to-one application traffic.
The simulation settings are the same as the peer-to-

Fig. 5. Normalized end-to-end delay under randomly distributed
multiple-to-one application traffic with sink at the center

Fig. 6. Normalized end-to-end throughput under randomly dis-
tributed multiple-to-one application traffic with sink at the center

peer case, except that the communication pattern is
from sensor nodes to the sink which is located in the
center of the network, and the battery capacity is set to
7, 000mJ to accommodate the more demanding energy
consumption of nodes close to the sink. The sink is not
energy constrained.

Fig. 4 shows the same trend as Fig. 1 does that
both GREES-L and GREES-M achieve better energy
efficiency and load balancing than the corresponding
residual energy based protocols under multiple-to-one
application traffic. The reason is the same as explained
in section III-C.1.

Figs. 5 and 6 also show the same trend as in Figs. 2
and 3 respectively that both GREES-L and GREES-M
exhibit graceful degradation on end-to-end delay but do
not compromise the end-to-end throughput performance.

3) The effect of “Hello” interval: The results shown
in this section are for uniformly distributed peer-to-peer
application traffic. The simulation settings are similar
to the simulation in section III-C.1, except that the
neighborhood size is fixed on 15, battery capacity is
9000mJ and β = 60. We vary the “Hello” inter-
val from 2s to 50s. As shown in Fig.7(a), the mean
residual energy on nodes increases when the “Hello”
interval increases. When the “Hello” interval is small,
the energy efficiency and load balancing performance
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Fig. 4. Simulation results under multiple-to-one traffic with sink at the center
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Fig. 7. Simulation results under randomly distributed peer-to-peer application traffic with different “Hello” intervals

of GREES-L and GREES-M are nearly the same as
the corresponding residual energy based protocols, es-
pecially when “Hello” interval is smaller than3s, as the
residual energy information on nodes reflects the energy
availability more accurately when the nodal information
is exchanged more frequently. The reasoning also applies
to the observation in Fig.7(b), when the “Hello” interval
is small, the performance difference between GREESs
and the corresponding residual energy based protocols
is not obvious. Fig.7(c) shows the end-to-end delay per-
formance. Generally the delay decreases as the “Hello”
interval increases, except for GREES-L when “Hello”
interval is larger than10s. The reason behind that is
that the energy availability estimation in Eq. (6) may
play a more important role when the “Hello” interval is
larger than a threshold, then the packets are distributed
more evenly and travel more hops. This can be seen in
Fig.7(a) that the mean residual energy is till increasing
when “Hello” interval is larger than10s for GREES-L
while other protocols remains nearly unchanged. Fig.7(b)
also shows that the standard deviation of residual energy
is still decreasing for GREES-L when “Hello” interval
is larger than10s while other protocols remains nearly
unchanged. The throughput performance is not shown
here since all the five protocols exhibit almost the same

throughput performance. These results imply that the
neighborhood information does not need to be exchanged
too frequently. The reduced broadcast frequency may
help to reduce interference from local broadcast as
well as reduce energy consumption for transmitting and
receiving broadcast messages.

IV. CONCLUSION AND FUTURE WORK

We proposed two energy aware geographic routing
protocols, GREES-L and GREES-M, which make rout-
ing decision locally by jointly taking into account the
realistic wireless channel condition, packet progress to
the destination, the residual battery energy level of
the node, and the environmental energy supply. The
performance of the proposed protocols are evaluated and
compared with the corresponding residual energy based
protocols and “Greedy” routing protocols under different
traffic pattern. Simulation results show that GREES-L
and GREES-M are more energy efficient than the corre-
sponding residual energy based protocols and “Greedy”
routing protocols in that they achieve higher mean resid-
ual energy on nodes, and achieve more evenly distributed
residual energy on nodes. GREES-L and GREES-M have
graceful degradation on the performance of end-to-end
delay, but do not compromise the end-to-end throughput
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performance. GREES-M performs better than GREES-L
on energy efficiency and balancing. Our future work is
the theoretical analysis of the two protocols and a more
comprehensive simulation study which will be focusing
on the understanding and optimization of the tunable
parameters under various practical situations.
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