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ABSTRACT
With the growing complexity of computing systems, memory based
forensic techniques are becoming instrumental in digital investiga-
tions. Digital forensic examiners can unravel what happened on a
system by acquiring and inspecting in-memory data. Meanwhile,
attackers have developed numerous anti-forensic mechanisms to
defeat existing memory forensic techniques by manipulation of sys-
tem software such as OS kernel. To counter anti-forensic tech-
niques, some recent researches suggest that memory acquisition
process can be trusted if the acquisition module has not been tam-
pered with and all the operations are performed without relying on
any untrusted software including the operating system.

However, in this paper, we show that it is possible for malware to
bypass the current state-of-art trusted memory acquisition module
by manipulating the physical address space layout, which is shared
between physical memory and I/O devices on x86 platforms. This
fundamental design on x86 platform enables an attacker to build an
OS agnostic anti-forensic system. Base on this finding, we propose
Hidden in I/O Space (HIveS) which manipulates CPU registers to
alter such physical address layout. The system uses a novel I/O
Shadowing technique to lock a memory region named HIveS mem-
ory into I/O address space, so all operation requests to the HIveS
memory will be redirected to the I/O bus instead of the memory
controller. To access the HIveS memory, the attacker unlocks the
memory by mapping it back into the memory address space. Two
novel techniques, Blackbox Write and TLB Camouflage, are devel-
oped to further protect the unlocked HIveS memory against mem-
ory forensics while allowing attackers to access it. A HIveS pro-
totype is built and tested against a set of memory acquisition tools
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for both Windows and Linux running on x86 platform. Lastly, we
propose potential countermeasures to detect and mitigate HIveS.
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1. INTRODUCTION
Digital forensics is the science on collecting and presenting dig-

ital evidence. With the ever increasing use of computing systems
in our daily life, computers and networks have become not only the
personal portal to instant information, but also a platform that crim-
inals exploit to commit crimes. Digital forensics is now one of the
services sought at the very beginning of all types of investigation -
criminal, civil, and corporate [7, 13].

Disk forensic methods and tools have matured in the past two
decades, offering comprehensive capabilities to extract and visual-
ize artifacts from nonvolatile storage images. With the prevalence
of memory hiding techniques and the need to evade disk forensic,
adversaries are starting to hide the presence of malicious code and
data only in the memory [8, 16, 15]. To tackle this problem, foren-
sic examiners are increasingly relying on live memory forensics to
uncover the malicious contents in the memory [7].

There are two general memory acquisition approaches: software
based approach and hardware based approach. Software based so-
lutions rely on a trusted memory acquisition module in the operat-
ing system to acquire the memory through the processor [35, 21].
Hardware based solutions often utilize dedicated I/O devices, such
as network interface card, to capture physical memory image via di-
rect memory access (DMA) [10, 28, 39] with the processor totally



bypassed. Some hardware based approaches use the remanence of
physical memory to extract sensitive data from memory module in
systems that are powered off for a short time [11, 18].

To counter live memory forensics, attackers have developed a
number of anti-forensic techniques to sabotage the memory acqui-
sition process [19]. Current anti-forensic techniques against soft-
ware based memory acquisition rely on manipulating the software
used in the memory acquisition process. Some examples include
modifying the acquisition module or the OS kernel [20, 34, 15],
hooking operating system APIs [32], or installing a thin hypervisor
on the fly [29]. Based on this observation, Stüttgen et al. recently
suggested that the memory acquisition process can be trusted with
two conditions. The first one is that the acquisition module has not
been tampered with, and the second one states all the operations
are performed without relying on the operating system or any other
untrusted software [35]. However, in this paper, we show that this
assumption is not true by presenting Hidden in I/O Space (HIveS),
an operating system (OS) agnostic anti-forensic mechanism, that is
capable of evading the most updated software based memory foren-
sics tools.

Physical address space on x86 platform is shared between phys-
ical memory and I/O devices. Memory access to a physical address
gets directed to either the memory controller or the I/O bus based
on where it is located in the address space layout. This physical ad-
dress layout is also what memory forensics tools use to understand
where the physical memory regions are located. Memory forensic
tools obtain this layout information by interacting with operating
system or BIOS, and they assume this layout is correct and updated.
We show that this condition can be easily violated by presenting
HIveS. HIveS alters the machine physical address layout while the
system is in operational state by modifying registers in the proces-
sor. With this mispresented address layout, HIveS can conceal a
memory region called HIveS memory from being observed and ac-
quired by memory forensics tools.

The basic idea is to map (or lock) the HIveS memory into the
I/O space, so that any operation on the physical memory address
will be redirected to the I/O bus instead of the memory controller.
When the HIveS memory is locked, its memory contents cannot be
accessed by any processor, including the one(s) controlled by the
attacker. When the attacker wants to access the HIveS memory,
she would first unlock the memory region by mapping it back into
the memory address space. To protect the unlocked HIveS mem-
ory against memory forensics, we propose two novel techniques,
Blackbox Write and TLB Camouflage. Blackbox Write enables
only write access to the HIveS memory by creating asymmetric
read and write destinations between the memory space and the I/O
space. TLB Camouflage exploits TLB cache incoherency among
multi-core processors to ensure exclusive read and write access for
a single processor core to the HIveS memory.

HIveS is operating system agnostic, since it only changes the
system hardware configurations. We build a prototype of HIveS
on an x86 desktop with an AMD FX processor running both Win-
dows and Linux. Since HIveS conceals the presence of malware
without changing any system software including BIOS, hypervisor
or OS kernel, it can effectively defeat the most updated software
based memory acquisition tools on both Windows and Linux. Fur-
thermore, we extend HIveS with a number of existing anti-forensic

techniques, such as RAM-less encryption and Cache based I/O stor-
age, to defeat hardware based memory acquisition approaches.

We propose several countermeasures for detecting and mitigat-
ing HIveS. One seemingly simple solution is to directly inspect the
CPU registers that may have been manipulated by HIveS. However,
since legitimate peripheral device drivers may also change the same
set of CPU registers, it remains a challenge to distinguish normal
configurations from malicious usages, and maybe impossible with-
out crashing the system on some hardware platforms.

To summarize, we make the following contributions.

• We present HIveS, a system that exploits hardware features
in x86 platform to subvert the foundation of memory acqui-
sition. HIveS is an OS agnostic anti-forensic mechanism
that can defeat memory forensic techniques by concealing
the HIveS memory in the I/O space.

• We develop two novel techniques to enable covert operations
on the unlocked HIveS memory against memory forensics.
Blackbox Write grants only the write privilege to the HIveS
memory, and TLB Camouflage can grant malicious users ex-
clusive read and write access to the HIveS memory.

• A prototype of HIveS is built on the x86 platform to demon-
strate its capability on concealing the HIveS memory against
a number of most updated memory forensics tools on both
Windows and Linux.

• We propose potential countermeasures to detect and mitigate
HIveS. As an arms race, we show that HIveS can be en-
hanced to further evade hardware based memory acquisition
solutions.

The remainder of the paper is organized as follows. Section 2
describes some background knowledge on x86 memory address
space. We present the HIveS framework in Section 3 and discuss
its extensions in Section 4. A prototype implementation is detailed
in Section 5. We propose potential countermeasures in Section 6.
Section 8 discusses the related works. Finally, we conclude the
paper in Section 9.

2. BACKGROUND
The entire range of memory addresses accessible by x86 pro-

cessors is often referred to as physical address space. Contrary
to popular believes, the length of such address space usually does
not equal to the amount of actual physical memory installed on the
platform. This is because some of the address is mapped to the
bus for I/O devices, instead of dynamic random access memory
(DRAM). A typical memory layout of systems with AMD proces-
sors is shown in Figure 1, where the shaded areas are backed by
DRAM, and the areas without shade are backed by I/O devices.
This memory layout is used by the Memory Map Unit (MMU)
to route memory requests from the processor to either DRAM or
memory-mapped I/O (MMIO).

The memory setting of an x86 system is initialized by the BIOS
at hardware reset and parsed by the operating system during the
system bootstrap [9]. The layout is configured via several con-
figuration registers in the North Bridge (NB) and the processor.
DRAM Base/Limit register pair is among the earliest ones config-
ured by the BIOS. They define the ranges of physical address space



Figure 1: Physical Address Layout on AMD Architecture

mapped to DRAM in the north bridge. Any access to these areas
will be forwarded to the DRAM Controller (DCT). These registers
are configured by the BIOS with the result of system memory prob-
ing during hardware initialization. Therefore they are designed to
be lock-once (i.e., write-once). The values cannot be changed until
the next system reset.

The next set of registers that shapes the memory layout consists
of two Mode Specific Registers (MSR) Top Of Memory (TOM)
registers. AMD processors allow system software to use TOM reg-
isters to specify where memory accesses are directed for a given ad-
dress range [2]. There are two TOM registers, TOP_MEM1 (TOM1)
and TOP_MEM2 (TOM2). Figure 1 shows that the address range
from 0 to TOM1 as well as the address range from 4GB to TOM2
are set as system memory on this AMD system. Access requests
within these two ranges are directed to the DRAM, while requests
outside these two ranges are directed to the I/O space. The pur-
pose of these two registers is to offer the operating system software
the ability to carve out large memory space to organize DRAM
and I/O devices. Even though they can be changed even when the
system is operational, unlike the DRAM Base/Limit register, it is
rare to change the memory address allocation after the system starts
up. This is because the DRAM boundaries, governed by DRAM
Base/Limit registers, have already been determined. Lastly, sys-
tems usually stop functioning if these registers are changed, since
the OS kernel was not expecting the change of hardware configura-
tion while the system is running.

The last set of registers that shapes the layout is also MSR in
the processor. They are the Input Output Remap Registers (IORR).
These set of registers can create a special mapping beyond the base
setting to direct specific read/write access of any address space be-
tween the I/O space and the DRAM space. This set of registers
are designed to enable system software to shadow ROM device in
memory to improve the system performance.

3. HIVES FRAMEWORK
In the ongoing battle between attackers and digital forensics ex-

aminers, memory acquisition is becoming an important technique
for evidence collection. From the perspective of an attacker, we
design HIveS, an anti-forensic system. It is capable of evading
acquisition by software based memory forensics tools on a desig-
nated range of physical memory chosen by the attacker. We call
this range of memory HIveS memory. It can be used by attackers to
store malicious code or sensitive data.

A high level block diagram of the HIveS system is shown in
Figure 2. For simplicity, we show a generic x86 multi-core archi-
tecture with one processor consisting of two cores. Each processor
core has its own cache and TLB.

When a processor core needs to access the DRAM memory, it
sends a request to the north bridge. The MUX inside the north
bridge is responsible of forwarding the memory request to either
the DRAM controller or the south bridge based on the physical
address layout. This layout was initialized by the BIOS, then fur-
ther defined by the operating system using model-specific registers
(MSRs) including the top of memory (TOM) registers and the I/O
range registers (IORRs). When the physical address is mapped to
the I/O space, the request is forwarded to the south bridge. When
the physical address falls in the DRAM range, the memory request
goes through the DRAM controller to the physical memory.

HIveS has two states, locked and unlocked. When it is in the
locked state, the HIveS memory is completely inaccessible to any
processor core. This is because all access attempts are forwarded
to the I/O space once HIveS is locked. While the system remains in
this state, even the malicious core (e.g., Core 1 in Figure 2) cannot
access the HIveS memory. When the attacker needs to access the
HIveS memory, she can set HIveS to unlocked state, where only the
malicious core can access the HIveS memory, and memory requests
from all other cores are redirected to another DRAM region. Lastly,
since HIveS relies only on hardware configurations to conceal the
HIveS memory, it is OS agnostic. Moreover, it leaves no trace in
memory. Unlike some of the current rootkits that modifies kernel
data structures or operating system APIs, HIveS cannot be detected
by checking the integrity of the OS.

3.1 Inaccessibility in the Locked State
Considering the use case of a password stealing rootkit, whose

goal is to steal passwords and store them quietly in some place be-
fore an opportunity to exfiltrate, there is no need for the rootkit to
read from or write to the memory where the stolen passwords are
stored until it is ready to transmit. HIveS is designed to an anti-
forensic tool, so we develop a novel I/O Shadowing technique to
block all processor cores from accessing the HIveS memory. The
basic idea of I/O shadowing is to dynamically manipulate the con-
figuration of a memory range so that even if it is backed by the
DRAM in the physical address space, any read/write request will
be redirected to the I/O space. The real contents in the DRAM
memory are shadowed by the memory-mapped I/O (MMIO).

Among the various controls that shapes the memory layout, there
are two MSRs that can be controlled by the system software when
the system is operational. They are TOM and IORR.

Though TOM registers can be modified after the system boots
up, any modification of the TOM registers can greatly affect the



Figure 2: Architecture of HIveS

system stability, since the OS kernel uses the TOM registers in
many default system settings. Furthermore, TOM modifications
can only change the boundary between the default I/O area and the
DRAM area. Even if system instability was not an issue, the ma-
nipulation would be very limited.

We instead use I/O range registers (IORRs) to adaptively prevent
all processor cores from accessing the HIveS memory. IORRs are
variable-range memory type range registers (MTRRs). They can
be used to specify if reads and writes in any physical address range
should map to system memory or memory-mapped I/O (MMIO).
In AMD architecture [2], up to two address ranges of varying sizes
can be controlled using IORRs. Figure 1 shows an example that
maps an area of system RAM between 4GB and 5GB into MMIO
using one IORR.

Each IORR has a pair of registers, IORR base register and IORR
mask register. The IORR mask register contains the length of the
region and a valid bit indicating whether the IORR configuration
pair is active. IORR base register contains the starting address of
the IORR region, as well as two important flag bits, WrMem and
RdMem [2]. When these two bits are set to 1, the north bridge
directs read/write requests for this physical address range to system
memory. When these bits are cleared to 0, all reads/write requests
are directed to memory-mapped I/O.

The RdMem and WrMem bits in IORR are originally designed
for shadowing ROMs of I/O devices in DRAM memory to improve
system performance. The system can create a shadow region by
setting WrMem = 1 and RdMem = 0 for a dedicated memory
range and then copy the ROM from I/O device into DRAM mem-
ory. Once the copy operation is completed, the system changes the
bit value to WrMem = 0 and RdMem = 1. Now the memory
reads are directed to the faster copy in the DRAM memory instead
of ROM of the device; write requests are still being directed to the
ROM, but the ROM simply ignores any write request.

The I/O shadowing provided by IORRs can be misused to redi-
rect processor requests of a valid system memory area to the I/O

space. When both RdMem and WrMem bits are set to 0 in the
IORR, all read and write requests to the HIveS memory will be
redirected to the I/O space. With this configuration, the HIveS
memory becomes inaccessible for all processor cores. Since both
Windows and Linux operating systems make no assumptions on
the default configurations and usages of IORRs, the modification
of unused IORR registers has no impact on the OS reliability. In
addition, IORR registers offers great adaptability in both the loca-
tion and size of the HIveS memory.

3.2 Exclusive Access in the Unlocked State
The HIveS memory in the unlocked state is designed to allow

an exclusive access from the processor core controlled by the at-
tacker, while preventing acquisition by the processor cores that per-
form memory forensics. IORRs are registers shared by all proces-
sor cores, so any modification on one IORR register affects all the
processor cores in the system. When an attackers needs to access
the HIveS memory in a single core system, she can simply unlock
HIveS memory by disabling the I/O shadowing, read or modify
contents in the HIveS memory, and then lock it by enabling the I/O
shadowing. However, it becomes a challenge to ensure an exclusive
access to HIveS memory with parallel execution in a multi-core
system, since the forensic examiner can be collecting memory with
the other running core. We develop two new techniques, Blackbox
Write and TLB Camouflage, to solve this problem.

3.2.1 Blackbox Write
When an attacker with an active keylogger uses HIveS memory

to store the collected sensitive data, it will be writing to the HIveS
memory most of the time and does not need to frequently read it
back. On the other hand, forensic examiners are interested only
on reading the memory contents. In order to preserve the integrity
of the evidence, memory forensic tools always read the memory
contents and never write to the memory.

Based on the above asymmetric operations between the attack-
ers and the examiners, we develop Blackbox Write to redirect all



Figure 3: Blackbox Write

Algorithm 1: TLB Camouflage

begin
allocate a new memory page;
pause all other running cores;
all cores flush TLBs;
modify the new page PTE to point to the HIveS memory;
malicious core read/write the virtual address;
malicious core TLB entry loaded;
modify the new page PTE back to regular address;
resume all other cores;

memory read requests to the I/O space by setting RdMem = 0 in
IORR and send all the memory write requests to the HIveS mem-
ory by setting WrMem = 1. With this setting, attackers can write
new contents into the HIveS memory while preventing forensic ex-
aminers from reading and analyzing it. Because there is no real
I/O device in the I/O hub to respond to the memory reads, a default
value (e.g, 0xFF in AMD FX processor [4]) is returned instead.
Note the examiner can also write into the HIveS memory, however
actively modifying memory is a an act of compromising evidence,
which is against the principle of digital forensics.

The attacker eventually needs to send the data in the HIveS mem-
ory to a remote machine. For instance, after a fix amount of user
key strokes have been stealthily recorded, the keylogger can send
the data to a remote server using network packets. Instead of un-
locking processor’s read access to the HIveS memory, the attacker
can manage to read the HIveS memory by a peripheral device via
DMA. To prevent random peripheral devices from reading the HIveS
memory, HIveS can set the IOMMU to only allow a designated pe-
ripheral device to access the HIveS memory. Thus, a network in-
terface adapter can read the key stoke logs from the HIveS memory
via DMA and exfiltrate them.

3.2.2 TLB Camouflage
Blackbox write is an effective technique for malware that contin-

uously stores sensitive data in a secret place with little need to read
back, such as keyloggers. However, when the malware needs to un-
lock the HIveS memory for continuous read and write, it leaves a

large time window for memory forensic tools to acquire the HIveS
memory. We propose TLB Camouflage technique to mitigate this
problem. Figure 4 shows the basic idea of TLB camouflage, where
the unlocked HIveS memory can only be accessed by the malicious
Core 1 that is controlled by the attacker, while the read and write
requests from Core 2 for memory forensics are redirected to an-
other memory space. TLB camouflage enables exclusive access to
HIveS memory by creating an incoherent view of memory mapping
between cores, allowing the HIveS memory contents be accessed
only by the processor core that is running the malicious software.

Modern operating systems enable paging mechanism to translate
virtual memory address into physical memory address before pass-
ing the memory access request to DRAM Controller (DCT) [9].
Translation-Lookaside Buffer (TLB), also known as page-translation
caches, is designed to reduce the performance penalty during the
time-consuming address translation process [2]. Only one memory
access per virtual memory request is required when the translation
for the demanding page is present in the TLB (a TLB hit). When
there is no entry in the TLB for the demanding page, a TLB miss
occurs. And the translation information for the page is copied from
a page table entry (PTE) into the TLB (a TLB reload).

Each processor core has its own TLB [2, 3]. When the operating
system changes a page mapping, the TLB won’t be automatically
updated to reflect the new virtual to physical address translation.
TLB camouflage exploits this property to create a page translation
incoherence among different processor cores.

A pseudo code of TLB Camouflage is shown in Algorithm 1.
The idea is to create an incoherent cache entry in the TLB caches
among the running processor cores. A new page is allocated in the
kernel for the page translation manipulation, such that the rest of
the system would not be affected. Then, all the other processor
cores are paused. At this point, the malicious core can flush the
TLB and to make sure that there is no preexisting translation stored
for the our newly allocated page already. The PTE of the allocated
page is then modified to point to HIveS memory, and several LDR
instructions are then used to force a translation table walk and TLB
reload. And the malicious core would have a TLB entry mapping
to HIveS memory. Then the PTE is modified back to the original
values, and the other cores are resumed. Technically, the TLB entry
for the allocated page of malicious core is incoherent, and contains



Figure 4: TLB Camouflage

a false mapping. And this is exactly what we need. In Figure 4,
when Core 2 requests to access the virtual page of the HIveS mem-
ory, it will get the content in the regular memory. On the other hand,
since the malicious Core 1 has an incoherrent TLB entry pointed to
the HIveS memory address, it can access the HIveS memory if the
TLB entry has not been flushed out.

TLB camouflage technique greatly increases the usability of HIveS
memory, which can be used not only as a temporary storage with
few interactions, but also as an interactive memory storage to sup-
port more malicious operations.

However, TLB Camouflage has some limitations. First, not all
forensic tools rely on the existing kernel page tables to map virtual
addresses to physical addresses [35]. In this case, TLB camouflage
won’t work since it depends on manipulating the kernel page tables.
Second, the TLB entry should be sustained all the time; otherwise,
the malicious core cannot access the HIveS memory either. Since
TLB locking capability is not supported by the latest x86 architec-
ture, malicious code has to freshen the TLB entry periodically in
order to keep it active in TLB depending on the processor imple-
mentation.

3.3 HIveS Memory Access Property
When the HIveS memory is in the locked state by applying the

I/O shadowing technique, none of processor cores can read or write
the HIveS memory. Most of the time, the attacker does not need to
access the HIveS memory at all, so it can lock the memory for a
better protection. However, the attacker has to unlock the memory
eventually to access it. When the attacker only needs to write to the
HIveS memory, it can use the Blackbox Write technique. More-
over, if the attacker also needs to frequently read the memory con-
tents, it can use the TLB Camouflage technique. Table 1 shows the
different access privileges to the HIveS memory for both attackers
and forensic examiners when applying different anti-forensic tech-
niques.

HIveS is operating system agnostic, so the HIveS memory can
be concealed on x86 platforms for both Windows and Linux. How-
ever, we need to develop a kernel module on Linux or a device
driver on Windows with the root privilege to set the hardware regis-
ters. Contrary to current rootkits that modify kernel data structures

or routines in the operating system, HIveS does not leave any trace
in the memory or hard disk, so it cannot be detected by checking
the integrity of the OS image in the memory and the hard disk.

4. HIVES EXTENSION
HIveS is mainly developed to defeat software based memory ac-

quisition methods that rely on a trusted software module in the op-
erating system to acquire the physical memory through the pro-
cessor to memory interface. Both I/O Shadowing and Blackbox
Write rely on modifying the IORR registers, and TLB Camouflage
creates an incoherent page translation in TLB caches of multiple
processor cores. All the modifications are made on the proces-
sor, and thus only affect processing of memory request originated
from the processor. On the other hand, hardware based memory
acquisition solutions can detect HIveS, since a dedicated I/O de-
vice can capture physical memory image via direct memory ac-
cess, which totally bypasses the processor hardware configurations
made by HIveS. Moreover, the Cold Boot technique [18] exploits
the physical remanence property of memory chips to directly ex-
tract sensitive data from the chips. Cold boot technique resets the
system and invalidates all configurations prior to system reset. To
enhance the capability of HIveS against the hardware based foren-
sics tools, we propose to retrofit a number of existing techniques in
HIveS, including IOMMU, RAM-less encryption, and Cache based
I/O storage.

4.1 Hiding from I/O Devices
We propose to use IOMMU to evade physical memory foren-

sics by I/O devices via DMA. Similar to the translation from vir-
tual memory address to physical memory address performed by
MMU, IOMMU is a hardware device that translates device DMA
addresses into proper physical memory addresses. Each I/O de-
vice is assigned a protected domain with a set of I/O page tables
that define the corresponding memory addresses. During a DMA
transfer, the IOMMU intercepts the access message from the I/O
bus and checks its cache (IOTLB) for the I/O to memory address
translation along with the access right. IOMMU is controlled with
in-memory tables and memory-mapped registers. Once a DMA
request passes IOMMU, it is then processed by the north bridge.



Table 1: Comparison of Access to HIveS Memory
Attacker Read Attacker Write Regular Read Regular Write

I/O Shadowing no no no no
Blackbox Write no yes no yes

TLB Camouflage yes yes no no

The north bridge then forwards the request either to the I/O hub
or the DRAM controller base on the ranges defined by DRAM
Base/Limit and MMIO Base/Limit registers. Therefore, HIveS can
set the IOMMU to only allow a peripheral device to perform DMA
into assigned regions, thus preventing a full system memory acqui-
sition with DMA. When the IOMMU is not available on some old
systems, the DMA can also be redirected by manipulating the north
bridge using MMIO Base/Limit registers. The main idea is to mod-
ify the MMIO Base/Limit registers to bounce DMA reads back to
the I/O hub. The details can be found in [30].

4.2 Hiding from Cold Boot
There are two solutions to evade Cold Boot based memory ac-

quisition mechanisms: RAM-less encryption and Cache based I/O
storage.

RAM-less encryption. The basic idea is that attacker encrypts
all the memory contents in the HIveS memory with a secret key
stored in CPU registers [24, 33]. Since operating systems do not
use all the MTRR and IORR register pairs all the time, HIveS can
encrypt the HIveS memory using AES and store the encryption key
in unused MTRR or IORR registers. Thus, even if the physical
memory is completely acquired through Cold Boot, the contents of
HIveS are still being protected, because the encryption key in the
CPU registers is lost forever due to the system reset.

Cache based I/O storage. The idea is to save a small HIveS
memory only in the CPU cache [22, 26, 17] and then mask it with
I/O Shadowing technique. When the memory address is set to
cacheable in the page table entry and both RdMem and WrMem
bits in the IORR base register are set to 1, any write to that lo-
cation will trigger a cache line fill if the memory contents are not
yet loaded in the cache. When the HIveS system is unlocked, the
attacker can simply write data into memory as usual. When the
HIveS system is locked, the HIveS memory is cached and masked
by I/O shadowing. Therefore, neither I/O devices nor the processor
can read out the HIveS memory in the cache via DMA. However,
it remains a challenge to maintain the contents in the cache consid-
ering the limited cache control provided by the x86 architecture [2,
3].

5. IMPLEMENTATION AND EVALUATION
We build a prototype of HIveS on an x86 desktop with AMD

FX processor. The motherboard is ASUS M4 A96 R2.0, running
a AMD FX-8320 8-core processor with single bank DDR3 4GB
memory. The 4GB memory is relatively small but it shortens the
time for memory acquisition and it is large enough to demonstrate
all the functionality of HIveS.

To illustrate the effectiveness of the HIveS memory, we imple-
ment a keylogger rootkit called HIL that uses HIveS memory to
store the keystrokes so that the stolen information cannot be de-

tected by memory forensics. We implement HIL prototypes on both
Windows and Linux. On Ubuntu 13.04, we implement a Linux ker-
nel module to support all the techniques in HIveS. On 64-bit Win-
dows 7, we implement a kernel mode device driver as a keylogger
and use WinDbg debugger to configure the IORR pair.

We implement I/O shadowing, Blackbox Write, and TLB Cam-
ouflage techniques and evaluate their effectiveness using a number
of most updated software based memory forensic tools. We also
implement RAM-less encryption and cache based I/O Storage tech-
niques to demonstrate the capability of HIveS to evade Cold Boot
based physical memory forensics.

5.1 I/O Shadowing
Since modification of MSR require privilege mode, we imple-

mented most of the functionalities in a kernel module. User space
programs can communicate with the kernel module through procfs
export. For I/O shadowing, the kernel module is responsible for
manipulating the IORR register to set the base and the size of the
HIveS memory, as well as the WrMem and RdMem flag bits. With
the physical address and HIveS running mode passed in through
procfs, the module first masks off the lower 12 bit of the physical
address, and inserts it into bits 12 to 47 in I/O Range Base register,
MSRC001_0016, since the physical addressing in AMD x64 is 47
bit. The bits 3 and 4 of the register are RdMem bit and WrMem bit
respectively. For I/O Shadowing, we clear both bit 3 and bit 4 to
redirect both read and write requests into the I/O space.

The IORR base register should always be written first, since the
IORR mask register, MSRC001_0017, contains a valid bit, which
will immediately enable the IORR pair once this bit is set. There-
fore, we cannot set the two IORR registers in reverse order; oth-
erwise, the system will fail and hang itself. In the AMD FX sys-
tem [2], the valid bit is bit 11 of the IORR mask register.

Although the detailed HIveS implementation is different on Linux
and Windows, the workflow remains the same. We first load HIveS
as a kernel module in the system. An 1MB area at physical address
offset of 0x10c800000 is allocated to be the HIveS memory. With
RdMem and WrMem both set, we fill the memory with repeating
pattern of 0x12345678. Once the pattern is written, we flush the
cache to make sure that these patterns are written into the mem-
ory. Then we enable I/O shadowing to lock the HIveS memory by
clearing both the WrMem and RdMem bits. At this point, all the
contents in the HIveS memory should be protected against memory
forensic tools.

We verify that none of the software based memory forensic tools
that we tested is able to capture the HIveS memory protected by
the I/O shadowing technique. Table 2 summarizes the tools that we
use in our experiments. Tools such as the Linux base memory ac-
quisition tool LiME [36] obtain the physical memory layout of the
system by parsing kernel data structure. For each valid memory re-



Table 2: Verification against memory forensic tools
Tool Tool Version OS Examine IORR With HIveS Without HIveS
UnitTest 1.0 Linux No No Detection Identified
LiME 1.1 Linux No No Detection Identified
MemDump 1.01 Linux No No Detection Identified
DD 8.13 Linux No No Detection Identified
WinPmem 2.3.1 Windows No No Detection Identified
Mem Marshall 1.0 Windows No No Detection Identified
Memoryze 3.0 Windows No No Detection Identified
Dumpit 1.3.2 Windows No No Detection Identified

gion, it calls kmap function to map virtual pages to physical pages
to read the content.

Table 2 shows that none of these memory forensic tools can de-
tect the HIveS memory through searching the special repeating pat-
tern 0x12345678 when the I/O shadowing is enabled. However,
when the memory dumps are taken again after the I/O shadowing
is disabled, we can identify the repeating pattern in the memory
dumps. None of the tools can detect HIveS, since all the processor
memory accesses can be manipulated by the IORR registers and all
the software based tools utilize processor to access memory.

5.2 Blackbox Write and TLB Camouflage
Blackbox Write only provides write access to the HIveS memory

and prevents any read access. We implement it by clearing the Rd-
Mem bit and setting the WrMem bit. To disable Blackbox Write,
we simply clear the valid bit of the IORR pair. To verify its effec-
tiveness, we set up the keylogger to work in the Blackbox Write
mode. Instead of filling the HIveS memory with repeating pattern
0x12345678. We run the keylogger, and manually type in "this is a
HIveS blackbox write test!". When Blackbox Write is enabled, we
dump the memory using the memory acquisition tools, including
LiME, MemDump, and WinPmem, to capture the entire physical
memory images. And we verify that the sentence we typed was not
found in the acquired memory image. Immediately after the first
round of memory dump, we disable Blackbox Write to allow both
read and write access to the HIveS memory and perform memory
dumping again. This time, we were able to find the logs of what we
just typed.

TLB camouflage protects the HIveS memory by only allowing
read and write access to a single processor core. After pausing
all other cores, we flush the TLBs of all cores. Next, we disable
all interrupts on the malicious core and then read the contents of
the HIveS memory into a temporary memory space. The kernel
module then goes in a busy loop accessing the memory location
continuously to sustain the TLB entry in the malicious core’s TLB.
We confirm that only a single processor core can access the HIveS
memory by dumping the memory images using different processor
cores and searching the coded repeating pattern.

5.3 RAM-less Encryption
For RAM-less encryption, we use a secret key to XOR the plain-

text instead of using the AES function, since the feasibility of RAM-
less encryption has already been verified [24, 33] and our focus is
on testing the stability of the MSRs for storing the secret key. In
particular, we use the unused MTRR registers and IORR registers,

which can be identified by checking the valid bit. On our AMD
platform, there are eight MTRR pairs per core plus two shared core
IORR registers. When the valid bit is cleared, the register is not
used by the system. The bits provided by these registers are large
enough to store a short encryption key.

5.4 Cache based I/O Storage
We perform a simple experiment to verify that the cache based

I/O storage is able to keep the sensitive data in the cache only. Sim-
ilarly, a repeating pattern 0x12345678 is written into the HIveS
memory. Now the pattern should be stored in the cache. Next,
we execute an INVD instruction, which invalidates all cache con-
tent without writing them back to the physical memory. If the pat-
tern is indeed in the cache, after the execution of INVD instruction,
such written pattern should no longer be observable. In our exper-
iment, since the memory read back after INVD is not 0x12345678,
and therefore the modifications to the memory we wrote was truly
stored in the cache. However, when the processor is busy, such
contents stored in the cache is flushed out to the physical DRAM
in a very short time.

6. HIVES LIMITATIONS AND
COUNTERMEASURES

6.1 HIveS Limitations
Though the prototype shows promising potential on using HIveS

to conceal malicious code and sensitive data in HIveS memory, the
system has some limitations.

First, since the basic idea behind HIveS is the manipulation of
physical address layout, system architecture with a fixed or reli-
able way to retrieve the physical address layout is not vulnerable
to this attack. Furthermore, our implementation of HIveS relies on
manipulating hardware registers in the AMD processor [2], there-
fore porting of the malware to other platforms requires careful de-
sign changes and examinations. As with most other advanced anti-
forensic rootkits, HIveS requires kernel privilege to manipulate the
system registers, and thus it is not available to user space malwares.

Second, HIveS achieves stealthiness by redirecting memory ac-
cess on the hardware level. This inherently implies all software
based accesses to the memory are redirected. Therefore HIveS can-
not be used to store the current executing code. As a result, mal-
ware code that utilizes this storage, as presented in our prototype, is
left in the memory and could be captured and analyzed by forensic
examiners.



Lastly, HIveS focuses on defeating the software based memory
acquisition approaches, so it has to be augmented with other anti-
forensic mechanisms to defeat the hardware based memory acqui-
sition approaches. Those mechanisms increase the complexity of
HIveS and possibly make the targeted system unstable.

6.2 Countermeasures
HIveS is a system to subvert the organization of physical address

layout. In order to defeat HIveS, it is important to get a reliable
representation of the true address layout. Unfortunately, there is
currently no architecturally supported method to verify the truth-
fulness of the layout. For the rest of the discussion, we focus on
how to defeat our HIveS implementation on AMD platforms.

First, we know that the manipulation of IORR is essential in
HIveS, and since IORR registers are only available on AMD pro-
cessors, HIveS as a system does not work well in Intel family
processor from HIveS, though several techniques we presented in
HIveS may still apply.

Second, the use of IORR can be a good hint of the presence
of HIveS memory in the system. It can be identified by simply
inspecting the valid bit in the IORR mask register. A forensic ex-
aminer can also detect the existence of HIveS by measuring the
timing for memory operations. When I/O shadowing is enabled, all
memory access goes through the I/O bus and takes much longer to
complete.

Note that legitimate I/O devices may also use the IORR to map
physical memory address to the I/O space. For instance, AGP video
driver in Linux kernel uses the IORR register in some cases. Since
AMD provides two pairs of IORR registers, a forensic examiner
can also examine the difference of the two pairs. Yet, such anal-
ysis could be quite system dependent. It is difficult to determine
if the use of IORR registers is benign or malicious. The forensic
examiner may assume the use of IORR is malicious and directly
modify the value of this IORR register to reveal the memory con-
tents. However, if the use of IORR is benign and system originated,
such direct manipulation may crash the system. A more conserva-
tive approach might be to read out the contents from the address
range without modifying any of the registers. Even though this
might cause system instability as well, the probability of a system
catastrophic failure caused by memory read is much smaller. If all
the bytes read back are all identical values 0xFF or 0x00, then
most likely there is no real I/O device behind these I/O addresses.

Finally, HIveS can be detected by Cold Boot if we don’t apply
the HIveS extensions such as RAM-less encryption. Forensic ex-
aminers can first dump the registers, including all the MSRs and
debugging registers from all processor cores. All system cache
can then be flushed back into memory. Then the system is reset
to extract memory content exploiting the memory remanence char-
acteristics. This however changes many system configurations in
the system as well as some memory contents, which violates the
forensic principle of not altering the crime scene.

7. EXTENSION AND FUTURE WORK
While some of the limitations discussed above are unavoidable,

such as dependence on architecture and operating system, some
others can be overcome. We discuss possible extensions of HIveS
in this section.

7.1 Eliminating Memory Traces
One of the limitations discussed above is that the storage can

only be used to store data collected by the malware instead of pro-
tecting the entire malware. The forensic examiner might be able
to analyze the malware memory to discover the manipulation of
address layout. One key insight is that, the physical address lay-
out manipulation performed by HIveS is very infrequent if not one
time. Furthermore, the amount of code required to alter this lay-
out is very small, most likely a single instruction or two. Tak-
ing our prototype as an example, the kernel module initialization
routine can use one instruction to change the IORR register then
immediately erasing the previous instruction by zeroing it. This
leaves a very small time window, three instruction execution time,
for the forensic examiner to capture the image and discover the use
of IORR in the malware. The practical chance of catching such
moment is close to zero.

7.2 Extending HIveS to Intel Platforms
The IORR registers HIveS exploited to alter the physical ad-

dress layout is AMD specific unfortunately. To the best of our
knowledge, there is no such MSR in the Intel platform [3]. This
does not imply HIveS is impossible on Intel. Malware authors
will need to find another way to alter the physical address lay-
out to launch the attack. For example, Intel Memory Controller
Hub (MCH) chipsets also provide capability to recover address-
able memory space lost to MMIO space [1]. One can modify the
REMAPBASE and REMAPLIMIT register in the chipset to ma-
nipulate the physical address layout (also known as system address
space in Intel manuals).

7.3 HIveS for Defense
Techniques in computer security are like weapons, it can be used

either to defend the righteousness or cause damage to the society.
For instance, virtual machine based rootkit (VMBR) introduced
by Rutkowska et al. [29] has been used to capture host image in
forensic memory analysis [23, 40]. Similarly, though we present
HIveS as a powerful anti-forensic tool, it can certainly be devel-
oped and used as a defense tool to protect sensitive data against
malicious memory scanning. For example, application passwords
can be stored in HIveS memory without having to worry about mal-
ware reading the passwords from the physical memory.

8. RELATED WORKS
There is an ongoing arms race between the attackers and the

forensic examiners in computer forensics [34, 20, 25, 37]. Mem-
ory forensic analysis is becoming an indispensable tool for foren-
sic examiners nowadays, and they have two ways to acquire com-
puter memory: software based methods that use a trusted software
module to access memory through the CPU processor [11, 21, 39,
28, 35, 14, 31, 36, 12] and hardware based methods that rely on
dedicated I/O devices to access physical memory image via Direct
Memory Access [10, 35, 27, 6].

Software based memory acquisition techniques rely on the CPU
processor to acquire physical memory through the operating sys-
tem. Unfortunately, after recognizing this dependency, attackers
have developed anti-forensic techniques to compromise the mem-
ory acquisition process, such as directly modifying the acquisition



module or the OS kernel data structure [8, 20, 34, 15], using rootk-
its to hook operating system APIs [32], or installing a thin hypervi-
sor on the fly [29].

To defeat those anti-forensic techniques, Stüttgen et al. [35] pro-
pose an anti-forensic resilient method to acquire physical memory
by eliminating its dependence on the operating system routines and
data structures. Schatze [31] proposes to bootstrap a trusted new
execution environment from the normal one to make sure that the
operating system is free of malware. System management mode
(SMM) can also be used to create a trusted isolated execution envi-
ronment [28, 39]. Some researchers propose to go deeper than the
operating system level and use hardware virtualization to avoid the
memory acquisition software being subverted by rootkits [23, 40].

Stüttgen et al. suggest that the memory acquisition process can
be trusted if the acquisition module has not been tampered with and
all the operations are performed without relying on the operating
system or any other untrusted software [35]. However, in this paper,
we show that this assumption is not true. The main reason is that the
physical memory layout seen by the processor can be manipulated
through the hardware configurations on the chipset. Attackers can
misuse hardware configurations to modify this layout and conceal
the presence of malware.

A number of hardware based memory acquisition methods have
been developed recently [27, 38, 5, 10], using a trusted periph-
eral device to capture the physical memory image via DMA. Since
it does not rely on the CPU processor to get the physical mem-
ory, the hardware based approaches can successfully prevent those
anti-forensic techniques that are originally designed to defeat the
software based approaches. However, Rutkowska [30] shows that
it is possible to present a different view of the physical memory
to the peripherals by reprogramming the north bridge. Therefore,
in-memory data acquired by DMAs could be compromised as well
[28, 35].

A special type of memory acquisition technique relies on the
unique remanence property of physical DRAM [18, 11]. Despite
the popular belief that volatile contents in DRAM are gone once
the computer resets or powers off, Halderman et al. [18] demon-
strate a Cold Boot attack that can reliably recover the contents in
the memory modules even after the power has been cut off for a
short period of time. Though the original Cold Boot is demon-
strated as an attack to steal cryptographic keys and other sensitive
data from the RAM, it is also an effective method that can be used
for reliably acquiring physical memory.

9. CONCLUSIONS
In this paper, we propose a different approach to anti-memory

forensic. Instead of looking at ways to conceal presence by oper-
ating system object manipulation, we can defeat current memory
acquisition methods by manipulating the physical address layout, a
design architectural feature on modern x86 platforms.

HIveS is an anti-forensic mechanism to conceal in-memory data
shadowed behind the I/O address space. Besides I/O Shadowing
technique to prevent forensic memory acquisition tools from read-
ing the HIveS memory contents via processor, we also use Black-
box Write and TLB Camouflage to enable the attacker exclusive
write access and provide a single malicious core exclusive read and
write access, respectively. Furthermore, we propose several add-

ons to the basic framework to further hide from physical memory
forensics.

A prototype of HIveS is built on an AMD platform to show that
none of the popular memory acquisition tools we tested can capture
the memory data protected by HIveS. Several countermeasures are
discussed in the end. In the future, we intend to further investi-
gate possible mechanisms to retrieve trustworthy physical address
layout.
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