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ABSTRACT
Recently, cooperative communications, in the form of keeping each
node with a single antenna and having a node exploit a relay node’s
antenna, is shown to be a promising approach to achieve spatial di-
versity. Under this communication paradigm, the choice of relay
node plays a significant role in the overall system performance. In
this paper, we study the relay node assignment problem in a net-
work environment, where multiple source-destination pairs com-
pete for the same pool of relay nodes in the network. The main
contribution of this paper is the development of a polynomial time
algorithm to solve this problem. A key idea in this algorithm is a
“linear marking” mechanism, which is able to offer a linear com-
plexity for each iteration. We give a formal proof of optimality for
this algorithm. We also show several attractive properties associ-
ated with this algorithm.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communica-
tion

General Terms
Algorithm

Keywords
Cooperative Communications, Wireless Networks, Network Ca-
pacity

1. INTRODUCTION
Spatial diversity, in the form of employing multiple transceiver

antennas, is shown to be very effective in coping fading in wireless
channel. However, equipping a wireless node with multiple anten-
nas may not be practical, as the footprint of multiple antennas may
not fit on a wireless node (particularly handheld wireless device).
To achieve spatial diversity without requiring multiple transceiver
antennas on the same node, the so-called cooperative communi-
cations has been introduced [6, 8]. Under cooperative communi-
cations, each node is equipped with only a single transceiver and
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spatial diversity is achieved by exploiting the antenna on another
(cooperative) node in the network.

There are two categories of cooperative communications, namely,
amplify-and-forward (AF) and decode-and-forward (DF) [6]. Un-
der AF, the cooperative relay node performs a linear operation on
the signal received from the information source before forwarding
it to the destination node. Under DF, the cooperative relay node
decodes the received signal, and re-encodes it before forwarding it
to the destination node. Regardless of AF or DF, the choice of a
relay node plays a significant role in the final performance of co-
operative communications [2, 3, 10]. As we shall see in Section 2,
an improperly chosen relay node may offer a smaller capacity for a
source-destination pair than that under direct transmissions.

In this paper, we study relay node assignment problem in a net-
work environment. Specifically, we consider an ad hoc network en-
vironment where there are multiple active source-destination pairs
and the remaining nodes can be exploited as relay nodes. We want
to find out how to optimally assign relay nodes to the source and
destination pairs so as to maximize the minimum capacity among
all pairs. Although solution to this problem can be found via ex-
haustive search (among all possible relay node assignments), the
complexity of this approach is exponential. Our goal in this paper
is to find a polynomial-time complexity algorithm to this problem.

1.1 Related Work
The cooperative communication paradigm can trace back to the

pioneering works done by van der Meulen [9] and Cover and El
Gamal [4]. The readers are also referred to [1, 5] for some recent
work on this subject. In this section, we focus our attention on
related work for the relay node assignment problem.

Although it is possible for a source-destination pair to employ
multiple relay nodes for cooperative communications, the benefit
of such approach appears limited, as shown in a recent work by
Zhao et al. [10]. In this work, Zhao et al. showed that for a source-
destination pair, in the presence of multiple relay nodes, it is suffi-
cient to choose the “best” relay to achieve full diversity order than
to have multiple relay nodes participate. This result is interesting,
as it paves the way for research on assigning no more than one relay
node to a source-destination pair, which is the setting that we will
adopt in this paper.

There has been much effort on selecting an optimal relay node
(among a set of relay nodes) for a single source-destination pair
(see, e.g., [2]). However, these schemes are limited to a single
source-destination pair and cannot be easily extended to a network
environment where there are multiple source-destination pairs com-
peting for the same pool of relay nodes, which is the focus of this
paper.

In [7], Ng et al. studied a utility maximization problem for the
joint optimization of relay node selection, cooperative communica-



tions, and resource allocation in a cellular network. A key assump-
tion in the solution to the optimization problem is infinite number
of channels in the network (so that the duality gap of the optimiza-
tion problem is zero). But this assumption may not hold in practice.
Also, the complexity of the proposed solution is not polynomial.

In [3], Cai et al. studied relay node selection and power alloca-
tion for AF based wireless relay network. A simple network con-
sisting of single source-destination pair was first studied. Then, the
authors considered multiple source-destination pairs and proposed
a semi-distributed algorithm on relay node selection. This algo-
rithm is heuristic in nature and there is no performance guarantee
(in terms of optimality).

1.2 Main Contribution of This Paper
In this paper, we study the optimal relay node assignment prob-

lem in a network setting. Specifically, we consider how to assign
a set of relay nodes to a set of source-destination pairs so as to
maximize the minimum capacity among the pairs. The main con-
tributions of this paper are the following.

• We develop an algorithm, called Optimal Relay Assignment
(ORA) algorithm, to solve the relay node assignment prob-
lem. A key idea in ORA is a “linear marking” mechanism,
which is able to offer a linear complexity at each iteration.
Due to this mechanism, ORA is able to achieve polynomial
time complexity.

• We offer a formal proof of optimality for the ORA algorithm.
The proof is based on contradiction and hinges on a clever
recursive trace-back of source nodes and relay nodes in the
solution by ORA and another hypothesized better solution.

• We show a number of nice properties associated with ORA.
These include: (i) the algorithm works regardless whether
the number of relay nodes in the network is more than or less
than the number of source-destination pairs; (ii) the final ca-
pacity for each source-destination pair is guaranteed to be no
less than that under direct transmissions; (iii) the algorithm
is able to find the optimal objective regardless of initial relay
node assignment.

1.3 Paper Organization
In Section 2, we give a brief overview of cooperative communi-

cations, which includes capacity calculation for both AF and DF.
In Section 3, we present mathematical model for the relay node as-
signment problem in a network environment. Section 4 presents
our Optimal Relay Assignment (ORA) algorithm. In Section 5, we
give a proof of ORA’s optimality. Section 6 presents some numer-
ical results to demonstrate the capabilities of the ORA algorithm.
Section 7 concludes this paper.

2. COOPERATIVE COMMUNICATIONS: A
PRIMER

The essence of cooperative communications is best explained by
a three-node example in Fig. 1. In this figure, node s is the source
node, node d is the destination node, and node r is a relay node.
Transmission from s to d is done on a frame-by-frame basis. Within
a frame, there are two time slots. In the first time slot, source node
s makes a transmission to destination node d. This transmission
is also overheard by relay node r, due to the broadcast nature of
wireless communications. In the second time slot, node r forwards
the data received in the first time slot to d. Note that such a two-
slot structure is necessary for cooperative communications due to
the half-duplex nature of most wireless transceivers.

r

s

d

Figure 1: A three-node schematic for cooperative communica-
tions.

In this section, we give expressions for capacity under cooper-
ative communications and direct transmissions (i.e., no coopera-
tion). For cooperative communications, we consider both the so-
called amplify-and-forward (AF) and decoded-and-forward (DF)
modes [6].

Amplify-and-Forward (AF) Under this mode, let hsd, hsr ,
hrd capture the effect of path-loss, shadowing, and fading between
nodes s and d, s and r, and r and d, respectively. Also denote
zd and zr the zero-mean background noise at nodes d and r, with
variance σ2

d and σ2
r , respectively.

Denote xs the signal transmitted by source node s in the first
time slot. Then the received signal at destination node d, ysd, can
be expressed as

ysd = hsdxs + zd , (1)

and the received signal at the relay node r, ysr , is

ysr = hsrxs + zr . (2)

In the second time slot, relay node r transmits to destination node
d. The received signal at d, yrd, can be expressed as

yrd = hrd · αr · ysr + zd ,

where αr is the amplifying factor at relay node r and ysr is given
in (2). Thus, we have

yrd = hrdαr · (hsrxs + zr) + zd . (3)

The amplifying factor αr at relay node r should satisfy power con-
straint α2

r(|hsr|2Ps + σ2
r) = Pr , where Ps and Pr are the trans-

mission powers at nodes s and r, respectively. So, αr is given by

α2
r =

Pr

|hsr|2Ps + σ2
r

.

We can re-write (1), (2) and (3) into the following compact ma-
trix form

Y = Hxs + BZ ,

where

Y =

[
ysd

yrd

]
, H =

[
hsd

αrhrdhsr

]
,

B =

[
0 1 0

αrhrd 0 1

]
, and Z =

⎡
⎣ zr

zd

zd

⎤
⎦ . (4)

It has been shown in [6] that, the above channel, which combines
both the direct path (s to d) and relay path (s to r to d), can be mod-
eled as a one-input, two-output complex Gaussian noise channel.
The capacity CAF(s, r, d) from s to d can be given by

CAF(s, r, d)=
W

2
log2[det(I + (PsHH†)(BE[ZZ†]B†)−1)], (5)

where W is the bandwidth, det(·) is the determinant function, I
is the identity matrix, the superscript “†” represents the complex
conjugate transposition, and E[·] is the expectation function.



After putting (4) into (5) and performing algebraic manipula-

tions, we have CAF(s, r, d) = W
2

log2

(
1 + Ps

σ2
d

|hsd|2+
Ps|hsr|2Pr|hrd|2

Psσ2
d
|hsr|2+Prσ2

r |hrd|2+σ2
rσ2

d

)
. Denote SNRsd = Ps

σ2
d

|hsd|2,

SNRsr = Ps
σ2

r
|hsr|2, and SNRrd = Pr

σ2
d

|hrd|2. We have

CAF(s, r, d) = W · IAF(SNRsd, SNRsr, SNRrd) ,

where IAF(SNRsd, SNRsr , SNRrd) = 1
2

log2

(
1 + SNRsd+

SNRsr·SNRrd

SNRsr+SNRrd+1

)
.

Decode-and-Forward (DF) Under this mode, relay node r de-
codes and estimates the received signal from source node s in the
first time slot, then transmits the estimated data to destination node
d in the second time slot. The capacity for DF under the two time-
slot structure is given by [6]

CDF(s, r, d) = W · IDF(SNRsd, SNRsr, SNRrd) ,

where IDF(SNRsd, SNRsr, SNRrd) = 1
2

min{log2(1 + SNRsr),
log2(1 + SNRsd + SNRrd)}.

Note that IAF(·) and IDF(·) are increasing functions of Ps and
Pr , respectively. This suggests that, in order to achieve the maxi-
mum capacity under either mode, both source node and relay node
should transmit at the maximum power. In this paper, we let Ps =
Pr = P .

Direct Transmissions When cooperative communications (i.e.,
relay node) are not used, source node s transmits to destination
node d in both time slots. The capacity from node s to node d is

CD(s, d) = W log2(1 + SNRsd) .

Based on the above results, we have two observations. First,
comparing CAF (or CDF) to CD, it is hard to say cooperative com-
munications is always better than direct transmissions. In fact, a
poor choice of relay node could make the capacity under cooper-
ative communications be smaller than direct transmissions. This
fact underlines the significance of relay node selection in cooper-
ative communications. Second, although AF and DF are different
mechanisms, the capacities for both of them have the same form,
i.e., a function of SNRsd, SNRsr , and SNRrd. Therefore, a relay
node assignment algorithm designed for AF can be easily extended
for DF. In this paper, we develop a relay node assignment algorithm
for AF, which can also be used should DF is employed.

3. THE RELAY NODE ASSIGNMENT
PROBLEM

Based on the background in the last section, we consider relay
node assignment problem in a network setting. There are N nodes
in an ad hoc network, with each node being either a source node,
a destination node, or a potential relay node (see Fig. 2). In or-
der to avoid interference, we assume that orthogonal channels are
available in the network (e.g., using OFDMA), which is used for
cooperative communications [6]. The path loss between nodes u
and v is captured in huv and is given a priori. The discussion of
channel measurement techniques is beyond the scope of this paper.

Denote Ns = {s1, s2, · · · , sNs} the set of source nodes, Nd =
{d1, d2, · · · , dNd} the set of destination nodes, and Nr = {r1, r2,
· · · , rNr} the set of relays (see Fig. 2). We consider unicast where
every source node si is paired with a destination node di, i.e.,
Nd = Ns. Each node is equipped with a single transceiver and can
transmit/receive within one channel at a time. Further, we assume

S e n d e r R e c e i v e r P o t e n t i a l  R e l a y  N o d e

Figure 2: An ad hoc network consisting of source nodes, desti-
nation nodes, and relay nodes.

that each node can only serve a unique role of source, destination,
or relay. That is, Nr + 2Ns = N .

Note that a source node may not always get a relay node. This
is because there may not be sufficient number of relay nodes in the
network (e.g., Nr < Ns). Even if there are enough relay nodes, a
sender may still not use a relay node if it leads to a smaller capacity
than direct transmissions (see discussion at the end of Section 2).

We now discuss the objective function of our problem. Although
different objectives can be used, a widely-used objective for co-
operative communications is capacity. For the multi-pair network
environment considered in this paper (see Fig. 2), each source-
destination pair will have a different capacity after we apply a relay
node assignment algorithm. So a plausible objective is to maximize
the minimum capacity among all the source-destination pairs.

More formally, denote R(si) the relay node assigned to si. For
both AF and DF, its capacity can be written as (see Section 2)

WIR(SNRsi,di , SNRsi,R(si), SNRR(si),di
) ,

with IR(·) = IAF(·) for AF and IR(·) = IDF(·) for DF. In the case
that si does not use a relay, we denote R(si) = ∅ and the capacity
is the direct transmission capacity, i.e.,

CR(si, ∅) = CD(si, di) .

Combining both cases, we have

CR(si,R(si))=

⎧⎨
⎩

WIR(SNRsi,di
, SNRsi,R(si)

, SNRR(si),di
)

if R(si) �= ∅,
W log2(1 + SNRsi,di

) if R(si) = ∅.
(6)

Note that we do not list di in function CR(si,R(si)) since for each
source node si, the corresponding destination node di is determin-
istic.

Denote Cmin the minimum capacity among all source nodes.
That is,

Cmin = min{CR(si,R(si)) : si ∈ Ns}.
Our objective is to find an optimal relay node assignment for all the
source-destination pairs such that Cmin is maximized.

4. AN OPTIMAL RELAY ASSIGNMENT
ALGORITHM

We can formulate the relay node assignment problem as an in-
teger linear program. It is important to note here that an integer
linear programming problem is NP-hard in general, i.e., there does
not exist a general polynomial-time solution procedure to solve ev-
ery integer linear program. However, as we show in this paper, we
can exploit problem specific properties, and design a polynomial-
time solution for our specific problem. The main contribution of
this paper is a polynomial-time algorithm to the relay node assign-
ment problem, which we will present in this section.
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Figure 3: The flow chart of ORA algorithm.

4.1 Basic Idea
The algorithm we will present is called Optimal Relay Assign-

ment (ORA) algorithm. Figure 3 shows the flow chart of ORA
algorithm.

Initially, ORA algorithm starts with a random feasible relay node
assignment. By feasible, we mean that each source-destination pair
can be assigned at most one relay node and that a relay node can
be assigned only once. Such initial feasible assignment is easy to
construct, e.g., direct transmission between each source-destination
pair (without the use of a relay) is a special case of feasible assign-
ment.

Starting with this initial assignment, ORA adjusts the assign-
ment during each iteration, with the goal of increasing the objective
function Cmin. Specifically, during each iteration, ORA identifies
the source node that corresponds to Cmin. Then, ORA helps this
source node to search a better relay such that this “bottleneck” ca-
pacity can be increased. In the case that the selected relay is already
assigned to another source node, further relay node adjustment on
that source node is necessary (so that its current relay can be re-
leased). Such adjustment may have a chain effect on a number of
source nodes in the network. It is important that for any adjustment
on a relay node, the affected source node should always maintain a
capacity larger than Cmin. There are only two outcomes from such
search in an iteration: (i) a better assignment is found, in which
case, ORA moves on to the next iteration; or (ii) a better assign-
ment cannot be found, in which case, ORA terminates.

There are two key technical challenges we aim to address in the
design. First, for any non-optimal solution, the algorithm should
be able to find a better solution. As a result, upon termination,
the final assignment is optimal. Second, its running time must be
polynomial. We will show that ORA addresses both problems suc-
cessfully. Specifically, we show the complexity of ORA algorithm
is polynomial in Section 4.4. We will also give a correctness proof
of its optimality upon termination in Section 5.

4.2 Algorithm Details
In the beginning, ORA algorithm performs a “preprocessing”

step. In this step, for each source-destination pair, the source node
si considers each relay node rj in the network and computes the
corresponding capacity CR(si, rj) by (6). Each source node si
also computes the capacity CR(si, ∅) by (6) under direct transmis-
sions (i.e., without the use of a relay node). After these computa-
tions, each source node si can identify those relay nodes that can
offer an increase of its capacity compared to direct transmissions,

s

cannot f ind
another relay

3

s4
r
4s

2
r2

6

r
1

r
3 5 5 6

7

cannot f ind
another relay

can be 
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1

r r

r

s s s

6s

Figure 4: A sample tree topology in ORA algorithm for finding
a better solution.

i.e., those relays with CR(si, rj) > CR(si, ∅). Obviously, it only
makes sense to consider these relays for cooperative communica-
tions. In the case that no relay can offer any increase of capacity
compared to direct transmissions, we will just employ direct trans-
missions for these source nodes.

After the preprocessing step, we enter the initial assignment step.
The objective of this step is to obtain an initial feasible solution for
ORA algorithm so that it can start its iteration. In the preprocess-
ing step, we have already identified, for each source node, the list
of relay nodes that can increase capacity compared to direct trans-
missions. We can randomly assign a relay node from this list to a
source node. Note that once a relay node is assigned to a source
node, it cannot be assigned again to another source node. Thus,
if the selected relay node is already assigned to other source node,
then this source node will simply employ direct transmissions, i.e.,
without the use of a relay. Upon the completion of this assignment,
each source node will have a capacity no less than that under direct
transmissions.

The next step in ORA algorithm is finding a better assignment,
which represents an iteration process. This is the key step in ORA
algorithm. The detail of this step is shown in the right hand side of
Fig. 3. As a starting point of this step, ORA algorithm identifies the
smallest capacity Cmin among all sources. ORA algorithm aims to
increase this minimum capacity for the corresponding source node,
while keeping all other source nodes to have their capacities stay
above Cmin. Without loss of generality, we use Fig. 4 to illustrate a
search process.



• Suppose ORA identifies that s1 has the smallest capacity
Cmin under the current assignment (with relay node r1). Then
s1 examines other relays with a capacity larger than Cmin. If
it cannot find such a relay, then no better solution is found
and the ORA algorithm is completed.

• Otherwise, i.e., there are better relays, we consider these re-
lays in the non-increasing order in terms of achieved capacity
(should it be assigned to s1). That is, we try the relay that can
offer the maximum possible increase in capacity first.

• Suppose that source node s1 considers relay node r2.1 If this
relay node is not yet assigned to any other source node, then
r2 can be immediately assigned to s1. In this simple case, we
find a better solution and the current iteration is completed.

• Otherwise, i.e., r2 is already assigned to a source node, say
s2, we mark r2 to indicate that r2 is “under consideration”
and check whether r2 can be released by s2.

• To release r2, source node s2 needs to find another relay (or
use direct transmissions) while making sure that such new
assignment still makes its capacity larger than Cmin. This
process is the same as what we have done at s1, with the
only (but important) difference that s2 will not consider a
relay that is already “marked”, as that relay node has already
been considered by a source node encountered earlier in the
search process of this iteration.

• Suppose that source node s2 now considers relay r3. If this
relay node is not yet assigned to any source node, then r3 can
be assigned to s2; r2 can be assigned to s1; and the current
iteration is completed. If the relay being considered is r1 (or
∅), then a better solution, where r1 (or ∅) is assigned to s2
and r2 is assigned to s1, is found and the current iteration is
completed. Otherwise, we mark r3 and check further to see
whether r3 can be released by its corresponding source node,
say s3.

• Suppose that s3 cannot find any “unmarked” relay that of-
fers a capacity larger than Cmin and its capacity under direct
transmissions is not larger than Cmin. Then s2 cannot use r3
as its relay.

• If any “unmarked” relay that has a capacity larger than Cmin
cannot be assigned to s2, then s1 cannot use r2 and will move
on to consider the next relay on its non-increasing capacity
list, say r4.

• The search continues, with relay nodes being marked along
the way, until a better solution is found or no better solution
can be found. For example, in Fig. 4, s6 finds a new relay r7.
As a result, we have a new assignment, where r7 is assigned
to s6; r6 is assigned to s4; and r4 is assigned to s1.

Note that the “mark” on a relay node will not be cleared through-
out the search process in the same iteration. We call this “linear
marking” mechanism. These marks will only be cleared when the
current iteration terminates and before the start of the next iteration.
The pseudo-code of ORA algorithm is shown in Fig. 5.

It should be clear that ORA works regardless of whether Nr ≥
Ns or Nr < Ns. For the latter case, i.e., the number of relay
nodes in the network is less than the number of source nodes, it
1We note that r2 cannot be ∅. Due to the preprocessing step, we have
CR(s1, r1) ≥ CR(s1, ∅). As r2 has CR(s1, r2) > Cmin = CR(s1, r1),
we have CR(s1, r2) > CR(s1, ∅). Thus, r2 �= ∅.

Main algorithm
1. Perform preprocessing and an initial relay node

assignment.
2. Set all the relay nodes in the network as “unmarked”.
3. Determine the objective value Cmin, the smallest

capacity among all source nodes.
4. Suppose that source node si with its relay R(si) has the

smallest capacity.
5. For every node rj with CR(si, rj) > Cmin, do the

following in the non-increasing order of CR(si, rj).
6. Run Check_Relay_Availability(rj , Cmin).
7. If rj is available, then do the following.
8. Remove R(si)’s assignment to si.
9. Assign relay rj to si and go to line 2.
10. Otherwise, continue on to next rj and go to line 6.
11. If no relay is available, then the algorithm terminates.

Subroutines
Check_Relay_Availability(rj , Cmin):
12. If rj is not assigned to any source node, then rj is

available.
13. If rj = R(si) or rj = ∅, then rj is available.
14. Otherwise,
15. Set rj as “marked”.
16. Run Find_Another_Relay (S(rj), rj , Cmin), where

S(rj) is the source node that uses rj .
17. If S(rj) can find another relay, then rj is available.
18. Otherwise rj is unavailable.

Find_Another_Relay(S(rj), rj , Cmin):
19. For every “unmarked” relay rk with CR(S(rj), rk) >

Cmin, do the following in the non-increasing order
of CR(S(rj), rk).

20. Run Check_Relay_Availability(rk, Cmin).
21. If rk is available, then do the following.
22. Remove relay node rj’s assignment to S(rj).
23. Assign relay node rk to S(rj), i.e., S(rj) finds

another relay.
24. Otherwise, continue on to next rk and go to line 20.
25. If all the relays are unavailable, then S(rj) cannot find

another relay.

Figure 5: Optimal Relay Assignment (ORA) algorithm.

is only necessary to consider relay node assignment for a reduced
subset of Nr source nodes, where the capacity of each source in
this subset under direct transmissions is less than the capacity of
those (Ns − Nr) source nodes not in this subset. As a result, in
the case of Ns > Nr , ORA will run even more efficiently due to a
smaller problem size.

4.3 Caveat on the Marking Mechanism
We now re-visit the marking mechanism in ORA algorithm. Al-

though different marking mechanisms may be designed to achieve
the optimal objective, the algorithm complexity under different mark-
ing mechanisms may differ significantly. In this section, we first
present a marking mechanism, which appears to be a natural ap-
proach but leads to exponential complexity for each iteration. Then
we re-examine our marking mechanism and show that it leads to a
linear complexity for each iteration.

A natural approach is to perform both marking and unmarking
within an iteration. This approach is best explained with an ex-
ample. Again, let’s look at Fig. 4. Source node s1 first considers
r2. Since r2 will be used by s1 in the new solution, r2 is marked.
Source node s2 considers r3, which is already assigned to s3. Since
s3 cannot release r3 without reducing its capacity below the current
Cmin, this branch of search is futile and s1 now considers a differ-
ent relay node r4. Since r4 is currently assigned to s4, we try to
find a new relay for s4. Now the question is: shall we remove those



marks on r2 and r3 that we put earlier in the process within this
iteration? Under this natural approach, r2 and r3 should be un-
marked so that they can be considered as candidate relay nodes for
s4 in its search. Similarly, when we try to find a relay for s6, relay
nodes r2, r3, and r5 should be unmarked so that they can be consid-
ered as candidate relay nodes for s6, in addition to r7. In summary,
under this approach, each relay node that has been considered ear-
lier in the search process by a source node should be unmarked
when this source node considers the next relay node, so that this
relay node can remain in the pool of candidate relay nodes to be
considered in the search process. It is not hard to show that such
marking/unmarking mechanism considers all possible assignments
and can guarantee to find a better solution (if it exists). However,
the complexity of such approach is exponential for each iteration.

In contrast, under ORA algorithm, there is no unmarking mecha-
nism within an iteration. That is, relay nodes that are marked earlier
in the search process by some source nodes will remain marked.
For example, in Fig. 4, when s4 tries to find another relay, it will no
longer consider r2 and r3 that have been marked earlier. Similarly,
when s6 tries to find another relay, it will not consider r2, r3, r4,
and r5. As a result, any relay node will be considered at most once
in the search process, which leads to a linear complexity for each
iteration of ORA algorithm. Unmarking for all nodes is performed
only upon the termination of an iteration.

An immediate question on our marking mechanism is that how
such a “linear marking” can lead to an optimal solution, as it ap-
pears that many possible assignments that may increase Cmin are
not considered. This is precisely the question that we will address
in Section 5, where we will prove that ORA can guarantee that its
final solution is optimal (Theorem 1).

4.4 Complexity Analysis
We now analyze the computational complexity of ORA algo-

rithm. Most computations in ORA are for iteratively finding a
better solution. During each iteration, due to the “linear mark-
ing” mechanism in our algorithm, a relay node is checked for its
availability at most once. Thus, the complexity of each iteration
is O(Nr). Now we examine the number of iterations that ORA
will execute. For each source node, the number of possible ca-
pacities is (Nr + 1). Thus, the total number of possible capaci-
ties (i.e., objective values) among all the source nodes in the net-
work is O(Ns(Nr + 1)). Since the objective value is increased at
each iteration (except the last iteration), the number of iterations is
O(Ns(Nr + 1)). So the overall complexity of all the iterations is
O(Ns(Nr + 1) ·Nr) = O(NsN

2
r ).

4.5 An Example
We now use an example to illustrate the operation of the ORA

algorithm, in particular, its “linear marking” mechanism. Suppose
that there are four source-destination pairs and six relay nodes in
the network. Table 1(a) shows the capacity for each source node si
when relay node rj is assigned to it. The symbol ∅ indicates direct
transmissions, i.e., without the use of a relay node. Also shown in
Table 1(a) is an initial relay node assignment, which is indicated by
an underscore on the intersecting row (si) and column (rj). That
is, the initial assignment is r5 for s1, r4 for s2, r3 for s4, r2 for
s3. Note that the preprocessing step before the initial assignment
ensures that the capacity for each source-destination pair by the
initial assignment is no less than direct transmissions.

Under the initial relay node assignment in Table 1(a), source s3 is
identified as having the smallest capacity of 13, which is the current
value of Cmin. Since consideration of relay nodes is performed in
the order of non-increasing capacity for the source node under con-

Table 1: An example illustrating the operation of ORA algo-
rithm.

(a) Initial relay node assignment.

∅ r1 r2 r3 r4 r5 r6
s1 14 7 24 5 15 15 25
s2 9 8 10 11 20 10 12

→ s3 11 10 13 17 18 8 9
s4 10 9 16 19 24 9 13

(b) Assignment after the first iteration.

∅ r1 r2 r3 r4 r5 r6
→ s1 14 7 24 5 15 15 25
s2 9 8 10 11 20 10 12
s3 11 10 13 17 18 8 9
s4 10 9 16 19 24 9 13

(c) Final assignment upon algorithm termination.

∅ r1 r2 r3 r4 r5 r6
s1 14 7 24 5 15 15 25
s2 9 8 10 11 20 10 12
s3 11 10 13 17 18 8 9

→ s4 10 9 16 19 24 9 13

sideration, r4 is therefore considered for s3 (as it offers the largest
capacity among all relay nodes for s3). But r4 is already assigned
to source node s2, so r4 is “marked”. Now s2 needs to find another
relay. But, any other relay (or direct transmissions) will result in
a capacity no greater than the current objective value Cmin = 13.
This means that r4 cannot be taken away from s2. Since r4 does
not work out for s3, s3 will then consider the relay node that offers
the second largest capacity, i.e., relay node r3. Since r3 is already
assigned to sender s4, r3 will be “marked”. Now, ORA algorithm
checks to see if s4 can find another relay.

Now s4 checks relay nodes in non-increasing order of capacity.
Since both r4 (with the largest capacity) and r3 (with the second
largest capacity) are marked, they will not be considered. The relay
with the third large capacity is r2, which is unmarked. Relay r2
offers a capacity of 16, which is greater than Cmin = 13. So s4 will
choose r2. The new assignment after the first iteration is shown in
Table 1(b).

Now the objective value, Cmin, is updated to 15, which corre-
sponds to s1. Before the second iteration, all markings done in the
first iteration are cleared. In the second iteration, ORA algorithm
will perform a new search of relay node for s1 with the aim that
after some relay node re-assignment on other source nodes, they all
have a capacity larger than 15.

The iteration continues and the final assignment upon termina-
tion of ORA algorithm is shown in Table 1(c), with the optimal
(maximum) value of Cmin being 16.

5. PROOF OF OPTIMALITY
In this section, we give a correctness proof of ORA algorithm,

that is, upon the termination of ORA algorithm, the solution (i.e.,
objective value and the corresponding relay node assignment) is
optimal.

Our proof is based on contradiction. Denote ψ the final solu-
tion obtained by the ORA algorithm, with the objective value being
Cmin. For ψ, denote the relay node assigned to source node si as
R(si). Conversely, for ψ, denote the source node that uses relay
node rj as S(rj).



Assume there exists a better solution ψ̂ than ψ. That is, the ob-
jective value by ψ̂, denoted as Ĉmin, is greater than that by ψ, i.e.,
Ĉmin > Cmin. For ψ̂, denote the relay node assigned to source
node si as R̂(si). Conversely, for ψ̂, denote the source node that
uses relay node rj as Ŝ(rj).

The key idea in the proof is to exploit the marking status at the
end of the last iteration of ORA algorithm. Now let’s take a close
look at this last iteration. During this iteration, ORA attempts to
find a better solution but concludes that it cannot find any, and thus
the algorithm terminates. So this last iteration is the only “non-
improving” iteration for the objective value. At the end of this last
iteration, assume that si, with its assigned relay node R(si), is the
“bottleneck” source node, i.e., Cmin = CR(si,R(si)). Then we
have the following fact for the marking status of R(si).

FACT 1. For the bottleneck source node si under ψ, its relay
node R(si) is not marked at the end of the last iteration of ORA
algorithm.

PROOF. In the last iteration of ORA algorithm, a relay node rj
is marked only if it has been checked for its availability and it is
not R(si) (see Check_Relay_Availability() in Fig. 5). Thus, R(si)
cannot be marked at the end of the last iteration of the ORA algo-
rithm.

Fact 1 will be a basis for contradiction in our proof for Theo-
rem 1, the main result of this section. But first, we present the
following three claims, which recursively examine relay node as-
signment under ψ̂.

First, for the relay node assigned to si in ψ̂, i.e., R̂(si), we have
the following claim.

CLAIM 1. Relay node R̂(si) cannot be ∅ and must be assigned
to some source node under solution ψ. Further, it must be marked
at the end of the last iteration of the ORA algorithm.

PROOF. The proof for the first statement is based on contradic-
tion. Suppose that R̂(si) = ∅ or relay node R̂(si) is not assigned
to any source node under solution ψ. Since ψ̂ is a better solution
than ψ, we have CR(si, R̂(si)) ≥ Ĉmin > Cmin. Thus, in the last
iteration of the ORA algorithm, we should check R̂(si)’s availabil-
ity and a better solution should be found. However, we know that
this last iteration is a non-improving iteration and the ORA algo-
rithm cannot find a better solution. So, R̂(si) cannot be ∅ and must
be assigned to some source node under ψ.

We now prove the second statement. Since CR(si, R̂(si)) >

Cmin, we should check R̂(si)’s availability in the last iteration of
the ORA algorithm. Since ORA algorithm cannot find a better so-
lution in this last iteration, R̂(si) should be marked and then the
result for checking R̂(si)’s availability must be unavailable. Thus,
R̂(si) must be marked at the end of ORA algorithm.

Claim 1 states that in solution ψ, relay node R̂(si) must be as-
signed to some source node. By the definition of S(·), we have
that R̂(si) is assigned to source node S(R̂(si)) in solution ψ. To
simplify notation, define function G(·) as

G(·) = S(R̂(·)) . (7)

Thus, relay node R̂(si) is assigned to source node G(si) in ψ (see
the top portion of Fig. 6).

Now we recursively investigate the relay node assigned to G(si)

under solution ψ̂, i.e., R̂(G(si)). We have the following claim (also
see Fig. 6). Its proof follows the same token as that for Claim 1 and
is omitted to conserve page length.
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Figure 6: Marking status and the relationship among the nodes
being examined in the proof of Theorem 1.

CLAIM 2. Relay node R̂(G(si)) cannot be ∅ and must be as-
signed to some source node under solution ψ. Further, it must be
marked at the end of the last iteration of the ORA algorithm.

Claim 2 states that in solution ψ, relay node R̂(G(si)) must be
assigned to some source node. By the definition of S(·), we have
that R̂(G(si)) is assigned to source node S(R̂(G(si))) in solution
ψ. By (7), we have S(R̂(G(si))) = G(G(si)). To simply the
notation, denote function G2(·) as

G2(·) = G(G(·)) .
Thus, relay node R̂(G(si)) is assigned to source node G2(si) in ψ.

Following the same token for Claims 1 and 2, we can obtain a
similar claim for the relay node assigned to G2(si) under ψ̂, i.e.,
R̂(G2(si)). This recursive investigation of source node of R̂(·)
under ψ and relay node assigned to G(·) under ψ̂ continues and
will terminate at some n-th step since the numbers of source and
relay nodes are finite (see Fig. 6).

Denote

G0(si) = si ,

Gk(si) = G(Gk−1(si)) (1 ≤ k ≤ n) .

Thus, we have that in ψ̂, the corresponding relay nodes for si,G(si),

· · · ,Gn(si) are R̂(si), R̂(G(si)), · · · , R̂(Gn(si)), respectively (see
Fig. 6). We can prove one claim for each of these relay nodes. In
summary, we have the following claim.

CLAIM 3. Relay node R̂(Gk(si)) cannot be ∅ and must be as-
signed to some source node under solution ψ, k = 0, 1, 2, · · · , n.
Further, it must be marked at the end of the last iteration of the
ORA algorithm.

Note that we already have Claims 1 and 2 for k = 0 and k = 1,
respectively. The proof for the general case in this claim follows
the same token and is omitted to conserve page length.

We are now ready to prove the following theorem, which is the
main result of this section.

THEOREM 1. Upon the termination of the ORA algorithm, the
obtained solution ψ is optimal.

PROOF. Referring to Fig. 6, we have Claim 3 for a set of relay
nodes R̂(si), R̂(G(si)), · · · , R̂(Gn(si)).

Under Claim 3, R̂(Gn(si)) is assigned to a source node in solu-
tionψ. We now investigate to which source node it is assigned inψ.
This source node must be a node among {si,G(si), · · · ,Gn(si)},
otherwise the recursive process will not terminate at R̂(Gn(si)).



Table 2: Optimal assignments for Case 1 (Nr ≥ Ns) under two different initial relay node assignments.
Direct Relay Assignment I Relay Assignment II

Sender Transmission Initial Final Final Capacity Initial Final Final Capacity
Capacity (Mbps) (Mbps) (Mbps)

s1 6.1 r8 r2 15.3 r1 r2 15.3
s2 10.6 r6 r7 21.8 r7 r7 21.8
s3 8.8 r1 r1 16.6 r8 r3 18.9

s4 6.3 r5 r4 10.7 r2 r4 10.7
s5 7.3 r10 r14 14.9 r13 r12 15.0
s6 9.6 r4 r6 21.3 r5 r5 11.0

s7 4.2 r2 r8 11.0 r10 r8 11.0
s8 6.9 r16 r12 16.6 r6 r10 11.0
s9 11.3 r7 r10 22.6 r9 r9 11.9
s10 11.1 r19 r17 19.9 ∅ ∅ 11.1
s11 9.5 r17 r20 21.0 r16 r20 21.1
s12 7.4 r18 r18 12.8 r19 r19 13.6
s13 8.5 r20 r16 11.9 r18 r18 11.2
s14 9.7 r15 r15 12.2 r17 r16 18.1
s15 6.1 ∅ r19 13.5 r20 r17 11.2

But under ψ, each of G(si), G2(si), G3(si), · · · , Gn(si) has its
own relay R̂(si), R̂(G(si)), R̂(G2(si)), · · · , R̂(Gn−1(si)), re-
spectively. Thus, R̂(Gn(si)) can only be assigned to si in solution
ψ. On the other hand, relay R(si) is assigned to si in solution ψ.
So we must have R̂(Gn(si)) = R(si).

However, by Claim 3, we have R̂(Gn(si)) is marked, while by
Fact 1, we have R(si) is not marked. This is a contradiction. Thus
the assumption that there exists a better solution ψ̂ than ψ does not
hold and the proof is complete.

Note that the proof of Theorem 1 does not depend on the ini-
tial assignment in the ORA algorithm. So we have the following
important property for the ORA algorithm.

COROLLARY 1.1. Under any initial relay node assignment, the
ORA algorithm can find an optimal relay node assignment.

6. NUMERICAL RESULTS
In this section, we present some numerical results to demonstrate

the properties of the ORA algorithm.

6.1 Simulation Setting
We consider a 50-node ad hoc network. For this network, we

consider both the cases ofNr ≥ Ns andNr < Ns. In the first case,
we have 15 source-destination pairs and 20 relay nodes. While in
the second case, we have 20 source-destination pairs and only 10
relay nodes. The role of each node (either as a source, destination,
or relay) for each case is shown in Figs. 7 and 9, respectively.

For the simulations, we assume W = 22 MHz bandwidth for
each channel. The maximum transmission power at each node is set
to 1 W. Each relay works on AF mode. For simplicity, we assume
that hsd only includes the path loss component between nodes s
and d and is given by |hsd|2 = ||s − d||−4, where ||s − d|| is the
distance (in meters) between these two nodes and 4 is the path loss
index. For the AWGN channel, we assume the variance of noise is
10−10 W at all nodes.

6.2 Results
Case 1: Nr ≥ Ns. In this case (see Fig. 7), we have 15 source-
destination pairs and 20 relay nodes.

Under ORA, after preprocessing, we start with an initial relay
node assignment in the first iteration. Such initial assignment is not
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Figure 7: A 50-node network topology for Case 1 (Nr ≥ Ns),
with Ns = 15 and Nr = 20.
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Table 3: Optimal assignments for Case 2 (Nr < Ns) under two different initial relay node assignments.
Direct Relay Assignment I Relay Assignment II

Sender Transmission Initial Final Final Capacity Initial Final Final Capacity
Capacity (Mbps) (Mbps) (Mbps)

s1 6.1 r1 r1 10.2 ∅ r1 10.3
s2 10.6 ∅ ∅ 10.6 ∅ ∅ 10.6
s3 8.8 r2 r2 20.1 ∅ r2 20.1
s4 6.3 ∅ r3 10.7 r2 r3 10.7

s5 7.3 r5 r5 9.0 r5 r5 9.0
s6 9.6 ∅ ∅ 9.6 ∅ ∅ 9.6

s7 4.2 r3 r4 9.3 r1 r4 9.3
s8 6.9 r8 r6 16.6 ∅ r6 16.6
s9 11.3 ∅ ∅ 11.3 ∅ ∅ 11.4
s10 11.1 ∅ ∅ 11.1 ∅ ∅ 11.1
s11 9.5 r7 r10 20.1 ∅ ∅ 9.5
s12 7.5 r10 r9 12.8 r10 r9 12.8
s13 8.5 ∅ r7 16.9 r8 r7 16.9
s14 9.8 ∅ ∅ 9.8 ∅ ∅ 9.8
s15 6.1 ∅ r8 12.9 r7 r8 12.9
s16 20.5 ∅ ∅ 20.5 ∅ ∅ 20.5
s17 49.6 ∅ ∅ 49.6 ∅ ∅ 49.6
s18 36.0 ∅ ∅ 36.0 ∅ ∅ 36.0
s19 33.5 ∅ ∅ 33.5 ∅ ∅ 33.5
s20 21.2 ∅ ∅ 21.2 ∅ ∅ 21.2

unique. But regardless of initial relay node assignment, the objec-
tive value can always converge to the optimum (by Corollary 1.1).
To validate this point, in Table 2, we show the results of running the
ORA algorithm under two different initial relay node assignments,
denoted as I and II (see Table 2).

In Table 2, the second column shows the capacity for each source-
destination pair under direct transmissions. Note that the minimum
capacity among all pairs is 4.2 Mbps, which is associated with s7.
The third to fifth columns are results under initial relay node as-
signment I and sixth to eighth columns are results under initial re-
lay node assignment II. The symbol ∅ denotes direct transmissions.
Note than the initial relay node assignments I and II are different.
As a result, the final assignment is different under I and II. How-
ever, the final objective value (i.e., Cmin) under I and II is identical
(10.7 Mbps).

Figure 8 shows the objective value Cmin at each iteration under
initial relay node assignments I and II. Under either initial relay
node assignments I or II, Cmin is a non-decreasing function of it-
eration number. The increase of Cmin by cooperative communi-
cations over direct transmissions is significant (from 4.2 Mbps to
10.7 Mbps).

Case 2: Nr < Ns. In this case (see Fig. 9), we have 20 source-
destination pairs and 10 relay nodes.

Table 3 shows the results of this case under two different initial
relay node assignments I and II. The second column in Table 3 lists
the capacity under direct transmissions for each source-destination
pair. As discussed at the end of Section 4.2, for the case of Nr <
Ns, it is only necessary to consider relay node assignment forNr =
10 source nodes corresponding to the 10 smallest capacities, i.e.,
nodes s1, s3, s4, s5, s7, s8, s11, s12, s13, and s15. As a result, the
problem size can be reduced.

Again in Table 3, the objective valueCmin is identical (9.0 Mbps)
regardless of different initial relay node assignments (I and II). Note
that the final relay node assignment under I and II is not identical,
although the objective value Cmin is the same. The increase of
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Figure 9: A 50-node network topology for Case 2 (Nr < Ns),
with Ns = 20 and Nr = 10.
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Table 4: An example illustrating the importance of preprocess-
ing.

Direct Without Preprocessing
Sender Transmission Final

Capacity Initial Final Capacity
(Mbps) (Mbps)

s1 6.1 r2 r2 15.3
s2 10.6 r12 r7 21.8
s3 8.8 r1 r1 16.6

s4 6.4 r14 r4 10.7
s5 7.3 r13 r12 15.0
s6 9.6 r16 r6 21.3
s7 4.2 r5 r8 11.0
s8 6.9 r6 r10 11.0
s9 11.3 r11 r11 11.0
s10 11.0 r15 r19 22.6
s11 9.5 r17 r20 21.1
s12 7.5 r18 r18 12.8
s13 8.5 r3 r17 16.9
s14 9.8 r10 r15 12.2
s15 6.0 r19 r16 12.9

Cmin by cooperative communications over direct transmissions is
significant (from 4.2 Mbps to 9.0 Mbps).

Figure 10 shows the objective value Cmin at each iteration un-
der initial relay node assignments I and II. Again, we observe that
in Fig. 10, Cmin is a non-decreasing function of iteration number
under either initial relay node assignments I or II.

Importance of Preprocessing Now we use a set of simulation
results to show the significance of preprocessing in our ORA al-
gorithm. We consider the same network in Fig. 7 with 15 source-
destination pairs and 20 relay nodes. Now we remove the prepro-
cessing step in ORA algorithm. As an example, the third column of
Table 4 shows an initial assignment without first going through the
preprocessing step. Although the objective value Cmin also reaches
the same optimal value (10.7 Mbps) as that in Table 2, the final ca-
pacity for some non-bottleneck source nodes could be worse than
direct transmissions. For example, for s9, its final capacity is 11.0
Mbps, which is less than direct transmissions (11.3 Mbps). Such
event is undetectable without the preprocessing step, as 11.0 Mbps
is still greater than the optimal objective value (10.7 Mbps).

On the other hand, when the preprocessing step is employed,
ORA can ensure that the final capacity for each source-destination
pair is no less than direct transmissions.

7. CONCLUSION
Cooperative communications is a powerful communication para-

digm to achieve spatial diversity. However, the performance of
such communication paradigm hinges upon the choice of relay node
in the network. In this paper, we studied the relay node assign-
ment problem in a network environment, where multiple source-
destination pairs compete for the same pool of relay nodes in the
network. The main contribution of this paper is a polynomial time
algorithm to solve this problem. A key idea in this algorithm is a
“linear marking” mechanism, which is able to achieve linear com-
plexity at each iteration. We gave a formal proof of optimality for
the algorithm and used numerical results to demonstrate its capa-
bility. There are several attractive properties associated with this
algorithm, such as its robustness to the number of relay nodes in

the network, its guarantee for each source-destination pair to have
capacity no less than direct transmissions, and its ability to find the
optimal objective regardless of initial assignment.
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