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ABSTRACT

Radio frequency identification (RFID) is an emerg-
ing technology for automatic object identification. For
successful deployment of tags, a RFID system should
provide effective protection over security and privacy.
In particular, traceability is the main concern for user
privacy. To address these issues, mutual authentication
between the reader and tags is required when deploying
a RFID system. Unfortunately, because low-cost RFID
tags are highly resource constrained, they are not able
to carry out expensive cryptographic primitives to achieve
strong authentication. This paper introduces a lightweight
authentication protocol for low-cost RFID tags. Compared
with previous work, our solution provides better traceabil-
ity protection while keeping the system efficient in terms
of computation and communication. Our scheme also
maintains comparable strength regarding other security
aspects.

I. INTRODUCTION

Radio frequency identification (RFID), the technology
for automatic object identification, is being increasingly
deployed in a diverse range of applications such as inven-
tory management, manufacturing and anti-counterfeiting.
Compared with optical barcode, RFID has many obvious
advantages such as unique identification and automation [1]
and will hopefully take the place of the former.

However, consumer concerns on privacy may limit ubiq-
uitous deployment of RFID tags [2], [3]. Among all privacy
risks, information leakage and traceability are two most
serious ones [4]. Information leakage means revealing data
of an object to which a tag is attached, while traceability
indicates that a tag is distinguishable and thus trackable.
The former can be avoided if the back-end server allows
access only to authenticated persons. The latter, however,
is difficult to address because RFID tags are highly resource
constrained.

The constraint on resource is caused by the acceptable
price of tags in the market. Pervasive deployment of RFID
requires tags to be low-cost and priced in the range of
$0.05 to $0.10. With such a limitation on cost, a typical
low-cost tag may only have few hundred bits of storage
and no more than several thousand gates which can be
used for security. Strong cryptographic primitives such as
asymmetric encryption cannot be applied to low-cost tags.

Although the constraint on resource makes it a great
challenge to protect privacy of RFID tags, several category
of solutions have already been proposed in the litera-
ture. Physical approaches include tag “killing” adopted
by EPC and “blocker tags” [5]. Tag “killing” protects
privacy via deactivating tags. While “blocker tags” ap-
proach protects privacy by letting a tag disturb the tree-
walking collision-avoidance protocol and block the tag-
to-reader communication. Another category of approaches
adopt authentication protocols. Most of them, e.g. [6], [7],
take advantage of one-way property of the hash function to
authenticate tags and/or readers. Re-encryption approaches
[8]–[10] also belong to this category. These schemes are
based on asymmetric cryptography but have this resource-
consuming operation executed by the reader. Reference [11]
achieves mutual authentication without using cryptographic
primitives.

Each of these approaches solves some particular issues.
However, all of them exhibit tradeoffs between efficiency
and security and/or privacy. Traceability, in particular, is
either addressed by sacrificing other aspects such as scala-
bility and security or poorly defended.

To prevent traceability, the tag should respond differently
upon each challenge. However, if the tag’s response is
totally random and unpredictable, the back-end server needs
a brute-force search to find out a matching tag in its
database. Actually, the number of tags in a RFID system
could be on the order of millions. If every query needs a
brute-force search, computation load on the back-end server
would be extremely heavy.
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In this paper, we propose a lightweight authentication
protocol which adopts a challenge-response process to
achieve mutual authentication. To make the system scalable,
our scheme is designed in such a way that the response
of a tag is somewhat predictable to the back-end server
but appears random to outsiders. We address traceability
by preventing an interrogator from querying the same tag
using the same challenge number in different interrogations.

Our scheme can protect against tracking attack effec-
tively. More important, this protocol is scalable and main-
tains comparable strength in other security aspects.

The rest of this paper is organized as follows. We analyze
related work in Section II, and propose our protocol in
Section III. We analyze our scheme in Section IV. Section
V presents our conclusions.

II. RELATED WORK

Many papers in the literature have addressed the security
and privacy concerns on the use of RFID tags.

In [6], the authors devised a randomized hash key
scheme. Upon each query, the tag generates a random
numberr and computes the signatureh(ID,r). Then the pair
(r,h(ID,r)) is sent to the reader as the response to the query.
This scheme can protect against tracking attack effectively
because the tag’s response varies on each query. However,
it requires to perform a brute-force search on the back-
end server to verify the signatureh(ID,r). If the number of
the tags is large, computation load on the back-end server
would be extremely heavy.

Dimitriou proposed scheme [12] that intends to perform
mutual authentication using a shared secretIDi. In this
scheme, the reader sends a random numberNR as the
challenge. Upon receiving the challenge, the tag generates
another random numberNT and computes the signature
hIDi

(NT ,NR) as the response to the challenge. To help the
back-end server search the correspondingIDi, the tag also
sends a metaIDh(IDi) to the reader. However, an adversary
can trace the tag by metaID. To address this problem, the
scheme updatesIDi after each successful interrogation. This
enhancement can protect the tag from being traced for ever.
But the tag is traceable between two successive successful
interrogations because metaID remains unchanged.

In [11], Juels designed a challenge-response scheme
which introduces no cryptographic primitives except for
XOR operation. Each tag shares a list of items(αi, βi, γi),
1 ≤ i ≤ k , with the reader. Upon query, the tag first
sends a pseudonymαi to the reader. A legitimate reader
then authenticates itself to the tag by releasing the key
βi. If the tag verifiesβi, it sends keyγi to the reader
to authenticate itself. To protect against tracking attack,
this scheme requires the tag releasing different pseudonym

α upon each query. Pseudonyms are emitted at a low
rate to prevent an adversary from harvesting all of them.
However, due to the limitation on storage, a tag can store
only a small list of (αi, βi, γi) items, say 4 or 5 for a
real-world system as Juels mentioned. It is not difficult
for an adversary to harvest all the pseudonyms. Frequent
refreshing pseudonyms of the tag might enhance protection
against tracking attack. However, it will introduce a heavy
communication load to the system.

Tsudik proposed a scheme called YA-TRAP(Yet Another
Trivial RFID Authentication Protocol) [13]. In YA-TRAP,
tag Ti shares a unique keyki with the reader. Ti also stores
a timestampti that records the last time at which it was
interrogated. The reader needs to send current timestamptr
to Ti to start the interrogation. Ti then comparestr with its
own timestampti. If tr is valid, sayingti ≤ tr ≤ tMAX ,
tag Ti responds withHr=HMACki

(tr) and updatesti with
tr. Otherwise, it responds with a random number. The
reader can authenticate the tag by checking if there is
a secret keykj in the server that matches the equation
Hr=HMACkj

(tr). This scheme is efficient in batch mode
where a reader scans a lot of tags and then authenticates
them in bulk. It is also not vulnerable to tracking attack.
However, just as the author mentioned, this scheme is
vulnerable to denial-of-service(DoS) attack. An adversary
can incapacitate a tag by sending a wildly inaccurate
timestamp. Besides, this scheme cannot guarantee forward
security because the keyki is never updated. Compromising
the tag can disclose all its history data.

III. O UR PROTOCOL

A. Model and Requirements

System Model In our scheme, we assume the RFID
system is composed of three components: tags T, readers
R, and a trusted back-end server S.

Tags are all passive and each has limited resource which
includes a hash function and few hundred bits of non-
volatile memory. Each tag Ti is pre-configured with a secret
key ki which is l bits in length. To record information of
previously used random numbers, our scheme requires each
tag to havem-bit non-volatile memory to store it.

A reader is a device that queries the tag and gets its
identification information. The back-end server stores all
the information of tags and has all required functionality
such as hash function, random number generator and so
on.

Attack Model In our scheme, we assume that the back-
end server is a trusted entity and well protected. Commu-
nication channel between readers and the back-end server
is also assumed to be secure. Malicious readers can never
get authenticated by the server.
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Back-end Server Reader Tag

Request

Random number

Nr

 RESPONSE, Nr RESPONSE

VERIFICATION VERIFICATION

Search the database ;

if (RESPONSE == h(ki,Nr))

   VERIFICATION =  h(ki+1,Nr) ;

   ki = h(ki) ;

   update hash values of ki ;

Else

   VERIFICATION =  DENY ;

temp = h(ki,Nr) ;

j = temp  mod m ;

if (0 == map[j])

   map[j] = 1 ;

   RESPONSE =  temp  ;

Else

   RESPONSE = PRNG ;

if (VERIFICATION ==  h(ki+1,Nr))

    ki = h(ki) ;

   set all the bits in map to 0 ;

Fig. 1. protocol description

The adversary can eavesdrop the communication between
tags and a reader as well as inject arbitrary messages into
the communication channel. Therefore, the adversary can
be either passive or active. It could be a malicious tag, a
malicious reader or an eavesdropper.

In [14], Avoine classified untraceability as universal
untraceability and existential untraceability. Existential un-
traceability means that the tag is not traceable for ever in
theory. To achieve existential untraceability, computation
load on the back-end server would be heavy. And more
important, it is not necessary in most RFID systems. Actu-
ally, the adversary cannot execute around-the-clock attack
as Juels mentioned in [1]. In [11], Juels also claimed that
there is a cap on the number of times for the adversary to
scan a tag or spoof an honest reader without being noticed.
Our scheme follows this assumption.

Security RequirementsTo successfully deploy a RFID
system, the following security and privacy requirements
should be met.

Untraceability By analyzing a tag’s response, an adver-
sary cannot distinguish whether it is the target tag or not.
Its response in history can not help identify the tag.

ConfidentialityBy overhearing messages between a tag
and the reader, the adversary cannot learn the secret infor-

mation of a tag.
Availability The RFID system is not vulnerable to Denial-

of-Service(DoS) attack.
Forward SecurityHarvesting a tag’s key can not disclose

its history data.

B. Scheme Description

The protocol is illustrated as Fig. 1. Nr is a random
number generated by the back-end server. A tag has al-
bit secret keyki and a m-bit map. The back-end server
maintains a database which stores hash valuesh(ki, N) for
all keys and random numbers.

The detail of our scheme is described in following steps.
R represents a reader and Ti represents a tagi.

step 1: The reader R sends a random numberNr to the
tag Ti.

step 2: Upon receivingNr, Ti first computes its position
j = h(ki, Nr) mod m in the map, then checks bitj in
the map (i.e.map[j]) to see if it has been set. If map[j]
has not been set, it means that random numberNr has
not been used before.Ti composes RESPONSE ash(ki,
Nr) and sets map[j] to 1. Otherwise, it is very likely that
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random numberNr has already been used before.Ti assigns
a random number to RESPONSE.

step 3: Ti sends RESPONSE to the reader.
step 4: On receiving RESPONSE fromTi, the reader

queries the back-end server with (RESPONSE,Nr) . If the
back-end server finds a matching item in the database, it
computes VERIFICATION =h(ki+1, Nr) and updates the
corresponding keyki with h(ki) as well as the hash values
hash(ki, Nj) for each random numberNj . Otherwise, the
back-end server assigns DENY to VERIFICATION. Finally,
the back-end server returns VERIFICATION to the reader.

step 5: The reader forwards VERIFICATION toTi. Also,
it checks VERIFICATION itself. If VERIFICATION equals
DENY, the reader will query the tag with another random
number.

step 6: To authenticate the reader,Ti compares VERI-
FICATION with h(ki+1, Nr). If only they are equal does
Ti update its key withh(ki) and set all the bits in the map
to 0.

Them-bit map ismbits of non-volatile memory. It is used
to store information of previously used random numbers and
protect against tracking attack between to successive suc-
cessful interrogations. In the long run, tags are not traceable.
Even if the adversary records the pair (Nr, RESPONSE)
at some time point, it cannot make a link between this
record with another response of the same tag after several
successful interrogations. This is so because the secret key
ki is updated after each successful interrogation. However,
the tag is traceable between two successful interrogations
because the secret key is not changed during this period.
To address this issue, we introduce them-bit map to
record previously received random numbers. The intuition
here is to prevent a malicious reader from continuously
interrogating the same tag with the same random number.
If we can successfully stop a malicious reader from using
the same random number in a reasonable long period, this
type of tracking attack can be protected against practically.

Random number Nr is generated by the back-end server.
One random number can be used to query a group of tags.
Because it has already known keys of all tags, the back-end
server can pre-computeh(ki, Nr) for each tag and store it in
its database. During each interrogation, the back-end server
simply searches its database to verify RESPONSE message
from Ti. Searching complexity could be O(1) if appropriate
searching algorithm, e.g. hash, is adopted. Therefore, even
if the number of tags is large, realtime computation load
on the back-end server is very low.

There is a tradeoff between efficiency and security.
Because one random number is used to query a number
of tags, an adversary may harvest the random number by

eavesdropping. Then she queries a legitimate tag using
this random number and stores its RESPONSE in a fake
tag. Upon being queried, the fake tag can impersonate the
legitimate tag by replaying the RESPONSE message. To
avoid this type of cloning attack, we limit the use of our
scheme to batch mode [13] where this type of cloning attack
is infeasible or difficult.

If a tag is not illegally queried by the adversary, the
reader can always successfully interrogate it at the first try.
However, if the adversary has queried the tag, some bits
of the map are set. As we will explain in the next section,
the reader may need to query several times before it can
receive a valid response from the tag. To make sure the
reader can successfully query a legitimate tag, the back-
end server should provide several random numbers for the
reader. In our scheme, the back-end server generates a group
of random numbers when the system is deployed. For each
random number and each tag, the server pre-computes and
stores the corresponding hash valueh(ki, Nr). If the reader
wants to query a batch of tags, it asks the server for one
random number. After authentication, the server assigns
one random number to the reader. Upon each successful
interrogation, the back-end server should update keyki as
well as hash valueshash(ki, Ni) for each random number
Ni. The random number should also be updated after the
back-end server verifying the batch of tags.

C. Scheme Parameters and Security Strength

Due to the limitation on memory, the tag cannot record
the random numbers themselves. In this scheme, the tag
records each random number using 1 bit by marking its cor-
responding position in the map. The position is computed
by ( h(ki, Nr) mod m). For each new random number, its
position in the map is probabilistically uniformly distributed
from 0 to m-1 and not predictable to the interrogator.
Apparently, collision may occur if some bits of the map
are already set. Ifn bits of the map are already set, the
probability of collision for the next random number is

Prob(Collision) =
n

m
(1)

An interrogator needs to retrymn times on average before
it can get a valid response from the tag. Ifn equalsm, the
probability of collision is 1. To make itself available to a
legitimate reader, the tag should clear all or part of the bits
of the map. The adversary can take this chance and trace the
tag using previously used random numbers. Therefore, the
adversary can trace a tag by setting all the bits in the map
and then querying the tag using previous random numbers.
However, the number of retries to set all the bits of the map
could be large due to collision. Probabilistically, it can be
given by the following formula:
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Numretries = m ·
m−1∑

k=0

(
1

m− k
) (2)

Practically, a tag may have several hundred bits of
memory andNumretries can be several thousand(see Fig.2).
If the tag releases its RESPONSE at a certain (suitably
slow) rate, it could take hours for an adversary to trace
the tag. For low-cost RFID applications, tracking a tag in
this way may be not profitable for an adversary considering
the time cost. With this consideration, we believe that
our scheme provides adequate protection against tracking
attack. For applications where tracking between two succes-
sive successful interrogations is critical, resource abundant
tags should be adopted.

While collision prolongs the time that is needed for an
adversary to trace the tag, it also prevents a legitimate reader
from interrogating the tag. Fortunately, the number of retries
for a legitimate reader would not be large. More important,
if a RFID system is not under an active attack, which is
the most common case, a legitimate reader always harvests
a valid response from the tag at the first try. In the worst
case,m-1 bits of the map are set by a smart adversary and
the number of retries for a legitimate reader ism which is
still much smaller thanNumretries. However, it is very hard
for an adversary to intentionally setm-1 bits of the map
because the position in the map of each random number
is not predictable. Generally, if the number of bits that an
adversary has set is uniformly distributed from 0 tom-1,
the average number of retries for a legitimate reader is

Numavg−tries =
m−1∑

k=0

(
1

m− k
) (3)

which is not more than seven ifm is on the order of
hundreds.

Fig. 2 gives the comparison of retry number for an
adversary and a legitimate reader.

On the server side, retries do not introduce extra compu-
tation load. In our scheme, the server generatest random
numbers when the system is deployed. Ift is carefully
selected, e.g. a little bit larger thanm, we can make sure
a reader can successful harvest a valid response from a tag
in most cases. The back-end server only needs to perform
database searching for each retry. As we mentioned before,
complexity for each search is O(1).

IV. SCHEME ANALYSIS

In this section, we will analyze security strength, system
performance as well as tag functionality of our scheme. We
also compare our scheme with previous work.
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A. Security Analysis

Though our scheme mainly focuses on traceability, other
security issues are also important to successful deployment
of RFID system. Now we examine these attacks one by
one.

Tracking AttackOur scheme updates the secret key after
each successful interrogation. Therefore, in the long run,
an adversary cannot make a link between a tag and its RE-
SPONSE. Between two successful interrogations, however,
tracking a tag is also very hard. As we mentioned, it will
take several thousand times of retry until an adversary can
query the tag with previously used random numbers. If the
tag releases its response at a suitable rate, e.g. slowing down
when the number of 1s in the map is getting large, it will
possibly take several hours for an adversary to track a tag
between two successive successful interrogations. It is not
profitable for an adversary in low-cost RFID applications.

EavesdroppingBy eavesdropping, an adversary can har-
vest no secret of a tag. If a secure hash function is adopted
in a tag, it is computationally infeasible for an adversary
to recover the key from its hash value given the random
number.

Denial-of-Service(DoS) AttackIt’s possible for an adver-
sary to execute a DoS attack. By intercepting VERIFICA-
TION message from the reader, an adversary can prevent
a legitimate tag from updating its key and desynchronize it
with the server. However, this issue is easy to solve. The
server can backup hash valueh(ki−1,N) for the previous key
(the most recently used one) when updating the key for a
tag. If a tag responses with hash value on the previous key,
the server can also find it in the database.
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CompromisingRFID tags are not resistant to physical
compromising. If an adversary has compromised a tag, she
can harvest all the information including the secret key. But
we can still guarantee forward security for a tag. To update
a key, the tag performs a one-way hash operation on the
old key. The adversary cannot derive previously used keys
even if she has harvested the current key.

The following table compares our scheme with previous
work on security.

TABLE I
COMPARISON OF PROTOCOLS ON SECURITY

Ours [6] [12] [11] [13]
Tracking

√ √ √
Fw Sec.

√ √ √
DoS

√ √ √

Since all these protocols are effective against eavesdrop-
ping, we do not include it in the table.

Based on above comparison, we can see that our scheme
can protect against all these attacks. However, each of other
protocols has at least one type of vulnerability.

B. Efficiency Analysis

Besides security, we also care about how efficient a RFID
system operates. Here we will measure the efficiency of a
RFID system by computation load on a tag, communication
load, and computation load on the back-end server.

computation load on a tagWe measure this by how
many hash operations are needed on a tag for a complete
interrogation. Our scheme involves two hash operations in
total which are used for computing position of a random
number (hash valueh(ki,Nr) can be reused to compose a
RESPONSE) and updating the secret key respectively. The
modular operation can not be counted in the computation
load because it is just taking the lowerk bits of a random
number ifm=2k.

communication loadThree messages are needed for a
complete interrogation. The first one is the random number,
e.g. 80-bit in length, sent by the reader. The other two are
RESPONSE and VERIFICATION. They are hash values
of a (key, random number) pair and each has the length
of 80 bits if 80-bit hash function is used. Therefore, in
total we only need to transmit 240 bits for one complete
interrogation if we are adopting an 80-bit hash function.

computation load on the serverOur scheme can pre-
compute the hash values before querying tags. During
interrogation, the back-end server only needs to search the
database. If appropriate searching algorithm is adopted, the
server could find a matching value with complexity of O(1).
In batch mode, the complexity is O(n).

The following table compares our scheme with previous
work on efficiency. Computation load of the back-end sever
is compared for batch mode.

TABLE II
COMPARISON OF PROTOCOLS ON EFFICIENCY

Ours [6] [12] [11] [13]
Hash Op 2 1 3 0 1
Comm 3 3 5 4 2
Server O(n) O(n2) O(n2) O(n) O(n)

According to TABLE II, we can see that the computation
load of tags and communication load in our scheme is
mediate. However, our computation load on the server is the
lowest among all these protocols. Since the number of tags
may be large, the computation load on the back-end server
is critical to the practical deployment of a RFID system.

C. Tag Functionality

Functionality of a tag determines its cost. TABLE III
compares tag’s functionality of these protocols. The pseudo-
random number generator(PRNG) in our scheme can be
replaced with a keyed hash function as Tsudik mentioned
in [13].

TABLE III
COMPARISON OF PROTOCOLS ON FUNCTIONALITY

Ours [6] [12] [11] [13]
Hash

√ √ √ √
PRNG

√ √
Memory key,map ID ID keys, pads key

TABLE III shows that cost of a tag in our scheme is
comparable to previous work.

V. CONCLUSION

In this paper, we study security and privacy issues in low-
cost RFID systems as well as current RFID authentication
protocols. We propose a lightweight authentication protocol
which focuses on protecting against traceability of the tag.
Compared with previous work, our scheme provides better
traceability protection. More important, computation load
on the back-end server is very low in our scheme. This
feature makes the RFID system scalable and applicable
to practical scenarios. When applied in batch mode, our
scheme also maintains comparable strength regarding other
security aspects.
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