
Accountable Attribute-Based Broadcast
Shucheng Yu†, Kui Ren?, and Wenjing Lou‡

{yscheng,wjlou}@wpi.edu, kren@ece.iit.edu

†Student, Department of ECE, Worcester Polytechnic Institute, MA 01609
?Faculty, Department of ECE, Illinois Institute of Technology, IL 60616
‡Faculty, Department of ECE, Worcester Polytechnic Institute, MA 01609

I. I NTRODUCTION

In many broadcast applications, fine-grained access control
over contents is required to provide differentiated services to
users. For this purpose, the content provider may assign sets
of attributes to the contents, and user access privileges are
defined as logic expressions over these attributes. For example,
in a digital video recorder (DVR) system, the content provider
might broadcast episodes of TV shows and each of episode
may be assigned a set of attributes such asname, season
number, genre, so on and so forth. User access privileges
can be encoded as policies such as (“name=friends” AND
(“season 2” OR “season 3”)). To enforce these access polices,
the content provider needs to encrypt the media products
using some cryptographic primitives since the contents might
be distributed across third party content delivery networks
(CDNs). Key-policy attribute-based encryption (KP-ABE) [1]
is a cryptographic primitive that was proposed to resolve the
exact problem. In KP-ABE, a ciphertext is associated with a
set of attributes, and each user secrete key is embedded with
an access structure defined over attributes. Users can decrypt
a ciphertext if and only if the attributes associated with the
ciphertext satisfy the access structures embedded in their secret
keys.

However, in the current KP-ABE construction [1], it is
possible that a paid user “shares” his secret key and abuses
his access privilege without being identified. More seriously,
pirates may take this advantage to make profits. In conven-
tional broadcast encryption, this issue is addressed by using a
technique calledtraitor tracing [2]–[5]. The key idea of traitor
tracing is to enable the content provider to trace any suspicious
pirate device and thus discover illegal key distributors’ identi-
ties and collect evidences of the key abuse. Then the content
provider can sue the illegal key distributors by presenting these
evidences to law authorities. At a high level view, we can
play the same trick in KP-ABE to defend against key abuse
attacks. However, underlying techniques adopted by existing
traitor tracing systems can not be directly applied to KP-ABE
because receivers are represented individually in conventional
broadcast encryption while not in KP-ABE. Therefore, it is
desirable to propose a novel solution for defending against
key abuse attacks in KP-ABE.

II. OUR METHOD

Our method of tracing is to enable the content provider
to trick pirate decoders into decrypting tracing ciphertexts
which are designed in the way that only the suspected user
is able to correctly decrypt. The content provider obtains the
evidence of piracy if the pirate decoder correctly decrypts
certain tracing ciphertext. To be able to trick pirate decoders
into decrypting tracing ciphertexts, it requires that tracing
ciphertexts are indistinguishable from normal (non-tracing)
cihpertexts. Otherwise, the pirate decoder is able to detect the
tracing activity and stop outputting anything. Keeping this in
mind, we describe our construction as follows.

A. Background

To help understand our method, we first briefly introduce
KP-ABE. In KP-ABE, attributes are defined as public key
components. To encrypt a message with a certain set of
attributes, the encryptor just picks out the corresponding public
key components of these attributes and use them to encrypt
the message. A user secret key is associated with an access
structure which is a logic expression over attributes. A user
is able to decrypt a ciphertext if and only if the set of
attributes associated with the ciphertext satisfy the access
structure embedded in his secret key. For example, in the
aforementioned DVR case, the content provider can define
public key components for attributes such as name, season
number, etc. Then, a ciphertext encrypted with the attribute
set {“name=hero”, “season=2”} can not be decrypted by the
user whose access policy is (“name=friends” AND (“ season
2” OR “season 3”)). Fig. 1 illustrates this example. Note that,
in KP-ABE attributes associated with the ciphertext should be
revealed so that decryptors are able to correctly combine them
with their secret key components.

B. Main Idea

Recall that, to enable tracing the main task of our
construction is to generate tracing ciphertexts that is
indistinguishable from normal (non-tracing) ciphertexts. The
intuition of our method can be summarized as the follows.
We define an-bit user identity space and each bit of them
is defined as an attribute with two occurrences, one for bit
value 0 and the other for bit value 1. We call these attributes
by “ID-related attributes” and other attributes used by

AND

Name: friends OR

Season: 2 Season: 3

User Access Structure:

Ciphertext Attributes: { name=hero, season=2 }

Mismatch !

Fig. 1. Example of the DVR case

KP-ABE by “normal attributes”. Each user is then assigned
a unique ID from the identity space. In addition to normal
attributes, the encryptor will also associate these ID-related
attributes to the ciphertext in the following way: for normal
(non-tracing) operations, all thesen attributes are set as
“don’t care”; for tracing operations, they are set to represent
the suspicious user’s identity. In tracing operations, a user is
able to decrypt the ciphertext only if his identity equals the
suspicious one. To make tracing ciphertexts indistinguishable
from normal ciphertexts, we hide these ID-related attributes
in the way so that any user is not able to tell which and
how many of them are set as “interested”. In this way, we
are able to make tracing ciphertexts indistinguishable from
normal ciphertexts since the only difference between the
two is on the usage of these ID-related attributes. We can
hide these attributes by adopting similar techniques from
the area of anonymous ciphertext-policy attribute-based
encryption (CP-ABE) [6]. In addition, we also hide some
normal attributes (we can use dummy attributes instead)
so that upon a fail decryption the user can not tell if it
is caused by the mismatch of his ID or by his access
privilege (without considering his ID). Thus, he is not able to
distinguish a tracing activity from a normal (non-tracing) one.
Fig. 2 illustrates the previous DVR example using our method.

Tracing To trace a pirate device and identify the guilty users,
the content provider checks the user identity list of the system
and generates tracing ciphertexts for each identity in the list.
Then, he feeds these ciphertexts into the pirate device one
by one. Because the pirate device does not know whether
the ciphertexts are for tracing or just for normal content
distribution, it decrypts them and outputs whatever it gets.
The content provider just compares the pirate device’s output
with the original message. Once the pirate device outputs a
correct message, the content provider adds the user’s identity
to the guilty user list. Finally, the content provider will obtain
the list of all the guilty users.

C. Discussion

Efficiency In our design, both the ciphertext size and the
secret key size are linear ton, wheren is the number of bits
in the identity space. As the maximum number of users it

AND

Name: friends OR

Season: 2 Season: 3

User Access Structure:

Ciphertext Attributes: { name=hero, season=2, }

AND

Att1=x1

Hidden attributes

Att1=?, Att2=?, … , Attk=?

Att2=x2 Attk=xk
...

Hidden attributes

Fig. 2. Example of the DVR case using hidden attributes

can represent isN = 2n, the complexity can be written as
O(logN), where N is the total number of users. To trace
a pirate, the content provider needs to try with every user’s
identity in the system list. When the number of users in a
system is large, the tracing algorithm would be inefficient.
To resolve this issue, we can first test with some normal
ciphertexts using combinations of normal attributes. For
example, we can use different combinations of attributes like
location, age, etc. In practice, this process will hopefully rule
out a significant portion of users. Our tracing algorithm can
just test over the remaining set of users.

Application Scenarios and Future Work In general, our
proposed scheme is applicable to systems where 1) data can
be categorized by their attributes and a user access privilege
should be defined in the way that just allows the user to
access certain intended subset of resources; 2) abuse of the
access privilege should be prohibited. Applications of this kind
can be found in “targeted broadcast”, audit log, and etc. One
important future work is to provide formal security proof to
our construction. In addition, our current construction can just
defend against partially colluding users. In the future, we will
work on the case of arbitrary colluding users.

REFERENCES

[1] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption
for fine-grained access control of encrypted data,” inCCS ’06, 2006, pp.
89–98.

[2] B. Chor, A. Fiat, and M. Naor, “Tracing traitors,” inCRYPTO’94.
London, UK: Springer-Verlag, 1994, pp. 257–270.

[3] D. Boneh and M. K. Franklin, “An efficient public key traitor tracing
scheme,” inCRYPTO’99. London, UK: Springer-Verlag, 1999, pp. 338–
353.

[4] A. Kiayias and M. Yung, “Traitor tracing with constant transmission rate,”
in EUROCRYPT’02. London, UK: Springer-Verlag, 2002, pp. 450–465.

[5] D. Boneh, A. Sahai, and BrentWaters, “Fully collusion resistant traitor
tracing with short ciphertexts and private keys,” inEUROCRYPT’06.
London, UK: Springer-Verlag, 2006.

[6] T. Nishide, K. Yoneyama, and K. Ohta, “Attribute-based encryption
with partially hidden encryptor-specified access structures,” inACNS’08.
LNCS 5037, 2008, pp. 111–129.

2

